Density Tree and Density Ranking in Singular Measures

Yen-Chi Chen

Department of Statistics
University of Washington

Outline

- Density Trees
- Density Ranking
- Density Ranking: Multiple Datasets
- Summary

Density Trees

Clusters and Density Function: an Illustration

Clusters and Density Function - 1

- The idea of using a density level (threshold) λ leads to clusters representing high density regions.
- Thus, the level λ has an effect on the clustering result.

Clusters and Density Function - 1

- The idea of using a density level (threshold) λ leads to clusters representing high density regions.
- Thus, the level λ has an effect on the clustering result.
- Varying the level λ may lead to a creation of a new cluster or a merging of existing clusters.

Clusters and Density Function: Different Levels

Clusters and Density Function - 2

- When the level changes, we see the evolution of clusters.

Clusters and Density Function - 2

- When the level changes, we see the evolution of clusters.
- Cluster tree (Stuetzle 2003) is to summarize such an evolution process by a tree.

Clusters and Density Function - 2

- When the level changes, we see the evolution of clusters.
- Cluster tree (Stuetzle 2003) is to summarize such an evolution process by a tree.
- When applied to a density function, a cluster tree is also called a density tree (Klemelä 2004).

$$
M
$$

$$
M
$$

Density Tree: an Illustration

Density Tree: an Illustration

Density Tree: an Illustration

Density Tree: an Illustration

M

Density Tree: an Illustration

Density Trees - 1

- Density tree uses a tree to summarize the density function.

Density Trees - 1

- Density tree uses a tree to summarize the density function.
- The creation of a new connected component is often associated with local modes (maxima) of a density function.

Density Trees - 1

- Density tree uses a tree to summarize the density function.
- The creation of a new connected component is often associated with local modes (maxima) of a density function.
- The merging of connected components is often associated with local minima or saddle points.

Density Trees - 2

- Here is the formal definition of a density tree.
- Let $p(x)$ be a probability density function (PDF).

Density Trees - 2

- Here is the formal definition of a density tree.
- Let $p(x)$ be a probability density function (PDF).
- We define the (upper) λ-level set (Chen et al. 2016)

$$
L_{\lambda}=\{x: p(x) \geq \lambda\}
$$

Density Trees - 2

- Here is the formal definition of a density tree.
- Let $p(x)$ be a probability density function (PDF).
- We define the (upper) λ-level set (Chen et al. 2016)

$$
L_{\lambda}=\{x: p(x) \geq \lambda\}
$$

- Assume that the λ-level set contains $J(\lambda)$ connected components (clusters)

$$
C_{\lambda, 1}, \cdots, C_{\lambda, J(\lambda)} .
$$

Density Trees - 2

- Here is the formal definition of a density tree.
- Let $p(x)$ be a probability density function (PDF).
- We define the (upper) λ-level set (Chen et al. 2016)

$$
L_{\lambda}=\{x: p(x) \geq \lambda\}
$$

- Assume that the λ-level set contains $J(\lambda)$ connected components (clusters)

$$
C_{\lambda, 1}, \cdots, C_{\lambda, J(\lambda)} .
$$

- We define a collection $T_{p}=\bigcup_{\lambda \geq 0}\left\{C_{\lambda, 1}, \cdots, C_{\lambda, J(\lambda)}\right\}$. Namely, T_{p} is the collection of all connected components from every level.

Density Trees - 2

- Here is the formal definition of a density tree.
- Let $p(x)$ be a probability density function (PDF).
- We define the (upper) λ-level set (Chen et al. 2016)

$$
L_{\lambda}=\{x: p(x) \geq \lambda\}
$$

- Assume that the λ-level set contains $J(\lambda)$ connected components (clusters)

$$
C_{\lambda, 1}, \cdots, C_{\lambda, J(\lambda)} .
$$

- We define a collection $T_{p}=\bigcup_{\lambda \geq 0}\left\{C_{\lambda, 1}, \cdots, C_{\lambda, J(\lambda)}\right\}$. Namely, T_{p} is the collection of all connected components from every level.
- Then the elements of T_{p} admits a tree structure - this tree structure is the density tree.

Estimating a Density Tree - 1

- In statistics, we often do not know the true density function p.
- Instead, we observe a random sample $X_{1}, \cdots, X_{n} \in \mathbb{R}^{d}$ that are IID from p.
- Because p is unknown, its density tree T_{p} is also unknown to us.

Estimating a Density Tree - 1

- In statistics, we often do not know the true density function p.
- Instead, we observe a random sample $X_{1}, \cdots, X_{n} \in \mathbb{R}^{d}$ that are IID from p.
- Because p is unknown, its density tree T_{p} is also unknown to us.
- To estimate T_{p}, a simple estimator is to find a density estimator \widehat{p}_{n} first and then use density tree of $\widehat{p}_{n}, T_{\widehat{p}_{n}}=\widehat{T_{p}}$, as the tree estimator.

Estimating a Density Tree - 1

- In statistics, we often do not know the true density function p.
- Instead, we observe a random sample $X_{1}, \cdots, X_{n} \in \mathbb{R}^{d}$ that are IID from p.
- Because p is unknown, its density tree T_{p} is also unknown to us.
- To estimate T_{p}, a simple estimator is to find a density estimator \widehat{p}_{n} first and then use density tree of $\widehat{p}_{n}, T_{\widehat{p}_{n}}=\widehat{T_{p}}$, as the tree estimator.
- Here we use the kernel density estimator (KDE):

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

where $K(\cdot)$ is the kernel function that is often a smooth function like a Gaussian, and $h>0$ is the smoothing bandwidth that controls the amount of smoothing.

Estimating a Density Tree - 2

- To measure the estimation error, a simple metric is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=\sup _{x}\left\|\widehat{p}_{n}(x)-p(x)\right\|
$$

which is the L_{∞} metric of the corresponding density estimation.

Estimating a Density Tree - 2

- To measure the estimation error, a simple metric is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=\sup _{x}\left\|\widehat{p}_{n}(x)-p(x)\right\|
$$

which is the L_{∞} metric of the corresponding density estimation.

- Under suitable conditions, the convergence rate is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right) .
$$

Estimating a Density Tree - 2

- To measure the estimation error, a simple metric is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=\sup _{x}\left\|\widehat{p}_{n}(x)-p(x)\right\|
$$

which is the L_{∞} metric of the corresponding density estimation.

- Under suitable conditions, the convergence rate is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right) .
$$

- Another way of defining statistical convergence is based on the probability

$$
P_{n}=P\left(\widehat{T_{p}} \text { and } T_{p} \text { are topological equivalent }\right)
$$

Estimating a Density Tree - 2

- To measure the estimation error, a simple metric is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=\sup _{x}\left\|\widehat{p}_{n}(x)-p(x)\right\|
$$

which is the L_{∞} metric of the corresponding density estimation.

- Under suitable conditions, the convergence rate is

$$
d_{\infty}\left(\widehat{T_{p}}, T_{p}\right)=O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right) .
$$

- Another way of defining statistical convergence is based on the probability

$$
P_{n}=P\left(\widehat{T_{p}} \text { and } T_{p} \text { are topological equivalent }\right)
$$

- Under smoothness conditions and $n \rightarrow \infty, h \rightarrow 0$,

$$
P_{n} \geq 1-e^{-n h^{d+4} \cdot C_{p}}
$$

for some constant C_{p} depending on the density function p.

Estimating a Density Tree - 3

- There are other notions of convergence/consistency of a tree estimator.

Estimating a Density Tree - 3

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.

Estimating a Density Tree - 3

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.
- However, it was shown in Kim et al. (2016) that this metric is equivalent to the L_{∞} metric.

Estimating a Density Tree - 3

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.
- However, it was shown in Kim et al. (2016) that this metric is equivalent to the L_{∞} metric.
- Hartigan consistency (Chaudhuri and Dasgupta 2010; Balakrishnan et al. 2013) is another way to measure the consistency of a tree estimator.

Estimating a Density Tree - 3

- There are other notions of convergence/consistency of a tree estimator.
- Convergence in the merge distortion metric (Eldridge et al. 2015) is one example.
- However, it was shown in Kim et al. (2016) that this metric is equivalent to the L_{∞} metric.
- Hartigan consistency (Chaudhuri and Dasgupta 2010; Balakrishnan et al. 2013) is another way to measure the consistency of a tree estimator.
- Note: density tree can also be recovered by a kNN approach; see Chaudhuri and Dasgupta (2010) and Chaudhuri et al. (2014) for more details.

Kernel Density Estimator: an Example

Kernel Density Estimator: an Example

Kernel Density Estimator: an Example

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.
- When using a density level sets to define clusters, the density tree contains the information about the evolution and stability of clusters.

Features of Density Trees

- Density trees provide topological information about the density function and they can be transformed into the persistent diagrams easily.
- When using a density level sets to define clusters, the density tree contains the information about the evolution and stability of clusters.
- Moreover, density trees can always be displayed in 2D plane. So they are good tools for visualizing multivariate functions.

Density Ranking

Failure of Density Trees and KDE

- Although density trees and KDE are good approaches, sometimes they may fail.
- In particular, when the PDF does not exist, we cannot use the usual definition for density trees and the KDE to analyze our data.

Failure of Density Trees and KDE: an Example

Failure of Density Trees and KDE: an Example

Failure of Density Trees and KDE: an Example

Failure of Density Trees and KDE: an Example

Density Ranking: Introduction

- The KDE cannot detect intricate structures inside the GPS data.

Density Ranking: Introduction

- The KDE cannot detect intricate structures inside the GPS data.
- This is because the underlying PDF does not exist!
- Namely, our probability distribution function is singular.

Density Ranking: Introduction

- The KDE cannot detect intricate structures inside the GPS data.
- This is because the underlying PDF does not exist!
- Namely, our probability distribution function is singular.
- However, density ranking still works!

Definition of Density Ranking

- The density ranking (Chen 2016; Chen and Dobra 2017) is a transformed quantity/function from the KDE.
- Instead of using the density value, we focus on the ranking of it.

Definition of Density Ranking

- The density ranking (Chen 2016; Chen and Dobra 2017) is a transformed quantity/function from the KDE.
- Instead of using the density value, we focus on the ranking of it.
- The density ranking at point x is

$$
\widehat{\alpha}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(\widehat{p}(x) \geq \widehat{p}\left(X_{i}\right)\right)
$$

$=$ ratio of observations' density below the density of point x.

Definition of Density Ranking

- The density ranking (Chen 2016; Chen and Dobra 2017) is a transformed quantity/function from the KDE.
- Instead of using the density value, we focus on the ranking of it.
- The density ranking at point x is

$$
\widehat{\alpha}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(\widehat{p}(x) \geq \widehat{p}\left(X_{i}\right)\right)
$$

$=$ ratio of observations' density below the density of point x.

- Namely, $\widehat{\alpha}(x)=0.3$ implies that the (estimated) density of point x is above the (estimated) density of 30% of all observations.

Property of Density Ranking

- For an observation $X_{\max }$ with $\widehat{\alpha}\left(X_{\max }\right)=1$, then it means

$$
\widehat{p}\left(X_{\max }\right)=\max \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

Property of Density Ranking

- For an observation $X_{\max }$ with $\widehat{\alpha}\left(X_{\max }\right)=1$, then it means

$$
\widehat{p}\left(X_{\max }\right)=\max \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

- Similarly, for an observation $X_{\min }$ with $\widehat{\alpha}\left(X_{\min }\right)=\frac{1}{n}$,

$$
\widehat{p}\left(X_{\min }\right)=\min \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

Property of Density Ranking

- For an observation $X_{\max }$ with $\widehat{\alpha}\left(X_{\max }\right)=1$, then it means

$$
\widehat{p}\left(X_{\max }\right)=\max \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

- Similarly, for an observation $X_{\min }$ with $\widehat{\alpha}\left(X_{\min }\right)=\frac{1}{n}$,

$$
\widehat{p}\left(X_{\min }\right)=\min \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

- If an observation X_{ℓ} satisfies $\widehat{\alpha}\left(X_{\ell}\right)=0.25$, this means that the ranking of density at X_{ℓ} is the 25%.

Property of Density Ranking

- For an observation $X_{\max }$ with $\widehat{\alpha}\left(X_{\max }\right)=1$, then it means

$$
\widehat{p}\left(X_{\max }\right)=\max \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

- Similarly, for an observation $X_{\min }$ with $\widehat{\alpha}\left(X_{\min }\right)=\frac{1}{n}$,

$$
\widehat{p}\left(X_{\min }\right)=\min \left\{\widehat{p}\left(X_{1}\right), \cdots, \widehat{p}\left(X_{n}\right)\right\} .
$$

- If an observation X_{ℓ} satisfies $\widehat{\alpha}\left(X_{\ell}\right)=0.25$, this means that the ranking of density at X_{ℓ} is the 25%.
- Moreover, for any pairs of data points X_{i}, X_{j},

$$
\begin{aligned}
& \widehat{p}\left(X_{i}\right)>\widehat{p}\left(X_{j}\right) \Longrightarrow \widehat{\alpha}\left(X_{i}\right)>\widehat{\alpha}\left(X_{j}\right) \\
& \widehat{p}\left(X_{i}\right)<\widehat{p}\left(X_{j}\right) \Longrightarrow \widehat{\alpha}\left(X_{i}\right)<\widehat{\alpha}\left(X_{j}\right) \\
& \widehat{p}\left(X_{i}\right)=\widehat{p}\left(X_{j}\right) \Longrightarrow \widehat{\alpha}\left(X_{i}\right)=\widehat{\alpha}\left(X_{j}\right)
\end{aligned}
$$

Density Ranking as an Estimator

- Density ranking $\widehat{\alpha}(x)$ can be viewed as an estimator to certain characteristics of the underlying population distribution.

Density Ranking as an Estimator

- Density ranking $\widehat{\alpha}(x)$ can be viewed as an estimator to certain characteristics of the underlying population distribution.
- When the distribution function has a PDF, the population version of density ranking is defined as:

$$
\alpha(x)=P\left(p(x) \geq p\left(X_{1}\right)\right)
$$

Density Ranking in Singular Measures

- Density ranking is still a consistent estimator even when the density does not exist!

Density Ranking in Singular Measures

- Density ranking is still a consistent estimator even when the density does not exist!
- To generalize population density ranking to a singular measure, we introduce the concept of the Hausdorff (geometric) density.

Density Ranking in Singular Measures

- Density ranking is still a consistent estimator even when the density does not exist!
- To generalize population density ranking to a singular measure, we introduce the concept of the Hausdorff (geometric) density.
- Let C_{d} be the volume of a d dimensional unit ball and $B(x, r)=\{y:\|x-y\| \leq r\}$.

Density Ranking in Singular Measures

- Density ranking is still a consistent estimator even when the density does not exist!
- To generalize population density ranking to a singular measure, we introduce the concept of the Hausdorff (geometric) density.
- Let C_{d} be the volume of a d dimensional unit ball and $B(x, r)=\{y:\|x-y\| \leq r\}$.
- For any integer s, we define

$$
\mathscr{H}_{s}(x)=\lim _{r \rightarrow 0} \frac{P(B(x, r))}{C_{s} r^{s}} .
$$

Density Ranking in Singular Measures

- Density ranking is still a consistent estimator even when the density does not exist!
- To generalize population density ranking to a singular measure, we introduce the concept of the Hausdorff (geometric) density.
- Let C_{d} be the volume of a d dimensional unit ball and $B(x, r)=\{y:\|x-y\| \leq r\}$.
- For any integer s, we define

$$
\mathscr{H}_{s}(x)=\lim _{r \rightarrow 0} \frac{P(B(x, r))}{C_{s} r^{s}}
$$

- For a point x, we then define

$$
\tau(x)=\max \left\{s \leq d: \mathscr{H}_{s}(x)<\infty\right\}, \quad \rho(x)=\mathscr{H}_{\tau(x)}(x) .
$$

Hausdorff Density: Example - 1

- Assume the distribution function P is a mixture of a $2 D$ uniform distribution within $[-1,1]^{2}$, a $1 D$ uniform distribution over the ring $\left\{(x, y): x^{2}+y^{2}=0.5^{2}\right\}$, and a point mass at $(0.5,0)$, then the support can be partitioned as follows:

Geometric Hausdorff: Example - 2

- Orange region: $\tau(x)=2$.
- Red region: $\tau(x)=1$.
- Blue region: $\tau(x)=0$.

Hausdorff Density and Ranking

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.

Hausdorff Density and Ranking

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.
- We can use τ and ρ to compare any pairs of points and construct a ranking.

Hausdorff Density and Ranking

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.
- We can use τ and ρ to compare any pairs of points and construct a ranking.
- For two points x_{1}, x_{2}, we define an ordering such that $x_{1}>_{\tau, \rho} x_{2}$ if

$$
\tau\left(x_{1}\right)<\tau\left(x_{2}\right), \quad \text { or } \quad \tau\left(x_{1}\right)=\tau\left(x_{2}\right), \quad \rho\left(x_{1}\right)>\rho\left(x_{2}\right)
$$

Hausdorff Density and Ranking

- The function $\tau(x)$ measures the dimension of P at point x.
- The function $\rho(x)$ describes the density of that corresponding dimension.
- We can use τ and ρ to compare any pairs of points and construct a ranking.
- For two points x_{1}, x_{2}, we define an ordering such that $x_{1}>_{\tau, \rho} x_{2}$ if

$$
\tau\left(x_{1}\right)<\tau\left(x_{2}\right), \quad \text { or } \quad \tau\left(x_{1}\right)=\tau\left(x_{2}\right), \quad \rho\left(x_{1}\right)>\rho\left(x_{2}\right)
$$

- Namely, we first compare the dimension of the two points, the lower dimensional structure wins. If they are on regions of the same dimension, we then compare the density of that dimension.

Constructing Density Ranking using Hausdorff Density

- Using the ordering $>_{\tau, \rho}$, we then define the population density ranking as

$$
\alpha(x)=P\left(x \geq_{\tau, \rho} X_{1}\right)
$$

Constructing Density Ranking using Hausdorff Density

- Using the ordering $>_{\tau, \rho}$, we then define the population density ranking as

$$
\alpha(x)=P\left(x \geq_{\tau, \rho} X_{1}\right)
$$

- When the PDF exists, the ordering $>_{\tau, \rho}$ equals to $>_{d, p}$ so

$$
\alpha(x)=P\left(x \geq_{d, p} X_{1}\right)=P\left(p(x) \geq p\left(X_{1}\right)\right),
$$

which recovers our original definition.

Ranking Tree: a Generalization of Density Tree

- To generalize density trees, we use the cluster tree of density ranking.
- We call this tree the ranking tree.

Ranking Tree: a Generalization of Density Tree

- To generalize density trees, we use the cluster tree of density ranking.
- We call this tree the ranking tree.
- Formally, the ranking tree is the set

$$
T_{\alpha}=\bigcup_{\lambda}\left\{A_{\lambda, 1}, \cdots, A_{\lambda, J(\lambda)}\right\}
$$

where

$$
A_{\lambda, 1}, \cdots, A_{\lambda, J(\lambda)}
$$

are the connected components of the λ-level set of $\alpha(x)$.

Dimensional Critical Points - 1

- In singular measure, there is a new type of critical points. We call them the dimensional critical points.
- These critical points contribute to the change of topology of level sets as the usual critical points but they cannot be defined by setting gradient to be 0 .

Dimensional Critical Points - 2

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1 D distribution on the black line (maximum value occurs at the cross).

Dimensional Critical Points - 2

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1 D distribution on the black line (maximum value occurs at the cross).

Dimensional Critical Points - 2

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1 D distribution on the black line (maximum value occurs at the cross).

Dimensional Critical Points - 2

- The box in the following figure is a dimensional critical point.
- Note: this is a mixture of 2D distribution and a 1 D distribution on the black line (maximum value occurs at the cross).

Convergence under Singular Measure: Density Ranking - 1

- When P is a singular distribution and satisfies certain regularity conditions,

$$
\int|\widehat{\alpha}(x)-\alpha(x)|^{2} d P(x) \xrightarrow{P} 0
$$

- Note that here $\widehat{\alpha}(x)$ is still the same estimator from the KDE.

Convergence under Singular Measure: Density Ranking - 1

- When P is a singular distribution and satisfies certain regularity conditions,

$$
\int|\widehat{\alpha}(x)-\alpha(x)|^{2} d P(x) \xrightarrow{P} 0
$$

- Note that here $\widehat{\alpha}(x)$ is still the same estimator from the KDE.
- Ideas: the KDE

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

diverges when x is in a lower dimensional space $\tau(x)<d$ as $h \rightarrow 0$.

Convergence under Singular Measure: Density Ranking - 1

- When P is a singular distribution and satisfies certain regularity conditions,

$$
\int|\widehat{\alpha}(x)-\alpha(x)|^{2} d P(x) \xrightarrow{P} 0
$$

- Note that here $\widehat{\alpha}(x)$ is still the same estimator from the KDE.
- Ideas: the KDE

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

diverges when x is in a lower dimensional space $\tau(x)<d$ as $h \rightarrow 0$.

- However, the speed of diverging depends on $\tau(x)$. The smaller $\tau(x)$, the faster (actually the diverging rate is $O\left(h^{\tau(x)-d}\right)$).

Convergence under Singular Measure: Density Ranking - 1

- When P is a singular distribution and satisfies certain regularity conditions,

$$
\int|\widehat{\alpha}(x)-\alpha(x)|^{2} d P(x) \xrightarrow{P} 0
$$

- Note that here $\widehat{\alpha}(x)$ is still the same estimator from the KDE.
- Ideas: the KDE

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

diverges when x is in a lower dimensional space $\tau(x)<d$ as $h \rightarrow 0$.

- However, the speed of diverging depends on $\tau(x)$. The smaller $\tau(x)$, the faster (actually the diverging rate is $O\left(h^{\tau(x)-d}\right)$).
- So eventually, we can separate different dimensional structures.

Convergence under Singular Measure: Density Ranking - 2

- Despite the pointwise convergence and convergence in $L_{2}(P)$, there no guarantee for the uniform convergence $\sup _{x}|\widehat{\alpha}(x)-\alpha(x)|$.

Convergence under Singular Measure: Density Ranking - 2

- Despite the pointwise convergence and convergence in $L_{2}(P)$, there no guarantee for the uniform convergence $\sup _{x}|\widehat{\alpha}(x)-\alpha(x)|$.
- Example of non-convergence of supreme norm: consider a sequence of points on a higher dimensional space but moving toward a lower dimensional space within distance $\frac{h}{2}$.

Convergence under Singular Measure: Ranking Tree

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞}.

Convergence under Singular Measure: Ranking Tree

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞}.
- However, when $n \rightarrow \infty, h \rightarrow 0$,

$$
P\left(\widehat{T_{\alpha}} \text { and } T_{\alpha} \text { are topological equivalent }\right) \geq 1-e^{-n h^{d+4} \cdot C_{P}},
$$

for some constant C_{P} that depends on the underlying probability distribution P.

Convergence under Singular Measure: Ranking Tree

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞}.
- However, when $n \rightarrow \infty, h \rightarrow 0$,

$$
P\left(\widehat{T_{\alpha}} \text { and } T_{\alpha} \text { are topological equivalent }\right) \geq 1-e^{-n h^{d+4} \cdot C_{P}},
$$

for some constant C_{P} that depends on the underlying probability distribution P.

- Although we do not have uniform convergence, we can still recover the topology of the tree.

Convergence under Singular Measure: Ranking Tree

- Because $\widehat{\alpha}$ does not converge to α uniformly, the tree does not converge in the metric d_{∞}.
- However, when $n \rightarrow \infty, h \rightarrow 0$,

$$
P\left(\widehat{T_{\alpha}} \text { and } T_{\alpha} \text { are topological equivalent }\right) \geq 1-e^{-n h^{d+4} \cdot C_{P}},
$$

for some constant C_{P} that depends on the underlying probability distribution P.

- Although we do not have uniform convergence, we can still recover the topology of the tree.
- In addition, the height of each branch of the tree will also converge.

Density Ranking and Cluster Tree: Example

Here the population distribution function is a mixture of a $1 D$ standard normal distribution and a point mass at 2 . We consider three sample sizes: $n=5 \times 10^{3}, 5 \times 10^{5}, 5 \times 10^{7}$.

Density Ranking: MuLtiple
 DATASETS

Application of Density Ranking: GPS dataset - 1

Joint work with Adrian Dobra and Zhihang Dong.

Application of Density Ranking: GPS dataset - 2

Joint work with Adrian Dobra and Zhihang Dong

Summarizing Multiple Density Ranking: Level Plots - 1

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.

Summarizing Multiple Density Ranking: Level Plots - 1

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.
- To compare these density rankings, a simple approach is to overlap level plots.
- For a density ranking $\widehat{\alpha}$, let

$$
\widehat{A}_{\gamma}=\{x: \widehat{\alpha}(x) \geq 1-\gamma\}
$$

be the (upper) level set.

Summarizing Multiple Density Ranking: Level Plots - 1

- In the above example, we have multiple GPS datasets and each of them yields one density ranking.
- Thus, we have multiple density rankings.
- To compare these density rankings, a simple approach is to overlap level plots.
- For a density ranking $\widehat{\alpha}$, let

$$
\widehat{A}_{\gamma}=\{x: \widehat{\alpha}(x) \geq 1-\gamma\}
$$

be the (upper) level set.

- We can compare the density ranking of each individual by overlapping their level sets at different levels.

Summarizing Multiple Density Ranking: Level Plots - 2

- Note that we use $1-\gamma$ as the level in the set \widehat{A}_{γ}.
- This is because such a set has a natural interpretation in activity space.
- Activity space: the spatial regions where an individual undertakes his/her daily life.

Summarizing Multiple Density Ranking: Level Plots - 2

- Note that we use $1-\gamma$ as the level in the set \widehat{A}_{γ}.
- This is because such a set has a natural interpretation in activity space.
- Activity space: the spatial regions where an individual undertakes his/her daily life.
- We can interpret \widehat{A}_{γ} as the (top) $\gamma \cdot 100 \%$ activity space because they are regions containing at least $\gamma \cdot 100 \%$ GPS records.

Summarizing Multiple Density Ranking: Level Plots - 2

- Note that we use $1-\gamma$ as the level in the set \widehat{A}_{γ}.
- This is because such a set has a natural interpretation in activity space.
- Activity space: the spatial regions where an individual undertakes his/her daily life.
- We can interpret \widehat{A}_{γ} as the (top) $\gamma \cdot 100 \%$ activity space because they are regions containing at least $\gamma \cdot 100 \%$ GPS records.
- Namely, $\widehat{A}_{\gamma=0.3}$ is the (top) 30% activity space.

Level Plots: Example

Summary Curves of Density Ranking

- The level plot allows us to compare GPS datasets from different individuals.

Summary Curves of Density Ranking

- The level plot allows us to compare GPS datasets from different individuals.
- However, it has two drawbacks:
- When we have many individuals, this approach might not work (too many contours).
- We often need to choose a level γ to show the plot but which level to be chosen is unclear.

Summary Curves of Density Ranking

- The level plot allows us to compare GPS datasets from different individuals.
- However, it has two drawbacks:
- When we have many individuals, this approach might not work (too many contours).
- We often need to choose a level γ to show the plot but which level to be chosen is unclear.
- Here we introduce a few curves to summarize geometric and topological features of density ranking.

Mass-Volume Curve

- Recall that $\widehat{A}_{\gamma}=\{x: \widehat{\alpha}(x) \geq 1-\gamma\}$ is the level set of density ranking.

Mass-Volume Curve

- Recall that $\widehat{A}_{\gamma}=\{x: \widehat{\alpha}(x) \geq 1-\gamma\}$ is the level set of density ranking.
- The mass-volume curve is a curve of

$$
\left(\gamma, \operatorname{Vol}\left(\widehat{A}_{\gamma}\right)\right): \gamma \in[0,1]
$$

- Namely, we are plotting the size of set \widehat{A}_{γ} at various level.

Mass-Volume Curve

- Recall that $\widehat{A}_{\gamma}=\{x: \widehat{\alpha}(x) \geq 1-\gamma\}$ is the level set of density ranking.
- The mass-volume curve is a curve of

$$
\left(\gamma, \operatorname{Vol}\left(\widehat{A}_{\gamma}\right)\right): \gamma \in[0,1]
$$

- Namely, we are plotting the size of set \widehat{A}_{γ} at various level.
- In practice, we often plot γ versus $\log \operatorname{Vol}\left(\widehat{A}_{\gamma}\right)$.

Mass-Volume Curve: Example

Mass-Volume Curve

Betti Number Curve

- The Betti number curve is a curve quantifying topological features of the density ranking.
- It counts the number of connected components of \widehat{A}_{γ} at various level γ.

Betti Number Curve

- The Betti number curve is a curve quantifying topological features of the density ranking.
- It counts the number of connected components of \widehat{A}_{γ} at various level γ.
- Formally, the Betti number curve is

$$
\left(\gamma, \operatorname{Betti}_{0}\left(\widehat{A}_{\gamma}\right)\right): \gamma \in[0,1]
$$

where for a set A
$\operatorname{Betti}_{0}(A)=$ number of connected components inside A.

Betti Number Curve

- The Betti number curve is a curve quantifying topological features of the density ranking.
- It counts the number of connected components of \widehat{A}_{γ} at various level γ.
- Formally, the Betti number curve is

$$
\left(\gamma, \operatorname{Betti}_{0}\left(\widehat{A}_{\gamma}\right)\right): \gamma \in[0,1]
$$

where for a set A
$\operatorname{Betti}_{0}(A)=$ number of connected components inside A.

- Note that the number of connected component is called the oth order Betti number (oth order topological structure); one can generalize this idea to higher order topological structures.

Betti Number Curve: Example

Betti Number Curve

Applying to African Animal Datasets

- We apply our methods to a GPS data about African animals.
- This data is from the Movebank Data Repository ${ }^{1}$ and was analyzed in Abrahms et al. (2017).
- Here we compare 4 different types of animals: elephants, jackals, vultures, and zebras.
- In this data, we have 8 elephants, 15 jackals, 10 vultures, and 9 zebras.
- Each animal has a set of GPS records.

Level Plots: Animal Example

Level Plots: Animal Example

elephant, top 20% activities

vulture, top 20% activities

jackal, top 20% activities

Level Plots: Animal Example

elephant, top 50% activities

vulture, top 50% activities

jackal, top 50% activities

zebra, top 50% activities

Level Plots: Animal Example

elephant, top 80% activities

vulture, top 80% activities

jackal, top 80% activities

zebra, top 80% activities

Mass-Volume Curve: Animal Example

Mass-Volume Curve

Betti Number Curve: Animal Example

Betti Number Curve

SUMMARY

Summary

- Density trees inform how density clusters are related to each other.
- Also, density trees provide useful visualization of the underlying density function.

Summary

- Density trees inform how density clusters are related to each other.
- Also, density trees provide useful visualization of the underlying density function.
- However, in complex datasets such as GPS data, we cannot use density tree because the density function does not exist.

Summary

- Density trees inform how density clusters are related to each other.
- Also, density trees provide useful visualization of the underlying density function.
- However, in complex datasets such as GPS data, we cannot use density tree because the density function does not exist.
- But we can use density ranking to analyze data.

Summary

- Density trees inform how density clusters are related to each other.
- Also, density trees provide useful visualization of the underlying density function.
- However, in complex datasets such as GPS data, we cannot use density tree because the density function does not exist.
- But we can use density ranking to analyze data.
- Density ranking defines a ranking tree that act as a density tree.

Summary

- Density trees inform how density clusters are related to each other.
- Also, density trees provide useful visualization of the underlying density function.
- However, in complex datasets such as GPS data, we cannot use density tree because the density function does not exist.
- But we can use density ranking to analyze data.
- Density ranking defines a ranking tree that act as a density tree.
- When multiple GPS datasets are available, we can summarize them by functional summaries of density ranking.

Thank You!

An R script for density ranking:
https://github.com/yenchic/density_ranking
More details can be found in http://faculty.washington.edu/yenchic/

References

1. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Density level sets: Asymptotics, inference, and visualization." Journal of the American Statistical Association (2017): 1-13.
2. Jisu, K. I. M., Yen-Chi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo, and Larry Wasserman. "Statistical inference for cluster trees." In Advances In Neural Information Processing Systems, pp. 1839-1847. 2016.
3. Chen, Yen-Chi. "Generalized Cluster Trees and Singular Measures." arXiv preprint arXiv:1611.02762 (2016).
4. Chen, Yen-Chi, and Adrian Dobra. "Measuring Human Activity Spaces With Density Ranking Based on GPS Data." arXiv preprint arXiv:1708.05017 (2017).
5. Stuetzle, Werner. "Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample." Journal of classification 20, no. 1 (2003): 025-047.
6. Klemelä, Jussi. "Visualization of multivariate density estimates with level set trees." Journal of Computational and Graphical Statistics 13, no. 3 (2004): 599-620.
7. Chaudhuri, Kamalika, and Sanjoy Dasgupta. "Rates of convergence for the cluster tree." In Advances in Neural Information Processing Systems, pp. 343-351. 2010.
8. Chaudhuri, Kamalika, Sanjoy Dasgupta, Samory Kpotufe, and Ulrike von Luxburg. "Consistent procedures for cluster tree estimation and pruning." IEEE Transactions on Information Theory 60, no. 12 (2014): 7900-7912.
9. Eldridge, Justin, Mikhail Belkin, and Yusu Wang. "Beyond hartigan consistency: Merge distortion metric for hierarchical clustering." In Conference on Learning Theory, pp. 588-606. 2015.
10. Balakrishnan, Sivaraman, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman. "Cluster trees on manifolds." In Advances in Neural Information Processing Systems, pp. 2679-2687. 2013.
11. Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, McNutt JW, Costa DP, Blake S, Brashares JS, Getz WM (2017) "Suite of simple metrics reveals common movement syndromes across vertebrate taxa." Movement Ecology 5:12. doi:10.1186/s40462-017-0104-2

Assumptions for Regular Distributions

(R1) The density function p has a compact support \mathbb{K}.
(\mathbf{R}_{2}) The density function is a Morse function and is in $\mathbf{B C}^{3}$.
(K1) The kernel function K is in $\mathbf{B C}^{2}$ and integrable.
(K2) K satisfies the VC-type class condition.

Kernel Conditions

(K2) Let

$$
\mathscr{K}_{r}=\left\{y \mapsto K^{(\alpha)}\left(\frac{x-y}{h}\right): x \in \mathbb{R}^{d},|\alpha|=r\right\},
$$

where $K^{(\alpha)}$ is the α-th derivative and let $\mathscr{K}_{l}^{*}=\bigcup_{r=0}^{l} \mathscr{K}_{r}$. We assume that \mathscr{K}_{2}^{*} is a VC-type class. i.e. there exists constants A, v and a constant envelope b_{0} such that

$$
\begin{equation*}
\sup _{Q} N\left(\mathscr{K}_{2}^{*}, \mathscr{L}^{2}(Q), b_{0} \epsilon\right) \leq\left(\frac{A}{\epsilon}\right)^{v} \tag{1}
\end{equation*}
$$

where $N\left(T, d_{T}, \epsilon\right)$ is the ϵ-covering number for an semi-metric set T with metric d_{T} and $\mathscr{L}^{2}(Q)$ is the L_{2} norm with respect to the probability measure Q.

Assumptions for Singular Distributions

(S1) The support can be partitioned into

$$
K=K_{0} \bigcup K_{1} \bigcup \cdots \bigcup K_{d}
$$

where $K_{\ell}=\{x \in \mathbb{K}: \tau(x)=\ell\}$.
(S2) There exist $\rho_{\min }, \rho_{\max }$ such that $0<\rho_{\min } \leq \rho(x) \leq \rho_{\max }<\infty$ for every $x \in \mathbb{K}$.
(S3) Restricted to each \mathbb{K}_{ℓ} where $\ell>0, \rho(x)$ is a Morse function.
$\left(\mathbf{K 1}^{\mathbf{1}} \mathbf{)}\right.$) The kernel function K is in $\mathbf{B C}^{2}$, integrable, and supported in $[-1,1]$.
(K2) K satisfies the VC-type class condition.

