Nonparametric Pattern-Mixture Models for Inference with Missing Data

Yen-Chi Chen

Department of Statistics
University of Washington

- Joint work with Mauricio Sadinle
- Supported by NSF DMS - 1810960

A regular statistical problem

- We observe IID study variables $X_{1}, \cdots, X_{n} \in \mathbb{R}^{d}$ from a distribution F with a PDF p.
- Our goal is to make inference about a parameter of interest that can be written as a statistical functional

$$
\theta=\theta(F)
$$

- Common example: the mean vector, the covariance matrix, ...etc.

A regular statistical problem

- We observe IID study variables $X_{1}, \cdots, X_{n} \in \mathbb{R}^{d}$ from a distribution F with a PDF p.
- Our goal is to make inference about a parameter of interest that can be written as a statistical functional

$$
\theta=\theta(F)
$$

- Common example: the mean vector, the covariance matrix, ...etc.
- A common (nonparametric) estimator: plug-in with the empirical distribution function (EDF)

$$
\widehat{\theta}_{\text {naive }}=\theta(\widehat{F}), \quad \widehat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq x\right)
$$

A toy example

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	17	32
2	12	15	17	21
3	17	43	35	42
4	11	25	23	43
5	16	37	32	51
6	15	23	32	44
7	21	27	35	53

A toy example

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	NA	NA
2	12	NA	NA	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Missing data

- When there are missing entries in our data, the problem gets a lot more complicated.
- What we observed is

$$
X_{1, \mathrm{obs}}, \cdots, X_{n, \text { obs }}
$$

where the original random variable can be decomposed as $X_{i}=\left(X_{i, \text { obs }}, X_{i, \text { miss }}\right)$ and $X_{i, \text { miss }}$ is the unobserved part.

Missing data

- When there are missing entries in our data, the problem gets a lot more complicated.
- What we observed is

$$
X_{1, \text { obs }}, \cdots, X_{n, \text { obs }}
$$

where the original random variable can be decomposed as $X_{i}=\left(X_{i, \text { obs }}, X_{i, \text { miss }}\right)$ and $X_{i, \text { miss }}$ is the unobserved part.

- In this case, we cannot construct the EDF.

Missing data

- When there are missing entries in our data, the problem gets a lot more complicated.
- What we observed is

$$
X_{1, \text { obs }}, \cdots, X_{n, \text { obs }}
$$

where the original random variable can be decomposed as $X_{i}=\left(X_{i, \text { obs }}, X_{i, \text { miss }}\right)$ and $X_{i, \text { miss }}$ is the unobserved part.

- In this case, we cannot construct the EDF.
- Ignoring observations with missing entries (the complete-case analysis) is a bad idea because the missingness may be dependent with the study variable X.

Monotone missing data

- To simplify the problem, we assume that the missingness is monotone.
- This occurs in many medical research when participants dropout from the study.

Monotone missing data

- To simplify the problem, we assume that the missingness is monotone.
- This occurs in many medical research when participants dropout from the study.
- Let T_{i} denotes the last observed variable of the i-th individual. Then

$$
X_{i, \mathrm{obs}}=X_{i, \leq T_{i}}=\left(X_{i j}: j \leq T_{i}\right)
$$

Monotone missing data

- To simplify the problem, we assume that the missingness is monotone.
- This occurs in many medical research when participants dropout from the study.
- Let T_{i} denotes the last observed variable of the i-th individual. Then

$$
X_{i, \mathrm{obs}}=X_{i, \leq T_{i}}=\left(X_{i j}: j \leq T_{i}\right)
$$

- Thus, the observed data can be represented as

$$
\left(X_{1, \leq T_{1}}, T_{1}\right), \cdots,\left(X_{n, \leq T_{n}}, T_{n}\right)
$$

Monotone missing data

- To simplify the problem, we assume that the missingness is monotone.
- This occurs in many medical research when participants dropout from the study.
- Let T_{i} denotes the last observed variable of the i-th individual. Then

$$
X_{i, \mathrm{obs}}=X_{i, \leq T_{i}}=\left(X_{i j}: j \leq T_{i}\right)
$$

- Thus, the observed data can be represented as

$$
\left(X_{1, \leq T_{1}}, T_{1}\right), \cdots,\left(X_{n, \leq T_{n}}, T_{n}\right)
$$

- In contrast, we define the full data-the hypothetical dataset without missingness:

$$
\left(X_{1}, T_{1}\right), \cdots,\left(X_{n}, T_{n}\right)
$$

Population models

- The population CDF of the study variable $F(x)$ (also called the full-data distribution ${ }^{1}$) can be written as

$$
F(x)=\sum_{t} F(x \mid T=t) P(T=t)
$$

and its PDF can be written as

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t) .
\end{aligned}
$$

${ }^{1}$ Sometime the full-data distribution refers to $F(x, t)=F(x \mid t) P(T=t)$.

Population models

- The population CDF of the study variable $F(x)$ (also called the full-data distribution ${ }^{1}$) can be written as

$$
F(x)=\sum_{t} F(x \mid T=t) P(T=t)
$$

and its PDF can be written as

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t)
\end{aligned}
$$

- Extrapolation density: $p\left(x_{>t} \mid x_{\leq t}, T=t\right)$
${ }^{1}$ Sometime the full-data distribution refers to $F(x, t)=F(x \mid t) P(T=t)$.

Population models

- The population CDF of the study variable $F(x)$ (also called the full-data distribution ${ }^{1}$) can be written as

$$
F(x)=\sum_{t} F(x \mid T=t) P(T=t)
$$

and its PDF can be written as

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t)
\end{aligned}
$$

- Extrapolation density: $p\left(x_{>t} \mid x_{\leq t}, T=t\right)$
- Observed density: $p\left(x_{\leq t} \mid T=t\right) P(T=t)$
${ }^{1}$ Sometime the full-data distribution refers to $F(x, t)=F(x \mid t) P(T=t)$.

A toy example

Observed density generates what we observed. Extrapolation density describes the density of the unobserved cells.

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	NA	NA
2	12	NA	NA	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Pattern mixture models

- The factorization:

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t)
\end{aligned}
$$

is called the pattern mixture models (PMM) factorization (Little (1993).

Pattern mixture models

- The factorization:

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t) .
\end{aligned}
$$

is called the pattern mixture models (PMM) factorization (Little (1993).

- Extrapolation density $p\left(x_{>t} \mid x_{\leq t}, T=t\right)$: cannot be estimated using the observed data; it has to be identified by assumptions.

Pattern mixture models

- The factorization:

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t)
\end{aligned}
$$

is called the pattern mixture models (PMM) factorization (Little (1993).

- Extrapolation density $p\left(x_{>t} \mid x_{\leq t}, T=t\right)$: cannot be estimated using the observed data; it has to be identified by assumptions.
- Observed density $p\left(x_{\leq t} \mid T=t\right) P(T=t)$: can be estimated using the observed data.

Pattern mixture models

- The factorization:

$$
\begin{aligned}
p(x) & =\sum_{t} p(x \mid T=t) P(T=t) \\
& =\sum_{t} p\left(x_{>t} \mid x_{\leq t}, T=t\right) p\left(x_{\leq t} \mid T=t\right) P(T=t)
\end{aligned}
$$

is called the pattern mixture models (PMM) factorization (Little (1993).

- Extrapolation density $p\left(x_{>t} \mid x_{\leq t}, T=t\right)$: cannot be estimated using the observed data; it has to be identified by assumptions.
- Observed density $p\left(x_{\leq t} \mid T=t\right) P(T=t)$: can be estimated using the observed data.
- Key of the modeling strategy: try to identify the extrapolation density.

Selection models

- The pattern mixture model is a common approach to handling missing not at random data.
- Another common approach is the selection models, which uses the following factorization:

$$
p(x, T=t)=P(T=t \mid x) p(x)
$$

Selection models

- The pattern mixture model is a common approach to handling missing not at random data.
- Another common approach is the selection models, which uses the following factorization:

$$
p(x, T=t)=P(T=t \mid x) p(x)
$$

- The quantity $P(T=t \mid x)$ is called the selection probability or missing mechanism (Little and Robin 2002).

Selection models

- The pattern mixture model is a common approach to handling missing not at random data.
- Another common approach is the selection models, which uses the following factorization:

$$
p(x, T=t)=P(T=t \mid x) p(x)
$$

- The quantity $P(T=t \mid x)$ is called the selection probability or missing mechanism (Little and Robin 2002).
- Missing completely at random (MCAR): $P(T=t \mid x)=P(T=t)$.
- Missing at random (MAR): $P(T=t \mid x)=P\left(T=t \mid x_{\leq t}\right)$.
- Missing not at random (MNAR): other cases.
- We focus on pattern mixture models in this talk.

Identifying the extrapolation density

- In PMM, we only need to identify the extrapolation density $p\left(x_{>t} \mid x_{\leq t}, T=t\right)$.
- A common strategy is to equate this density to something that is identifiable/estimatible.
- Note that we can factorize it as

$$
p\left(x_{>t} \mid x_{\leq t}, T=t\right)=\prod_{s=t+1}^{d} p\left(x_{s} \mid x_{<s}, T=t\right)
$$

so it suffices to identify each $p\left(x_{s} \mid x_{<s}, T=t\right)$ for $s>t$.

Common restrictions

- Here are some common assumptions/restrictions people made.
- Complete-case missing value (CCMV; Little 1993):

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T=d\right) .
$$

Common restrictions

- Here are some common assumptions/restrictions people made.
- Complete-case missing value (CCMV; Little 1993):

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T=d\right) .
$$

- Nearsest-case missing value (NCMV; Thijs et al. 2002):

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T=s\right)
$$

Common restrictions

- Here are some common assumptions/restrictions people made.
- Complete-case missing value (CCMV; Little 1993):

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T=d\right) .
$$

- Nearsest-case missing value (NCMV; Thijs et al. 2002):

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T=s\right) .
$$

- Available-case missing value (ACMV; Molenberghs et al. 1998):

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T \geq s\right) .
$$

Common restrictions: a toy example

	X_{1}	X_{2}	X_{3}	X_{4}
$\mathrm{~T}=1$	Obs.	Missing	Missing	Missing
$\mathrm{T}=2$	Obs.	Obs.	Missing	Missing
$\mathrm{T}=3$	Obs.	Obs.	Obs.	Missing
$\mathrm{T}=4$	Obs.	Obs.	Obs.	Obs.

Common restrictions: a toy example

	X_{1}	X_{2}	X_{3}	X_{4}
$\mathrm{~T}=1$	Obs.	Missing	Missing	Missing
$\mathrm{T}=2$	Obs.	Obs.	Missing	Missing
$\mathrm{T}=3$	Obs.	Obs.	Obs.	Missing
$\mathrm{T}=4$	Obs.	Obs.	Obs.	Obs.

Common restrictions: a toy example

Common restrictions: a toy example

	X_{1}	X_{2}	X_{3}	X_{4}
$\mathrm{~T}=1$	Obs.	Missing	Missing	Missing
$\mathrm{T}=2$	Obs.	Obs.	Missing	Missing
$\mathrm{T}=3$	Obs.	Obs.	Obs.	Missing
$\mathrm{T}=4$	Obs.	Obs.	Obs.	Obs.

Common restrictions: a toy example

	X_{1}	X_{2}	X_{3}	X_{4}
$\mathrm{~T}=1$	Obs.	Missing	Missing	Missing
$\mathrm{T}=2$	Obs.	Obs.	Missing	Missing
$\mathrm{T}=3$	Obs.	Obs.	Obs.	Missing
$\mathrm{T}=4$	Obs.	Obs.	Obs.	Obs.
ACMV				

Donor-based restrictions

- We can generalize these restrictions to a more general 'donor' set by restricting to

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T \in \mathscr{A}_{t s}\right)
$$

where $\mathscr{A}_{t s} \subset\{s, s+1, \cdots d\}$ is called the donor set of pattern t and variable s.

Donor-based restrictions

- We can generalize these restrictions to a more general 'donor' set by restricting to

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T \in \mathscr{A}_{t s}\right)
$$

where $\mathscr{A}_{t s} \subset\{s, s+1, \cdots d\}$ is called the donor set of pattern t and variable s.

- If the set $\left\{\mathscr{A}_{t s}: t=1, \cdots, d-1 ; s=t+1, \cdots\right\}$ is given, then we can identify the extrapolation density.

Donor-based restrictions

- We can generalize these restrictions to a more general 'donor' set by restricting to

$$
p\left(x_{s} \mid x_{<s}, T=t\right)=p\left(x_{s} \mid x_{<s}, T \in \mathscr{A}_{t s}\right)
$$

where $\mathscr{A}_{t s} \subset\{s, s+1, \cdots d\}$ is called the donor set of pattern t and variable s.

- If the set $\left\{\mathscr{A}_{t s}: t=1, \cdots, d-1 ; s=t+1, \cdots\right\}$ is given, then we can identify the extrapolation density.
- CCMV is the case $\mathscr{A}_{t s}=\{d\}$.
- NCMV is the case $\mathscr{A}_{t s}=\{s\}$.
- ACMV is the case $\mathscr{A}_{t s}=\{s, s+1, \cdots, d\}$.

Donor-based restrictions: a toy example

	X_{1}	X_{2}	X_{3}	X_{4}
$\mathrm{~T}=1$	Obs.	Missing	Missing	Missing
$\mathrm{T}=2$	Obs.	Obs.	Missing	Missing
$\mathrm{T}=3$	Obs.	Obs.	Obs.	Missing
$\mathrm{T}=4$	Obs.	Obs.	Obs.	Obs.

Donor-based restrictions: a toy example

Donor-based restrictions: a toy example

	X_{1}	X_{2}	X_{3}	X_{4}
$\mathrm{~T}=1$	Obs.	Missing	Missing	Missing
$\mathrm{T}=2$	Obs.	Obs.	Missing	Missing
$\mathrm{T}=3$	Obs.	Obs.	Obs.	Missing
$\mathrm{T}=4$	Obs.	Obs.	Obs.	Obs.

Estimator under donor-based restrictions

- With a donor-based identifying restriction, we can easily estimate the extrapolation density.
- We can assume a parametric model or use a nonparametric estimator.

Estimator under donor-based restrictions

- With a donor-based identifying restriction, we can easily estimate the extrapolation density.
- We can assume a parametric model or use a nonparametric estimator.
- We propose to use the conditional kernel density estimator (CKDE), which can be expressed as

$$
\begin{aligned}
\widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=t\right) & =\frac{\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i, s}-x_{s}}{h}\right) K\left(\frac{X_{i,<s}-x_{<s}}{h}\right) I\left(T_{i} \in \mathscr{A}_{t s}\right)}{\sum_{j=1}^{n} K\left(\frac{X_{j,<s}-x_{<s}}{h}\right) I\left(T_{j} \in \mathscr{A}_{t s}\right)} \\
& =\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i, s}-x_{s}}{h}\right) W_{i}\left(x_{<s}\right),
\end{aligned}
$$

where

$$
W_{i}\left(x_{<s}\right)=\frac{K\left(\frac{X_{i,<s}-x_{<s}}{h}\right) I\left(T_{i} \in \mathscr{A}_{t s}\right)}{\sum_{j=1}^{n} K\left(\frac{x_{j,<\mathrm{s}}-x_{<s}}{h}\right) I\left(T_{j} \in \mathscr{A}_{t s}\right)} .
$$

Estimator of the full-data distribution

- With an estimator $\widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=t\right)$, we obtain an estimator of the extrapolation density

$$
\widehat{p}_{A, h}\left(x_{>t} \mid x_{\leq t}, T=t\right)=\prod_{s=t+1}^{d} \widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=t\right)
$$

which defines a CDF estimator $\widehat{F}_{A, h}\left(x_{>t} \mid x_{\leq t}, T=t\right)$.

Estimator of the full-data distribution

- With an estimator $\widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=t\right)$, we obtain an estimator of the extrapolation density

$$
\widehat{p}_{A, h}\left(x_{>t} \mid x_{\leq t}, T=t\right)=\prod_{s=t+1}^{d} \widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=t\right)
$$

which defines a CDF estimator $\widehat{F}_{A, h}\left(x_{>t} \mid x_{\leq t}, T=t\right)$.

- Note that the CDF of the observed density $p\left(x_{\leq t} \mid T=t\right) P(T=t)$ can be estimated by

$$
\widehat{F}\left(x_{\leq t} \mid T=t\right) \widehat{P}(T=t)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i, \leq t} \leq x_{\leq t}, T_{i}=t\right)
$$

Estimator of the full-data distribution

- Putting it altogether, the estimate of $F(x)$ is

$$
\begin{aligned}
\widehat{F}_{A, h}(x) & =\sum_{t} \widehat{F}_{A, h}\left(x_{>t} x_{\leq t} \mid T=t\right) \widehat{P}(T=t) \\
& =\sum_{t} \int_{-\infty}^{x_{\leq t}} \widehat{F}_{A, h}\left(x_{>t} \mid x_{\leq t}^{\prime}, T=t\right) \widehat{F}\left(d x_{\leq t}^{\prime} \mid T=t\right) \widehat{P}(T=t) \\
& =\frac{1}{n} \sum_{i=1}^{n} \widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right) I\left(X_{i, \leq T_{i}} \leq x_{\leq T_{i}}\right) .
\end{aligned}
$$

Estimator of the full-data distribution

- Putting it altogether, the estimate of $F(x)$ is

$$
\begin{aligned}
\widehat{F}_{A, h}(x) & =\sum_{t} \widehat{F}_{A, h}\left(x_{>t} x_{\leq t} \mid T=t\right) \widehat{P}(T=t) \\
& =\sum_{t} \int_{-\infty}^{x_{\leq t}} \widehat{F}_{A, h}\left(x_{>t} \mid x_{\leq t}^{\prime}, T=t\right) \widehat{F}\left(d x_{\leq t}^{\prime} \mid T=t\right) \widehat{P}(T=t) \\
& =\frac{1}{n} \sum_{i=1}^{n} \widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right) I\left(X_{i, \leq T_{i}} \leq x_{\leq T_{i}}\right) .
\end{aligned}
$$

- It can be interpreted as a combination of:
- unobserved variables: kernel CDF estimator.
- observed variables: EDF.

Estimator of the full-data distribution

- Putting it altogether, the estimate of $F(x)$ is

$$
\begin{aligned}
\widehat{F}_{A, h}(x) & =\sum_{t} \widehat{F}_{A, h}\left(x_{>t} x_{\leq t} \mid T=t\right) \widehat{P}(T=t) \\
& =\sum_{t} \int_{-\infty}^{x_{\leq t}} \widehat{F}_{A, h}\left(x_{>t} \mid x_{\leq t}^{\prime}, T=t\right) \widehat{F}\left(d x_{\leq t}^{\prime} \mid T=t\right) \widehat{P}(T=t) \\
& =\frac{1}{n} \sum_{i=1}^{n} \widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right) I\left(X_{i, \leq T_{i}} \leq x_{\leq T_{i}}\right) .
\end{aligned}
$$

- It can be interpreted as a combination of:
- unobserved variables: kernel CDF estimator.
- observed variables: EDF.
- The parameter of interest can be estimated via $\widehat{\theta}_{A, h}=\theta\left(\widehat{F}_{A, h}\right)$.

Estimator of the full-data distribution

- Although we have a good estimator, computing an estimate of the parameter of interest could be challenging.
- A major problem comes from the fact that the estimated distribution of the unobserved entries $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ does not have a simple form.

Estimator of the full-data distribution

- Although we have a good estimator, computing an estimate of the parameter of interest could be challenging.
- A major problem comes from the fact that the estimated distribution of the unobserved entries $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ does not have a simple form.
- Our solution: instead of analytically computing it, we use a Monte Carlo approximation.

Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

- For each i, we generate $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ to replace the missing entries. This is identical to the imputation procedure.

Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

- For each i, we generate $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ to replace the missing entries. This is identical to the imputation procedure.
- After imputing every missing entry, we construct a fully observed (imputed) dataset. Denote the data as

$$
X_{n}=\left\{\left(X_{i,>T_{i}}^{*}, X_{i, \leq T_{i}}\right): i=1, \cdots, n\right\} .
$$

Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

- For each i, we generate $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ to replace the missing entries. This is identical to the imputation procedure.
- After imputing every missing entry, we construct a fully observed (imputed) dataset. Denote the data as

$$
X_{n}=\left\{\left(X_{i,>T_{i}}^{*}, X_{i, \leq T_{i}}\right): i=1, \cdots, n\right\} .
$$

- To reduce the Monte Carlo errors, we repeat the above imputation procedure V times, leading to $X_{n}^{(1)}, \ldots, X_{n}^{(V)}$ imputed datasets.

Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

- For each i, we generate $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ to replace the missing entries. This is identical to the imputation procedure.
- After imputing every missing entry, we construct a fully observed (imputed) dataset. Denote the data as

$$
X_{n}=\left\{\left(X_{i,>T_{i}}^{*}, X_{i, \leq T_{i}}\right): i=1, \cdots, n\right\} .
$$

- To reduce the Monte Carlo errors, we repeat the above imputation procedure V times, leading to $X_{n}^{(1)}, \ldots, X_{n}^{(V)}$ imputed datasets.
- Combine all datasets to form $X_{n}^{[V]}=\left(X_{n}^{(1)}, \ldots, X_{n}^{(V)}\right)$ and compute the estimator $\widehat{F}_{A, h}^{[V]}(x)$ using the EDF of $X_{n}^{[V]}$.

Monte Carlo approximation

Here is a brief description of the Monte Carlo procedure.

- For each i, we generate $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ to replace the missing entries. This is identical to the imputation procedure.
- After imputing every missing entry, we construct a fully observed (imputed) dataset. Denote the data as

$$
X_{n}=\left\{\left(X_{i,>T_{i}}^{*}, X_{i, \leq T_{i}}\right): i=1, \cdots, n\right\} .
$$

- To reduce the Monte Carlo errors, we repeat the above imputation procedure V times, leading to $x_{n}^{(1)}, \cdots, x_{n}^{(V)}$ imputed datasets.
- Combine all datasets to form $X_{n}^{[V]}=\left(X_{n}^{(1)}, \ldots, X_{n}^{(V)}\right)$ and compute the estimator $\widehat{F}_{A, h}^{[V]}(x)$ using the EDF of $X_{n}^{[V]}$.
- Compute the estimator of the parameter of interest $\widehat{\theta}_{A, h}^{[V]}=\theta\left(\widehat{F}_{A, h}^{[V]}\right)$.

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	NA	NA
2	12	NA	NA	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	NA
2	12	NA	NA	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	NA	NA	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	31^{*}	NA	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	31^{*}	32^{*}	NA
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	31^{*}	32^{*}	42^{*}
3	17	43	35	42
4	11	25	NA	NA
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	31^{*}	32^{*}	42^{*}
3	17	43	35	42
4	11	25	34^{*}	41^{*}
5	16	37	32	51
6	15	23	32	NA
7	21	27	35	NA

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	31^{*}	32^{*}	42^{*}
3	17	43	35	42
4	11	25	34^{\star}	41^{*}
5	16	37	32	51
6	15	23	32	49^{*}
7	21	27	35	45^{*}

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	32^{*}	41^{*}
2	12	30^{*}	29^{*}	45^{*}
3	17	43	35	42
4	11	25	34^{\star}	46^{*}
5	16	37	32	51
6	15	23	32	42^{*}
7	21	27	35	43^{*}

Monte Carlo approximation: a toy example - 1

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	33^{*}	43^{*}
2	12	25^{*}	36^{*}	42^{*}
3	17	43	35	42
4	11	25	33^{*}	41^{*}
5	16	37	32	51
6	15	23	32	49^{*}
7	21	27	35	52^{*}

Monte Carlo approximation: a toy example - 2

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	30^{*}	43^{*}
2	12	31^{*}	32^{*}	42°
3	17	43	35	42
4	11	25	34^{*}	41*
5	16	37	32	51
6	15	23	32	49^{*}
7	21	27	35	45^{*}

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	32^{*}	41^{*}
2	12	30^{*}	29°	45°
3	17	43	35	42
4	11	25	$34 *$	46^{*}
5	16	37	32	51
6	15	23	32	42°
7	21	27	35	43°

ID	X_{1}	X_{2}	X_{3}	X_{4}
1	15	20	33^{*}	43^{*}
2	12	25^{*}	36^{*}	42^{*}
3	17	43	35	42
4	11	25	33^{*}	41*
5	16	37	32	51
6	15	23	32	49*
7	21	27	35	52^{*}

We then combine these datasets to form a combine data and compute its EDF $\widehat{F}_{A, h}^{[V]}(x)$ and the corresponding estimator $\widehat{\theta}_{A, h}^{[V]}=\theta\left(\widehat{F}_{A, h}^{[V]}\right)$.

Multiple imputation as Monte Carlo approximation

- This procedure is essentially a multiple imputation procedure (Rubin 1987).

Multiple imputation as Monte Carlo approximation

- This procedure is essentially a multiple imputation procedure (Rubin 1987).
- We can view our estimator as an estimator based on multiple imputation and the imputation distribution is based on the estimated extrapolation density.

Multiple imputation as Monte Carlo approximation

- This procedure is essentially a multiple imputation procedure (Rubin 1987).
- We can view our estimator as an estimator based on multiple imputation and the imputation distribution is based on the estimated extrapolation density.
- In fact, you can alway interpret the multiple imputation as a Monte Carlo approximation to the EDF formed by imposing an imputation distribution over the unobserved variables.

Multiple imputation as Monte Carlo approximation

- This procedure is essentially a multiple imputation procedure (Rubin 1987).
- We can view our estimator as an estimator based on multiple imputation and the imputation distribution is based on the estimated extrapolation density.
- In fact, you can alway interpret the multiple imputation as a Monte Carlo approximation to the EDF formed by imposing an imputation distribution over the unobserved variables.
- The imputation distribution is the extrapolation distribution in PMM.

Nonparametric Saturation

- In the missing data literature, an estimator of the full-data distribution $F(x, t)$ satisfies nonparametric saturation (NPS Robins, 1997) ${ }^{2}$ if the implied observed data distribution agrees with the EDF of the observed data.

[^0]
Nonparametric Saturation

- In the missing data literature, an estimator of the full-data distribution $F(x, t)$ satisfies nonparametric saturation (NPS Robins, 1997) ${ }^{2}$ if the implied observed data distribution agrees with the EDF of the observed data.
- Namely, an estimator $\widehat{F}_{0}(x, t)$ has NPS if

$$
\widehat{F}_{0}\left(x_{\leq t}, t\right)=\int \widehat{F}_{0}(x, t) \mu\left(d x_{>t}\right)=\widehat{F}\left(x_{\leq t}, t\right) .
$$

[^1]
Nonparametric Saturation

- In the missing data literature, an estimator of the full-data distribution $F(x, t)$ satisfies nonparametric saturation (NPS Robins, 1997) ${ }^{2}$ if the implied observed data distribution agrees with the EDF of the observed data.
- Namely, an estimator $\widehat{F}_{0}(x, t)$ has NPS if

$$
\widehat{F}_{0}\left(x_{\leq t}, t\right)=\int \widehat{F}_{0}(x, t) \mu\left(d x_{>t}\right)=\widehat{F}\left(x_{\leq t}, t\right)
$$

- The NPS can be viewed as a self-consistent property-the estimated full-data distribution agrees with the distribution of the observed data.

[^2]
Nonparametric Saturation

- In the missing data literature, an estimator of the full-data distribution $F(x, t)$ satisfies nonparametric saturation (NPS Robins, 1997) ${ }^{2}$ if the implied observed data distribution agrees with the EDF of the observed data.
- Namely, an estimator $\widehat{F}_{0}(x, t)$ has NPS if

$$
\widehat{F}_{0}\left(x_{\leq t}, t\right)=\int \widehat{F}_{0}(x, t) \mu\left(d x_{>t}\right)=\widehat{F}\left(x_{\leq t}, t\right) .
$$

- The NPS can be viewed as a self-consistent property-the estimated full-data distribution agrees with the distribution of the observed data.

Theorem (Chen and Sadinle (2019))

The proposed estimator $\widehat{F}_{A, h}(x, t)$ satisfies the NPS.
${ }^{2}$ Also known as nonparametric identification, just identification.

Convergence rates

- Recall that $\theta=\theta(F)$ is the true parameter of interest and we use the estimator $\widehat{\theta}_{A, h}=\theta\left(\widehat{F}_{A, h}\right)$.

Convergence rates

- Recall that $\theta=\theta(F)$ is the true parameter of interest and we use the estimator $\widehat{\theta}_{A, h}=\theta\left(\widehat{F}_{A, h}\right)$.
- Their difference can be decomposed into three components:

$$
\widehat{\theta}_{A, h}-\theta=\widehat{\theta}_{A, h}-\bar{\theta}_{A, h}+\bar{\theta}_{A, h}-\theta_{A}+\theta_{A}-\theta
$$

and under good conditions (including $\frac{\log n}{n h^{d}} \rightarrow 0$), we have the following results.

Convergence rates

- Recall that $\theta=\theta(F)$ is the true parameter of interest and we use the estimator $\widehat{\theta}_{A, h}=\theta\left(\widehat{F}_{A, h}\right)$.
- Their difference can be decomposed into three components:

$$
\widehat{\theta}_{A, h}-\theta=\widehat{\theta}_{A, h}-\bar{\theta}_{A, h}+\bar{\theta}_{A, h}-\theta_{A}+\theta_{A}-\theta
$$

and under good conditions (including $\frac{\log n}{n h^{d}} \rightarrow 0$), we have the following results.

- $\widehat{\theta}_{A, h}-\bar{\theta}_{A, h}=O_{P}\left(\sqrt{\frac{1}{n}}\right)$: the stochastic variation.
- $\bar{\theta}_{A, h}-\theta_{A}=O\left(h^{2}\right)$: the bias of the smoothing.
- $\theta_{A}-\theta$: the bias of identifying restriction. It will be 0 if our identifying restriction leads to the correct extrapolation density.

Asymptotic normality

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when $\frac{\log n}{n h^{d}} \rightarrow 0$ and $h \rightarrow 0$,

$$
\sqrt{n}\left(\widehat{F}_{A, h}(x)-\bar{F}_{A, h}(x)\right)
$$

converges to a Gaussian process where

$$
\begin{array}{r}
\bar{F}_{A, h}(x)=\sum_{t} \int_{x_{\leq t}^{\prime}=-\infty}^{x_{x_{t}}^{\prime}=x_{\leq t}} \bar{F}_{A, h}\left(x_{>t} \mid x_{\leq t}^{\prime}, T=t\right) F\left(d x_{\leq t}^{\prime} \mid T=t\right) P(T=t), \\
\bar{F}_{A, h}\left(x_{>t} \mid x_{\leq t}, T=t\right) \approx \mathbb{E}\left(\widehat{F}_{A, h}\left(x_{>t} \mid x_{\leq t}, T=t\right)\right) .
\end{array}
$$

- $\bar{F}_{A, h}(x)$ behaves like the expected quantity of the estimator $\widehat{F}_{A, h}(x)$.
- $\bar{\theta}_{A, h}=\theta\left(\bar{F}_{A, h}\right)$.

Bootstrap method

- Sampling with replacement from the original data (including missing entries) to obtain a bootstrap sample.
- Use the bootstrap sample to estimate the conditional density.

Bootstrap method

- Sampling with replacement from the original data (including missing entries) to obtain a bootstrap sample.
- Use the bootstrap sample to estimate the conditional density.
- Perform the Monte Carlo procedure (multiple imputation) for V times. Compute the estimator $\widehat{\theta}_{A, h}^{[V] *}$.

Bootstrap method

- Sampling with replacement from the original data (including missing entries) to obtain a bootstrap sample.
- Use the bootstrap sample to estimate the conditional density.
- Perform the Monte Carlo procedure (multiple imputation) for V times. Compute the estimator $\widehat{\theta}_{A, h}^{[V] *}$.
- Repeat the above procedure B times, leading to B bootstrap estimates

$$
\widehat{\theta}_{A, h}^{[V] *(1)}, \cdots, \widehat{\theta}_{A, h}^{[V] *(B)} .
$$

Bootstrap method

- Sampling with replacement from the original data (including missing entries) to obtain a bootstrap sample.
- Use the bootstrap sample to estimate the conditional density.
- Perform the Monte Carlo procedure (multiple imputation) for V times. Compute the estimator $\widehat{\theta}_{A, h}^{[V] *}$.
- Repeat the above procedure B times, leading to B bootstrap estimates

$$
\widehat{\theta}_{A, h}^{[V] *(1)}, \cdots, \widehat{\theta}_{A, h}^{[V] *(B)} .
$$

- Compute the upper and the lower limits $\left(\ell_{1-\alpha}, u_{1-\alpha}\right)$ of the confidence interval using the quantiles. Namely, $\ell_{B, 1-\alpha}=\widehat{G}^{-1}(\alpha / 2)$ and $u_{B, 1-\alpha}=\widehat{G}^{-1}(1-\alpha / 2)$ where

$$
\widehat{G}(s)=\frac{1}{B} \sum_{b=1}^{B} I\left(\widehat{\theta}_{A, h}^{[V] *(b)}\right) .
$$

Confidence interval

Let $u_{1-\alpha}$ and $\ell_{1-\alpha}$ be the upper and lower bound from the bootstrap approach when the number of bootstrap replicates $B \rightarrow \infty$ and $V \rightarrow \infty$.

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when $\frac{\log n}{n h^{d}} \rightarrow 0$ and $h \rightarrow 0$,

$$
P\left(\ell_{1-\alpha} \leq \bar{\theta}_{A, h} \leq u_{1-\alpha}\right) \rightarrow 1-\alpha .
$$

Confidence interval

Let $u_{1-\alpha}$ and $\ell_{1-\alpha}$ be the upper and lower bound from the bootstrap approach when the number of bootstrap replicates $B \rightarrow \infty$ and $V \rightarrow \infty$.

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when $\frac{\log n}{n h^{d}} \rightarrow 0$ and $h \rightarrow 0$,

$$
P\left(\ell_{1-\alpha} \leq \bar{\theta}_{A, h} \leq u_{1-\alpha}\right) \rightarrow 1-\alpha .
$$

- Namely, the bootstrap confidence interval is valid for

$$
\bar{\theta}_{A, h}=\theta\left(F_{A, h}\right) .
$$

Confidence interval

Let $u_{1-\alpha}$ and $\ell_{1-\alpha}$ be the upper and lower bound from the bootstrap approach when the number of bootstrap replicates $B \rightarrow \infty$ and $V \rightarrow \infty$.

Theorem (Chen and Sadinle (2019))

Under regularity conditions, when $\frac{\log n}{n h^{d}} \rightarrow 0$ and $h \rightarrow 0$,

$$
P\left(\ell_{1-\alpha} \leq \bar{\theta}_{A, h} \leq u_{1-\alpha}\right) \rightarrow 1-\alpha .
$$

- Namely, the bootstrap confidence interval is valid for $\bar{\theta}_{A, h}=\theta\left(F_{A, h}\right)$.
- Note that

$$
\bar{\theta}_{A, h}-\theta=\bar{\theta}_{A, h}-\theta_{A}+\theta_{A}-\theta
$$

consists of the bias from smoothing and the bias from identifying restriction.

Bootstrap Diagram (Efron 1994)

Bootstrap Diagram (Efron 1994)

Original data

Bootstrap Diagram (Efron 1994)

EDF on the observed variables

Bootstrap Diagram (Efron 1994)

Kernel smoothing

Bootstrap Diagram (Efron 1994)

The estimated extrapolation distribution via smoothing \& the identifying restriction

Bootstrap Diagram (Efron 1994)

Estimator of the full-data distribution

Bootstrap Diagram (Efron 1994)

Estimator of the parameter of interest

Bootstrap Diagram (Efron 1994)

Bootstrap sample

Bootstrap Diagram (Efron 1994)

Bootstrap EDF

Bootstrap Diagram (Efron 1994)

Kernel smoothing on bootstrap sample

Bootstrap Diagram (Efron 1994)

Bootstrap extrapolation distribution via smoothing \& the identifying restriction

Bootstrap Diagram (Efron 1994)

Bootstrap estimator of the full data distribution

Bootstrap Diagram (Efron 1994)

Bootstrap estimate of the parameter of interest

Bootstrap Diagram (Efron 1994)

This difference is how we do resampling inference

Bootstrap Diagram (Efron 1994)

It can be viewed as a plug-in estimate of this difference

Bootstrap Diagram (Efron 1994)

The CDF of the observed variables

Bootstrap Diagram (Efron 1994)

The kernel-smoothed version of the CDF

Bootstrap Diagram (Efron 1994)

The extrapolation distribution from smoothed CDF \& the identifying restriction

Bootstrap Diagram (Efron 1994)

The full-data distribution

Bootstrap Diagram (Efron 1994)

The mapped parameter of interest

A structural sensitivity analysis

- Since the bias $\theta_{A}-\theta$ is hard to know in practice, the sensitivity analysis is a common procedure to evaluate the stability of an estimator.

A structural sensitivity analysis

- Since the bias $\theta_{A}-\theta$ is hard to know in practice, the sensitivity analysis is a common procedure to evaluate the stability of an estimator.
- In the class of donor-based identifying restrictions, we may perform the sensitivity analysis by perturbing a given restriction within the class.

A structural sensitivity analysis

- Since the bias $\theta_{A}-\theta$ is hard to know in practice, the sensitivity analysis is a common procedure to evaluate the stability of an estimator.
- In the class of donor-based identifying restrictions, we may perform the sensitivity analysis by perturbing a given restriction within the class.
- For instance, the NCMV requires $\mathscr{A}_{t s}=\{s\}$. We may consider perturbing it via considering the ' k-NCMV' restrictions

$$
A_{t s}^{\mathrm{k}-\mathrm{NC}}=\{\tau: \tau \geq s,|\tau-s| \leq k-1\}=\{s, s+1, \cdots, s+k-1\}
$$

A structural sensitivity analysis

- Since the bias $\theta_{A}-\theta$ is hard to know in practice, the sensitivity analysis is a common procedure to evaluate the stability of an estimator.
- In the class of donor-based identifying restrictions, we may perform the sensitivity analysis by perturbing a given restriction within the class.
- For instance, the NCMV requires $\mathscr{A}_{t s}=\{s\}$. We may consider perturbing it via considering the ' k-NCMV' restrictions

$$
\mathscr{A}_{t s}^{\mathrm{k}-\mathrm{NC}}=\{\tau: \tau \geq s,|\tau-s| \leq k-1\}=\{s, s+1, \cdots, s+k-1\} .
$$

- When $k=1$ this reduces to NCMV and when $k=d$, this becomes ACMV.

Decoupling modeling procedure and identifying restriction

- Our method is not limited to a nonparametric estimator; one can use a parametric density estimator as well.
- All we need is an estimator of the conditional density, which can be done parametrically or nonparametrically.

[^3]
Decoupling modeling procedure and identifying restriction

- Our method is not limited to a nonparametric estimator; one can use a parametric density estimator as well.
- All we need is an estimator of the conditional density, which can be done parametrically or nonparametrically.
- In our framework, the modeling strategy on the distribution and the identifying restrictions are decoupled-one can choose any distribution estimator and any donor-based identifying restriction.

[^4]
Decoupling modeling procedure and identifying restriction

- Our method is not limited to a nonparametric estimator; one can use a parametric density estimator as well.
- All we need is an estimator of the conditional density, which can be done parametrically or nonparametrically.
- In our framework, the modeling strategy on the distribution and the identifying restrictions are decoupled-one can choose any distribution estimator and any donor-based identifying restriction.
- The Monte Carlo approximation (multiple imputation) and the bootstrap can be done in a similar manner ${ }^{3}$.

[^5]
The flexibility and transparency of modeling

- When handling missing data, there are three modeling components:
- Assumptions on missingness.
- Models on distributions.
- Formulation of the parameter of interest.
- Many classical methods would require all three components to be dependent.
- Our methods allow them to all be independent.
- Also, our method leads to the model congenial property (Meng 1994) ${ }^{4}$ as long as we are using a nonparametric estimator on the distribution.

[^6]
Conclusion

- We introduce a class called the donor-based identifying restrictions for handling missing data.

Conclusion

- We introduce a class called the donor-based identifying restrictions for handling missing data.
- We proposed a nonparametric estimator of the full-data distribution but a similar idea can be applied to a parametric model. This estimator is nonparamteric saturated and model congenial.

Conclusion

- We introduce a class called the donor-based identifying restrictions for handling missing data.
- We proposed a nonparametric estimator of the full-data distribution but a similar idea can be applied to a parametric model. This estimator is nonparamteric saturated and model congenial.
- Even if we cannot directly compute the estimator, we may use a Monte Carlo approximation in the form of multiple imputation to approximate it.

Conclusion

- We introduce a class called the donor-based identifying restrictions for handling missing data.
- We proposed a nonparametric estimator of the full-data distribution but a similar idea can be applied to a parametric model. This estimator is nonparamteric saturated and model congenial.
- Even if we cannot directly compute the estimator, we may use a Monte Carlo approximation in the form of multiple imputation to approximate it.
- In a sense, our work provides an alternative view of multiple imputation-it can be viewed as a Monte Carlo approximation to a PMM estimator.

Conclusion

- We introduce a class called the donor-based identifying restrictions for handling missing data.
- We proposed a nonparametric estimator of the full-data distribution but a similar idea can be applied to a parametric model. This estimator is nonparamteric saturated and model congenial.
- Even if we cannot directly compute the estimator, we may use a Monte Carlo approximation in the form of multiple imputation to approximate it.
- In a sense, our work provides an alternative view of multiple imputation-it can be viewed as a Monte Carlo approximation to a PMM estimator.
- Our estimator has nice asymptotic property but there is an identifying restriction bias we have to be cautious.

Future work

- Generalization to nonmonotone case (work in progress with Mauricio).
- How to interpret the donor-based identifying restriction?
- How to do data analysis with multiple identifying restrictions?
- Missing covariates in regression/causal inference problem.
- Will the bootstrap always include the imputation uncertainty?
- Equivalent selection models and semi-parametric inference.

Thank You!

More details can be found in https://arxiv.org/abs/1904.11085.

References

1. Chen, Y. C., \& Sadinle, M. (2019). Nonparametric Pattern-Mixture Models for Inference with Missing Data. arXiv preprint arXiv:1904.11085.
2. Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. J. Am. Statist. Assoc., 88(421), 125-134.
3. Little, R. J. A., \& Rubin, D. B. (2002). Statistical Analysis with Missing Data. Hoboken, New Jersey: Wiley, 2nd ed.
4. Little, R. (1995). Modeling the drop-out mechanism in longitudinal studies. Journal of the American Statistical Association, 90(1), 1.
5. Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., \& Curran, D. (2002). Strategies to fit pattern-mixture models. Biostatistics, 3(2), 245-265.
6. Molenberghs, G., Michiels, B., Kenward, M. G., \& Diggle, P. J. (1998). Monotone missing data and pattern-mixture models. Statistica Neerlandica, 52(2), 153-161.
7. Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley \& Sons.
8. Robins, J. M. (1997). Non-response models for the analysis of non-monotone non-ignorable missing data. Statistics in Medicine, 16(1), 21-37.
9. Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical Association, 89(426), 463-475.
10. Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science \& Business Media.
11. Meng, X. L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 538-558.

The sequential imputation

- Generating $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ can be done via a sequential sampling from the conditional KDE.

The sequential imputation

- Generating $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ can be done via a sequential sampling from the conditional KDE.
- Note that sampling from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ is the same as sampling from its PDF

$$
\widehat{p}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)=\prod_{s=T_{i}+1}^{d} \widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=T_{i}\right) .
$$

The sequential imputation

- Generating $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ can be done via a sequential sampling from the conditional KDE.
- Note that sampling from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ is the same as sampling from its PDF

$$
\widehat{p}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)=\prod_{s=T_{i}+1}^{d} \widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=T_{i}\right) .
$$

- We can sample $X_{T_{i}+1}$ and then sample $X_{T_{i}+2}$ conditioned on the previously sampled $X_{T_{1}+1}$.

The sequential imputation

- Generating $X_{i,>T_{i}}^{*}$ from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ can be done via a sequential sampling from the conditional KDE .
- Note that sampling from $\widehat{F}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)$ is the same as sampling from its PDF

$$
\widehat{p}_{A, h}\left(x_{>T_{i}} \mid X_{i, \leq T_{i}}, T=T_{i}\right)=\prod_{s=T_{i}+1}^{d} \widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=T_{i}\right) .
$$

- We can sample $X_{T_{i}+1}$ and then sample $X_{T_{i}+2}$ conditioned on the previously sampled $X_{T_{1}+1}$.
- Because

$$
\widehat{p}_{A, h}\left(x_{s} \mid x_{<s}, T=T_{i}\right)=\frac{1}{h} \sum_{j=1}^{n} K\left(\frac{X_{j, s}-x_{s}}{h}\right) W_{j}\left(x_{<s}\right)
$$

sampling from can be done from a weighted smoothed bootstrap procedure.

Richness of donor-based identifications

One may be wondering how large the donor-based identification class. The following theorem shows that this class contains many, many distinct elements.

Theorem (Chen and Sadinle (2019+); in progress)

Suppose that there are d variables that are subject to monotone missingness. Then there are

$$
L_{d}=\prod_{t=0}^{d-1}\left(2^{d-t}-1\right)
$$

numbers of distinct donor-based identifying restrictions.

Richness of donor-based identifications

One may be wondering how large the donor-based identification class. The following theorem shows that this class contains many, many distinct elements.

Theorem (Chen and Sadinle (2019+); in progress)

Suppose that there are d variables that are subject to monotone missingness. Then there are

$$
L_{d}=\prod_{t=0}^{d-1}\left(2^{d-t}-1\right)
$$

numbers of distinct donor-based identifying restrictions.

- Here are some numbers of L_{d} :

$$
L_{1}=1, L_{2}=3, L_{3}=21, L_{4}=315, L_{5}=9765, L_{6}=615195, L_{7}>7 \times 10^{7}
$$

PANSS Datasets - 1

- The purpose of the trial was to evaluate the effectiveness of four different doses of a new treatment (N) compared with placebo (P) and with a standard of care (S) in patients with chronic schizophrenia.
- The Positive and Negative Syndrome Scale for Schizophrenia (PANSS) score X_{t} was measured on patients one week before, the day of, and on weeks $t=1,2,4,6$, and 8 after randomization.
- We are interested in estimating average treatment effects (ATEs) over time $\mu_{t}^{G_{1}}-\mu_{t}^{G_{2}}=\mathbb{E}\left(X_{t} \mid G_{1}\right)-\mathbb{E}\left(X_{t} \mid G_{2}\right)$, where

PANSS Datasets - 2

- Dashed lines: $\mu_{t}^{N}-\mu_{t}^{P}$; dotted lines: $\mu_{t}^{S}-\mu_{t}^{P}$; and solid lines: $\mu_{t}^{N}-\mu_{t}^{S}$.
- We use Gaussian kernels in conditional KDE with Silverman's rule (Silverman 1986) for the bandwidth.
- We consider the AC, ${ }_{3}$ NC and NC identifying restrictions.
- 95% Confidence intervals are constructed using the bootstrap.

Assumptions

(A1) The true full-data distribution function $F(x, t)$ has a density function $f_{0}(x, t)$ satisfying

1. $\inf _{x \in X} f_{0}(x, t)>0$ for each $t=1, \cdots, d$.
2. $f_{0}(x, t) \in \mathbf{U B C}_{2}$ for each $t=1, \cdots, d$.
(A2) The statistical functional θ is Hadamard differentiable.
$\left(K_{1}\right) K(z)$ has at least second-order bounded derivative and

$$
\int z^{2} K(z) \mu(d z)<\infty, \quad \int K^{2}(z) \mu(d z)<\infty
$$

(K2) Let $\mathscr{K}=\left\{z \mapsto K\left(\frac{z-w}{h}\right): w \in \mathbb{R}, \bar{h}>h>0\right\}$, for some fixed constant \bar{h}. We assume that \mathscr{K} is a VC-type class. Namely, there exists constants A, v and a constant envelope b_{0} such that

$$
\sup _{Q} N\left(\mathscr{K}, \mathscr{L}^{2}(Q), b_{0} \epsilon\right) \leq\left(\frac{A}{\epsilon}\right)^{v},
$$

where $N\left(T, d_{T}, \epsilon\right)$ is the ϵ-covering number for a semi-metric set T with metric d_{T}, and $\mathscr{L}^{2}(Q)$ is the L_{2} norm with respect to the probability measure Q.

[^0]: ${ }^{2}$ Also known as nonparametric identification, just identification.

[^1]: ${ }^{2}$ Also known as nonparametric identification, just identification.

[^2]: ${ }^{2}$ Also known as nonparametric identification, just identification.

[^3]: ${ }^{3}$ When using a parametric model, the sequential imputation reduces to the parametric sequential imputation described in p.60 of Liu (2008).

[^4]: ${ }^{3}$ When using a parametric model, the sequential imputation reduces to the parametric sequential imputation described in p. 60 of Liu (2008).

[^5]: ${ }^{3}$ When using a parametric model, the sequential imputation reduces to the parametric sequential imputation described in p. 60 of Liu (2008).

[^6]: ${ }^{4}$ In short, this means the model on missing data and the model used for formulating parameter of interest are consistent.

