Community Trees in Networks

Yen-Chi Chen

Department of Statistics
University of Washington

Collaborators

Outline

- Review: Density Tree
- Community Tree in Networks
- Future Work

Density Tree

Clusters and Density Function: an Illustration

Clusters and Density Function - 1

- The idea of using a density level (threshold) λ leads to clusters representing high density regions.
- Thus, the level λ has an effect on the clustering result.

Clusters and Density Function - 1

- The idea of using a density level (threshold) λ leads to clusters representing high density regions.
- Thus, the level λ has an effect on the clustering result.
- Varying the level λ may lead to a creation of a new cluster or a merging of existing clusters.

Clusters and Density Function: Different Levels

Clusters and Density Function - 2

- When the level changes, we see the evolution of clusters.

Clusters and Density Function - 2

- When the level changes, we see the evolution of clusters.
- Cluster tree (Stuetzle 2003) is to summarize such an evolution process by a tree.

Clusters and Density Function - 2

- When the level changes, we see the evolution of clusters.
- Cluster tree (Stuetzle 2003) is to summarize such an evolution process by a tree.
- When applied to a density function, a cluster tree is also called a density tree (Klemelä 2004).

$$
M
$$

$$
M
$$

Density Tree: an Illustration

Density Tree: an Illustration

Density Tree: an Illustration

Density Tree: an Illustration

A

Density Tree: an Illustration

An Example of 2D Density Tree

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.
- When using density level sets to define clusters, the density tree contains the information about the evolution and stability of clusters.

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.
- When using density level sets to define clusters, the density tree contains the information about the evolution and stability of clusters.
- Moreover, density trees can always be displayed in 2D plane. So they are good tools for visualizing multivariate functions.

Community Trees

Community Detection in Networks

- We consider simple networks - undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method - the clique percolation method (CPM; Palla et al. 2005, 2007).

Community Detection in Networks

- We consider simple networks - undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method - the clique percolation method (CPM; Palla et al. 2005, 2007).
- CPM is a popular and powerful method in community detection.

Community Detection in Networks

- We consider simple networks - undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method - the clique percolation method (CPM; Palla et al. 2005, 2007).
- CPM is a popular and powerful method in community detection.
- CPM uses cliques and their overlapping to define communities.

Community Detection in Networks

- We consider simple networks - undirected, unweighted graphs.
- While there are many methods for analyzing a network, we focus on one particular method - the clique percolation method (CPM; Palla et al. 2005, 2007).
- CPM is a popular and powerful method in community detection.
- CPM uses cliques and their overlapping to define communities.
- Communities from CPM can be overlapping - this allows a broader way to interpret communities.

A Key Insight

Finding level sets $\leftrightarrow \mathrm{CPM}$
Density level $\lambda \leftrightarrow$ Clique order k
Clusters \leftrightarrow Communities
Density/cluster trees \leftrightarrow Community trees

Cliques and Communities

- Cliques: a subgraph such that all vertices are connected.
- k-clique: a clique with k vertices.

Cliques and Communities

- Cliques: a subgraph such that all vertices are connected.
- k-clique: a clique with k vertices.
- Given a level k, the CPM finds all k-cliques in the network and then forms an adjacency matrix A for these cliques.
- If the i-th and j-th k-cliques share the same $(k-1)$ vertices, then $A_{i j}=1$ and 0 otherwise.

Cliques and Communities

- Cliques: a subgraph such that all vertices are connected.
- k-clique: a clique with k vertices.
- Given a level k, the CPM finds all k-cliques in the network and then forms an adjacency matrix A for these cliques.
- If the i-th and j-th k-cliques share the same $(k-1)$ vertices, then $A_{i j}=1$ and 0 otherwise.
- A k-clique community (or k-community for short) is a subgraph generated by the union of k-cliques in the same connected component of A.

Cliques and Communities

- Cliques: a subgraph such that all vertices are connected.
- k-clique: a clique with k vertices.
- Given a level k, the CPM finds all k-cliques in the network and then forms an adjacency matrix A for these cliques.
- If the i-th and j-th k-cliques share the same $(k-1)$ vertices, then $A_{i j}=1$ and 0 otherwise.
- A k-clique community (or k-community for short) is a subgraph generated by the union of k-cliques in the same connected component of A.
- The number k of a clique community is called the order.

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

An Example: 4-communities

What are the 4-communities in the following network?

A more Complex Network

Another example of 4-communities (source: wikipedia).

Communities of Different Orders

- What happens if we vary the number k ?

Communities of Different Orders

- What happens if we vary the number k ?
- A k-cliques can be written as the union of k distinct $(k-1)$-cliques.
- Thus, a k-community will be a subgraph of a $(k-1)$-community.

Communities of Different Orders

- What happens if we vary the number k ?
- A k-cliques can be written as the union of k distinct $(k-1)$-cliques.
- Thus, a k-community will be a subgraph of a $(k-1)$-community.
- Then for a k-community \mathscr{C}_{k}, there exists a sequence of subgraphs

$$
\mathscr{C}_{k} \subset \mathscr{C}_{k-1} \subset \cdots \subset \mathscr{C}_{1}
$$

where \mathscr{C}_{ω} is an ω-community.

Communities of Different Orders

- What happens if we vary the number k ?
- A k-cliques can be written as the union of k distinct $(k-1)$-cliques.
- Thus, a k-community will be a subgraph of a $(k-1)$-community.
- Then for a k-community \mathscr{C}_{k}, there exists a sequence of subgraphs

$$
\mathscr{C}_{k} \subset \mathscr{C}_{k-1} \subset \cdots \subset \mathscr{C}_{1}
$$

where \mathscr{C}_{ω} is an ω-community.

- This property, which we refer to as the nested property, defines a tree structure of all (clique) communities within a graph.

Communities of Different Orders

- What happens if we vary the number k ?
- A k-cliques can be written as the union of k distinct $(k-1)$-cliques.
- Thus, a k-community will be a subgraph of a $(k-1)$-community.
- Then for a k-community \mathscr{C}_{k}, there exists a sequence of subgraphs

$$
\mathscr{C}_{k} \subset \mathscr{C}_{k-1} \subset \cdots \subset \mathscr{C}_{1}
$$

where \mathscr{C}_{ω} is an ω-community.

- This property, which we refer to as the nested property, defines a tree structure of all (clique) communities within a graph.
- The resulting tree is called the community tree.

Community Tree: an Example

A Key Insight (revisited)

Finding level sets \leftrightarrow CPM
Density level $\lambda \leftrightarrow$ Clique order k
Clusters \leftrightarrow Communities
Density/cluster trees \leftrightarrow Community trees

Community Tree

- Each node of the tree represents a clique community.
- This tree shows how each community evolves when we vary the order k.

Community Tree

- Each node of the tree represents a clique community.
- This tree shows how each community evolves when we vary the order k.
- The merging node represents the order where multiple communities at a higher order are merged in to the same community.
- In a sense, the community tree can be viewed as a generalization of the cluster tree to networks.

Community Tree

- Each node of the tree represents a clique community.
- This tree shows how each community evolves when we vary the order k.
- The merging node represents the order where multiple communities at a higher order are merged in to the same community.
- In a sense, the community tree can be viewed as a generalization of the cluster tree to networks.
- Moreover, the community tree leads to a persistent diagram.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.
- The birth time of a component is the highest order of its nodes.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.
- The birth time of a component is the highest order of its nodes.
- Two components merge at an order if they share the same node. When two components merge, the one that has a lower birth time merged into the other component.

Components in a Community Tree

- A component in a community tree is a series of nodes starting from a leave that moves all the way down.
- The birth time of a component is the highest order of its nodes.
- Two components merge at an order if they share the same node. When two components merge, the one that has a lower birth time merged into the other component.
- The death time of a component is the highest order that it merge into another component.

Persistent Diagram of a Community Tree

- Using the birth and death time of components, we obtain the persistent diagram of a community tree.
- Let $\left(b_{1}, d_{1}\right), \cdots,\left(b_{K}, d_{K}\right)$ be the birth time and death time of components of a community tree. The persistent diagram is

$$
\mathrm{PD}=\left\{\left(d_{i}, b_{i}\right): i=1, \cdots, K\right\} \cup\{(d, b): d=b\} .
$$

Example: Dophin Network

62 Dophins' social network data with 159 edges.

Example: Zachary Karate Club Network

A social network data about Zachary karate club; 34 vertices and 78 edges.

Stability of a Community Tree - 1

- For a network G_{0}, if we only perturb it a little bit, how will its community tree change?
- Namely, we want to understand the stability of a community tree.

Stability of a Community Tree - 1

- For a network G_{0}, if we only perturb it a little bit, how will its community tree change?
- Namely, we want to understand the stability of a community tree.
- However, quantifying the tree difference is not easy.

Stability of a Community Tree - 1

- For a network G_{0}, if we only perturb it a little bit, how will its community tree change?
- Namely, we want to understand the stability of a community tree.
- However, quantifying the tree difference is not easy.
- Here we measure their difference using the bottleneck distance between the corresponding persistent diagrams.

Stability of a Community Tree - 2

- Given two persistent diagrams $\mathrm{PD}_{1}, \mathrm{PD}_{2}$, their bottleneck distance is

$$
d_{\infty}\left(\mathrm{PD}_{1}, \mathrm{PD}_{2}\right)=\inf _{\gamma} \sup _{A \in \mathrm{PD}_{1}}\|A-\gamma(A)\|_{\infty}
$$

where the infimum is taking over all bijective mappings between $P D_{1}$ and $P D_{2}$.

Stability of a Community Tree - 2

- Given two persistent diagrams $\mathrm{PD}_{1}, \mathrm{PD}_{2}$, their bottleneck distance is

$$
d_{\infty}\left(\mathrm{PD}_{1}, \mathrm{PD}_{2}\right)=\inf _{\gamma} \sup _{A \in \mathrm{PD}_{1}}\|A-\gamma(A)\|_{\infty}
$$

where the infimum is taking over all bijective mappings between PD_{1} and PD_{2}.

- Let $\mathrm{PB}(T)$ be the persistent diagram of a community tree T. Then we define a distance d_{B} for community trees T_{1} and T_{2} as

$$
d_{B}\left(T_{1}, T_{2}\right)=d_{\infty}\left(\mathrm{PB}\left(T_{1}\right), \mathrm{PB}\left(T_{2}\right)\right)
$$

Stability of a Community Tree - 3

- Given two networks G_{1} and G_{2}, let $T\left(G_{1}\right)$ and $T\left(G_{2}\right)$ be their corresponding community trees.
- It turns out that the difference between their community trees are bounded by a quantity called the total star number $\operatorname{TSN}\left(G_{1}, G_{2}\right)$:

Theorem (Chen et al. 2017)

Let G_{1} and G_{2} be two networks. Then

$$
d_{B}\left(T\left(G_{1}\right), T\left(G_{2}\right)\right) \leq \operatorname{TSN}\left(G_{1}, G_{2}\right)
$$

Total Star Number

- The total star number

$$
\operatorname{TSN}\left(G_{1}, G_{2}\right)=\operatorname{RSN}\left(G_{1}, G_{2}\right)+\operatorname{RSN}\left(G_{2}, G_{1}\right)
$$

- $\operatorname{RSN}\left(G_{1}, G_{2}\right)$ is the removal star number which is defined as

$$
\operatorname{RSN}\left(G_{1}, G_{2}\right)=\min \left\{\left|V_{0}\right|: v(e) \cap V_{0} \neq \emptyset \forall e \in E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right\}
$$

where V_{0} is a collection of vertices and $\left|V_{0}\right|$ is the number of elements in the set V_{0} and $E(G)$ is the edge of a network G and $v(e)$ is the vertices attached to the edge e.

Total Star Number

- The total star number

$$
\operatorname{TSN}\left(G_{1}, G_{2}\right)=\operatorname{RSN}\left(G_{1}, G_{2}\right)+\operatorname{RSN}\left(G_{2}, G_{1}\right)
$$

- $\operatorname{RSN}\left(G_{1}, G_{2}\right)$ is the removal star number which is defined as

$$
\operatorname{RSN}\left(G_{1}, G_{2}\right)=\min \left\{\left|V_{0}\right|: v(e) \cap V_{0} \neq \emptyset \forall e \in E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right\}
$$

where V_{0} is a collection of vertices and $\left|V_{0}\right|$ is the number of elements in the set V_{0} and $E(G)$ is the edge of a network G and $v(e)$ is the vertices attached to the edge e.

- $\operatorname{RSN}\left(G_{1}, G_{2}\right)$ can be interpreted as the minimal number of vertices we need to remove so that G_{1} is a subgraph of G_{2}.

Total Star Number

- The total star number

$$
\operatorname{TSN}\left(G_{1}, G_{2}\right)=\operatorname{RSN}\left(G_{1}, G_{2}\right)+\operatorname{RSN}\left(G_{2}, G_{1}\right)
$$

- $\operatorname{RSN}\left(G_{1}, G_{2}\right)$ is the removal star number which is defined as

$$
\operatorname{RSN}\left(G_{1}, G_{2}\right)=\min \left\{\left|V_{0}\right|: v(e) \cap V_{0} \neq \emptyset \forall e \in E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right\}
$$

where V_{0} is a collection of vertices and $\left|V_{0}\right|$ is the number of elements in the set V_{0} and $E(G)$ is the edge of a network G and $v(e)$ is the vertices attached to the edge e.

- $\operatorname{RSN}\left(G_{1}, G_{2}\right)$ can be interpreted as the minimal number of vertices we need to remove so that G_{1} is a subgraph of G_{2}.
- Informally, the total star number can be interpreted as the minimal number of vertices that the network difference can be attributed to.

Stability of a Community Tree - 4

Theorem (Chen et al. 2017)

Let G_{1} and G_{2} be two networks. Then

$$
d_{B}\left(T\left(G_{1}\right), T\left(G_{2}\right)\right) \leq \operatorname{TSN}\left(G_{1}, G_{2}\right) .
$$

- The TSN can be small while many edges are removed.

Stability of a Community Tree - 4

Theorem (Chen et al. 2017)

Let G_{1} and G_{2} be two networks. Then

$$
d_{B}\left(T\left(G_{1}\right), T\left(G_{2}\right)\right) \leq \operatorname{TSN}\left(G_{1}, G_{2}\right)
$$

- The TSN can be small while many edges are removed.
- For instance, if G_{1} is the same as G_{2} except removing all edges connecting to a particular vertex of G_{1}, then $\operatorname{TSN}\left(G_{1}, G_{2}\right)=1$.

Stability of a Community Tree - 4

Theorem (Chen et al. 2017)

Let G_{1} and G_{2} be two networks. Then

$$
d_{B}\left(T\left(G_{1}\right), T\left(G_{2}\right)\right) \leq \operatorname{TSN}\left(G_{1}, G_{2}\right)
$$

- The TSN can be small while many edges are removed.
- For instance, if G_{1} is the same as G_{2} except removing all edges connecting to a particular vertex of G_{1}, then $\operatorname{TSN}\left(G_{1}, G_{2}\right)=1$.
- Computing the total star number does not require building a community tree.

Community Tree: an Example

Computing the Total Star Number

- Although the total star number provides a useful bound for community trees, it cannot be computed easily.

Theorem (Chen et al. 2017)

Computing the total star number is an NP-complete problem.

- Note that the proof relies only on one simple observation: computing the total star number is the same as finding the minimum vertex cover.

Future Work

Future Directions

- Practical algorithm for bounding the total star number.
- Visualization tool using community trees.
- Effects from stochastic updates on community trees.
- Connections to overlapping communities.

Thank You!

More details can be found in Chen et al. (2017):
"A Note on Community Trees in Networks"
(https://arxiv.org/abs/1710.03924)

References

1. Chen, Ruqian, et al. "A Note on Community Trees in Networks." arXiv preprint arXiv:1710.03924 (2017).
2. Stuetzle, Werner. "Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample." Journal of classification 20, no. 1 (2003): 025-047.
3. Klemelä, Jussi. "Visualization of multivariate density estimates with level set trees." Journal of Computational and Graphical Statistics 13, no. 3 (2004): 599-620.
4. Palla, Gergely, Albert-László Barabási, and Tamás Vicsek. "Quantifying social group evolution." Nature 446.7136 (2007): 664-667.
5. Palla, Gergely, et al. "Uncovering the overlapping community structure of complex networks in nature and society."

Nature $435 \cdot 7043$ (2005): 814-818.

