Nonparametric Inference via Bootstrapping the Debiased Estimator

Yen-Chi Chen
Department of Statistics, University of Washington
ICSA-Canada Chapter Symposium 2017

- Let X_{1}, \cdots, X_{n} be an IID random sample from an unknown distribution function with a density function p.
- For simplicity, we assume p is supported on $[0,1]^{d}$.
- Goal: given a level α, we want to find $L_{\alpha}(x), U_{\alpha}(x)$ using the random sample such that

$$
P\left(L_{\alpha}(x) \leq p(x) \leq U_{\alpha}(x) \forall x \in[0,1]^{d}\right) \geq 1-\alpha+o(1)
$$

- Namely, $\left[L_{\alpha}(x), U_{\alpha}(x)\right]$ forms an asymptotic simultaneous confidence band of $p(x)$.
- A classical approach is to construct $L_{\alpha}(x), U_{\alpha}(x)$ using the kernel density estimator (KDE).
- Let

$$
\widehat{p}_{h}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

be the KDE where $h>0$ is the smoothing bandwidth and $K(x)$ is a smooth function such as a Gaussian.

- We pick t_{α} such that

$$
L_{\alpha}(x)=\widehat{p}_{h}(x)-t_{\alpha}, \quad U_{\alpha}(x)=\widehat{p}_{h}(x)+t_{\alpha} .
$$

As long as we choose t_{α} wisely, the resulting confidence band is asymptotically valid.

Simple Approach: the L_{∞} Error

- How do we choose t_{α} to obtain a valid confidence band?
- A simple idea: inverting the L_{∞} error.

Simple Approach: the L_{∞} Error

- How do we choose t_{α} to obtain a valid confidence band?
- A simple idea: inverting the L_{∞} error.
- Let $F_{n}(t)$ be the CDF of $\left\|\widehat{p}_{h}-p\right\|_{\infty}=\sup _{x}\left|\widehat{p}_{h}(x)-p(x)\right|$.
- Then the value $t_{\alpha}^{*}=F_{n}^{-1}(1-\alpha)$ has a nice property:

$$
P\left(\left\|\widehat{p}_{h}-p\right\|_{\infty} \leq t_{\alpha}^{*}\right)=1-\alpha .
$$

- How do we choose t_{α} to obtain a valid confidence band?
- A simple idea: inverting the L_{∞} error.
- Let $F_{n}(t)$ be the CDF of $\left\|\widehat{p}_{h}-p\right\|_{\infty}=\sup _{x}\left|\widehat{p}_{h}(x)-p(x)\right|$.
- Then the value $t_{\alpha}^{*}=F_{n}^{-1}(1-\alpha)$ has a nice property:

$$
P\left(\left\|\widehat{p}_{h}-p\right\|_{\infty} \leq t_{\alpha}^{*}\right)=1-\alpha
$$

- This implies

$$
P\left(\left|\widehat{p}_{h}(x)-p(x)\right| \leq t_{\alpha}^{*} \forall x \in[0,1]^{d}\right)=1-\alpha .
$$

- Thus,

$$
L_{\alpha}^{*}(x)=\widehat{p}_{h}(x)-t_{\alpha}^{*}, \quad U_{\alpha}^{*}(x)=\widehat{p}_{h}(x)+t_{\alpha}^{*}
$$

leads to a simultaneous confidence band.

Simple Approach: the Bootstrap - 1

- The previous method is great - it works even in a finite sample case.
- However, it has a critical problem: we do not know the distribution F_{n} ! So we cannot compute the quantile.

Simple Approach: the Bootstrap - 1

- The previous method is great - it works even in a finite sample case.
- However, it has a critical problem: we do not know the distribution F_{n} ! So we cannot compute the quantile.
- A simple solution: using the bootstrap (we will use the empirical bootstrap).

Simple Approach: the Bootstrap - 2

- Let $X_{1}^{*}, \cdots, X_{n}^{*}$ be a bootstrap sample.
- We first compute the bootstrap KDE:

$$
\widehat{p}_{h}^{*}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}^{*}-x}{h}\right) .
$$

- Then we compute the bootstrap L_{∞} error $W=\left\|\widehat{p}_{h}^{*}-\widehat{p}_{h}\right\|_{\infty}$.
- After repeating the bootstrap procedure B times, we obtain realizations

$$
W_{1}, \cdots, W_{B}
$$

- Compute the empirical CDF

$$
\widehat{F}_{n}(t)=\frac{1}{B} \sum_{\ell=1}^{B} I\left(W_{\ell} \leq t\right)
$$

- Finally, we use $\widehat{t}_{\alpha}^{*}=\widehat{F}_{n}^{-1}(1-\alpha)$ and construct the confidence band as

$$
\widehat{L}_{\alpha}^{*}(x)=\widehat{p}_{h}(x)-\widehat{t}_{\alpha}^{*}, \quad \widehat{U}_{\alpha}^{*}(x)=\widehat{p}_{h}(x)+\widehat{t}_{\alpha}^{*}
$$

Simple Approach: the Bootstrap - 3

- Does the bootstrap approach work?

Simple Approach: the Bootstrap - 3

- Does the bootstrap approach work?
- It depends.
- The bootstrap works if

$$
\left\|\widehat{p}_{h}^{*}-\widehat{p}_{h}\right\|_{\infty} \approx\left\|\widehat{p}_{h}-p\right\|_{\infty}
$$

in the sense that

$$
\sup _{t}\left|P\left(\left\|\widehat{p}_{h}^{*}-\widehat{p}_{h}\right\|_{\infty}<t\right)-P\left(\left\|\widehat{p}_{h}-p\right\|_{\infty}<t\right)\right|=o(1)
$$

Simple Approach: the Bootstrap - 3

- Does the bootstrap approach work?
- It depends.
- The bootstrap works if

$$
\left\|\widehat{p}_{h}^{*}-\widehat{p}_{h}\right\|_{\infty} \approx\left\|\widehat{p}_{h}-p\right\|_{\infty}
$$

in the sense that

$$
\sup _{t}\left|P\left(\left\|\widehat{p}_{h}^{*}-\widehat{p}_{h}\right\|_{\infty}<t\right)-P\left(\left\|\widehat{p}_{h}-p\right\|_{\infty}<t\right)\right|=o(1) .
$$

- However, the above bound holds if we undersmooth the data (Neumann and Polzehl 1998, Chernozhukov et al. 2014). Namely, we choose the smoothing bandwidth $h=o\left(n^{-\frac{1}{4+d}}\right)$.

Simple Approach: the Bootstrap - 4

- Why do we need to undersmooth the data?

Simple Approach: the Bootstrap - 4

- Why do we need to undersmooth the data?
- The L_{∞} error has a bias-variance tradeoff:

$$
\left\|\widehat{p}_{h}-p\right\|_{\infty}=\underbrace{O\left(h^{2}\right)}_{\text {Bias }}+\underbrace{O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right)}_{\text {stochastic error }}
$$

Simple Approach: the Bootstrap - 4

- Why do we need to undersmooth the data?
- The L_{∞} error has a bias-variance tradeoff:

$$
\left\|\widehat{p}_{h}-p\right\|_{\infty}=\underbrace{O\left(h^{2}\right)}_{\text {Bias }}+\underbrace{O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right)}_{\text {stochastic error }} .
$$

- The bootstrap L_{∞} error is capable of capturing the errors in the stochastic part. However, it does not capture the bias.
- Why do we need to undersmooth the data?
- The L_{∞} error has a bias-variance tradeoff:

$$
\left\|\widehat{p}_{h}-p\right\|_{\infty}=\underbrace{O\left(h^{2}\right)}_{\text {Bias }}+\underbrace{O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right)}_{\text {stochastic error }}
$$

- The bootstrap L_{∞} error is capable of capturing the errors in the stochastic part. However, it does not capture the bias.
- Undersmooth guarantees that the bias is of a smaller order so we can ignore it.

$$
\left\|\widehat{p}_{h}-p\right\|_{\infty}=\underbrace{O\left(h^{2}\right)}_{\text {Bias }}+\underbrace{O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right)}_{\text {stochastic error }} .
$$

- Undermoothing has a problem: we do not have the optimal convergence rate.
- The optimal rate occurs when we balance the bias and stochastic error: $h=h_{\text {opt }} \asymp n^{-\frac{1}{d+4}}$ (ignoring the $\log n$ factor).

$$
\left\|\widehat{p}_{h}-p\right\|_{\infty}=\underbrace{O\left(h^{2}\right)}_{\text {Bias }}+\underbrace{O_{P}\left(\sqrt{\frac{\log n}{n h^{d}}}\right)}_{\text {stochastic error }} .
$$

- Undermoothing has a problem: we do not have the optimal convergence rate.
- The optimal rate occurs when we balance the bias and stochastic error: $h=h_{\text {opt }} \asymp n^{-\frac{1}{d+4}}$ (ignoring the $\log n$ factor).
- A remedy to this problem: choose h optimally but correct the bias (debiased method).
- The idea of the debiased method is based on the fact that a leading term of $O\left(h^{2}\right)$ is

$$
\frac{h^{2}}{2} C_{K} \cdot \nabla^{2} p(x)
$$

where C_{K} is a known constant depending on the kernel function and ∇^{2} is the Laplacian operator.

- The idea of the debiased method is based on the fact that a leading term of $O\left(h^{2}\right)$ is

$$
\frac{h^{2}}{2} C_{K} \cdot \nabla^{2} p(x)
$$

where C_{K} is a known constant depending on the kernel function and ∇^{2} is the Laplacian operator.

- We can estimate $\nabla^{2} p$ via applying the Laplacian operator to a KDE \widehat{p}_{h}.
- However, such an estimator is inconsistent when we choose $h_{\text {opt }} \asymp n^{-\frac{1}{d+4}}$ because

$$
\nabla^{2} \widehat{p}_{h}(x)-\nabla^{2} p(x)=O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d+4}}}\right) .
$$

- The idea of the debiased method is based on the fact that a leading term of $O\left(h^{2}\right)$ is

$$
\frac{h^{2}}{2} C_{K} \cdot \nabla^{2} p(x)
$$

where C_{K} is a known constant depending on the kernel function and ∇^{2} is the Laplacian operator.

- We can estimate $\nabla^{2} p$ via applying the Laplacian operator to a KDE \widehat{p}_{h}.
- However, such an estimator is inconsistent when we choose $h_{\text {opt }} \asymp n^{-\frac{1}{d+4}}$ because

$$
\nabla^{2} \widehat{p}_{h}(x)-\nabla^{2} p(x)=O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d+4}}}\right) .
$$

- The choice $h=h_{\text {opt }} \asymp n^{-\frac{1}{d+4}}$ implies

$$
\nabla^{2} \widehat{p}_{h}(x)-\nabla^{2} p(x)=o(1)+O_{P}(1)
$$

The Debiased Method - 2

- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
${ }^{1}$ This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.
- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
- However, actually we ONLY need one KDE.
${ }^{1}$ This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.
- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
- However, actually we ONLY need one KDE.
- We propose using the same $\mathrm{KDE} \widehat{p}_{h}(x)$ to 'debias' the estimator ${ }^{1}$.
${ }^{1}$ This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.
- To handle this situation, people suggested using two KDE's, one for estimating the density and the other for estimating the bias.
- However, actually we ONLY need one KDE.
- We propose using the same $\operatorname{KDE} \widehat{p}_{h}(x)$ to 'debias' the estimator ${ }^{1}$.
- Namely, we propose to use

$$
\widetilde{p}_{h}(x)=\widehat{p}_{h}(x)-\frac{h^{2}}{2} C_{K} \cdot \nabla^{2} \widehat{p}_{h}(x)
$$

with $h=h_{\text {opt }} \asymp n^{-\frac{1}{d+4}}$.

- The estimator $\widetilde{p}_{h}(x)$ is called the debiased estimator.
${ }^{1}$ This idea has been used in Calonico et al. (2015) for a pointwise confidence interval.
- To construct a confidence band, we use the bootstrap again but this time we compute the bootstrap debiased estimator

$$
\widetilde{p}_{h}^{*}(x)=\widehat{p}_{h}^{*}(x)-\frac{h^{2}}{2} C_{K} \cdot \nabla^{2} \widehat{p}_{h}^{*}(x)
$$

and evaluate $\left\|\widetilde{p}_{h}^{*}-\widetilde{p}_{h}\right\|_{\infty}$.

- After repeating the bootstrap procedure many times, we compute the EDF \widetilde{F}_{n} of the realizations of $\left\|\widetilde{p}_{h}^{*}-\widetilde{p}_{h}\right\|_{\infty}$ and obtain the quantile $\widetilde{t}_{\alpha}^{*}=\widetilde{F}_{n}^{-1}(1-\alpha)$.
- The confidence band is

$$
\widetilde{L}_{\alpha}(x)=\widetilde{p}_{h}(x)-\widetilde{t}_{\alpha}^{*}, \quad \widetilde{U}_{\alpha}(x)=\widetilde{p}_{h}(x)+\widetilde{t}_{\alpha}^{*} .
$$

Theorem (Chen 2017)

Assume p belongs to β-Hölder class with $\beta>2$ and the kernel function satisfies smoothness conditions. When $h \asymp n^{-\frac{1}{d+4}}$,

$$
P\left(\widetilde{L}_{\alpha}(x) \leq p(x) \leq \widetilde{U}_{\alpha}(x) \forall x \in[0,1]^{d}\right)=1-\alpha+o(1)
$$

Namely, the debiased estimator leads to an asymptotic simultaneous confidence band under the choice $h \asymp n^{-\frac{1}{d+4}}$.

Why the Debiased Method Work? - 1

- Why the debiased method work? Didn't we have an inconsistent bias estimator?

Why the Debiased Method Work? - 1

- Why the debiased method work? Didn't we have an inconsistent bias estimator?
- We indeed do not have a consistent bias estimator but this is fine!

Why the Debiased Method Work? - 1

- Why the debiased method work? Didn't we have an inconsistent bias estimator?
- We indeed do not have a consistent bias estimator but this is fine!
- Recall that when $h \asymp n^{-\frac{1}{d+4}}$,

$$
\nabla^{2} \widehat{p}_{h}(x)-\nabla^{2} p(x)=\underbrace{o(1)}_{\text {bias }}+\underbrace{O_{P}(1)}_{\text {stochastic variation }}
$$

Why the Debiased Method Work? - 1

- Why the debiased method work? Didn't we have an inconsistent bias estimator?
- We indeed do not have a consistent bias estimator but this is fine!
- Recall that when $h \asymp n^{-\frac{1}{d+4}}$,

$$
\nabla^{2} \widehat{p}_{h}(x)-\nabla^{2} p(x)=\underbrace{o(1)}_{\text {bias }}+\underbrace{O_{P}(1)}_{\text {stochastic variation }}
$$

- Thus, our debiased estimator has three errors:

$$
\begin{aligned}
\widetilde{p}_{h}(x)-p(x) & =\widehat{p}_{h}(x)-\frac{h^{2}}{2} C_{K} \nabla \widehat{p}_{h}(x)-p(x) \\
& =\underbrace{\frac{h^{2}}{2} C_{K} \nabla^{2} p(x)+o\left(h^{2}\right)}_{\text {bias }}+O_{P}\left(\sqrt{\frac{1}{n h^{d}}}\right)-\frac{h^{2}}{2} C_{K} \nabla^{2} \widehat{p}_{h}(x)
\end{aligned}
$$

Why the Debiased Method Work? - 2

- The above equation equals $\left(h \asymp n^{-\frac{1}{d+4}}\right)$

$$
\begin{aligned}
\widetilde{p}_{h}(x)-p(x) & =\underbrace{\frac{h^{2}}{2} C_{K} \nabla p(x)+o\left(h^{2}\right)}_{\text {bias }}+O_{P}\left(\sqrt{\frac{1}{n h^{d}}}\right)-\frac{h^{2}}{2} C_{K} \nabla \widehat{p}_{h}(x) \\
& =o\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d}}}\right)+\frac{h^{2}}{2} C_{K} \underbrace{\left(\nabla^{2} p(x)-\nabla^{2} \widehat{p}_{h}(x)\right)}_{=o(1)+O_{P}(1)} \\
& =o\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d}}}\right)+o\left(h^{2}\right)+O_{P}\left(h^{2}\right) \\
& =o\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d}}}\right)+O_{P}\left(h^{2}\right) .
\end{aligned}
$$

- Both the orange and purple terms are stochastic variation.
- Orange: from estimating the density.
- Purple: from estimating the bias.

Why the Debiased Method Work? - 3

- When $h \asymp n^{-\frac{1}{d+4}}$, the error rate

$$
\begin{aligned}
\widetilde{p}_{h}(x)-p(x) & =o\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d}}}\right)+O_{P}\left(h^{2}\right) \\
& =O_{P}\left(n^{-\frac{2}{d+4}}\right)
\end{aligned}
$$

is dominated by the stochastic variation.

- As a result, the bootstrap can capture the errors, leading to an asymptotic valid confidence band.

Why the Debiased Method Work? - 4

- Actually, after closely inspecting the debiased estimator, you can find that

$$
\begin{aligned}
\widetilde{p}_{h}(x) & =\widehat{p}_{h}(x)-\frac{h^{2}}{2} C_{K} \cdot \nabla^{2} \widehat{p}_{h}(x) \\
& =\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)-\frac{h^{2}}{2} C_{K} \cdot \frac{1}{n h^{d}} \sum_{i=1}^{n} \nabla^{2} K\left(\frac{X_{i}-x}{h}\right) \\
& =\frac{1}{n h^{d}} \sum_{i=1}^{n} M\left(\frac{X_{i}-x}{h}\right),
\end{aligned}
$$

where

$$
M(x)=K(x)-\frac{C_{K}}{2} \cdot \nabla^{2} K(x)
$$

- Namely, the debiased estimator is a KDE with kernel function $M(x)$!

Why the Debiased Method Work? - 5

- The kernel function

$$
M(x)=K(x)-\frac{C_{K}}{2} \cdot \nabla^{2} K(x)
$$

is actually a higher order kernel.

Why the Debiased Method Work? - 5

- The kernel function

$$
M(x)=K(x)-\frac{C_{K}}{2} \cdot \nabla^{2} K(x)
$$

is actually a higher order kernel.

- You can show that if the kernel function $K(x)$ is a γ-th order kernel function, then the corresponding $M(x)$ will be a ($\gamma+2$)-th order kernel (Calonico et al. 2015, Scott 2015).

Why the Debiased Method Work? - 5

- The kernel function

$$
M(x)=K(x)-\frac{C_{K}}{2} \cdot \nabla^{2} K(x)
$$

is actually a higher order kernel.

- You can show that if the kernel function $K(x)$ is a γ-th order kernel function, then the corresponding $M(x)$ will be a ($\gamma+2$)-th order kernel (Calonico et al. 2015, Scott 2015).
- Because the debiased estimator $\widetilde{p}_{h}(x)$ uses a higher order kernel, the bias is moved to the next order, leaving the stochastic variation dominating the error.

Density Estimation, 95\% CI

Confidence Sets, Gaussian, $\mathbf{N}=\mathbf{2 0 0 0}$

- We illustrate a bootstrap approach to construct a simultaneous confidence band via a debiased KDE.
- This approach allows us to choose the smoothing bandwidth optimally and still leads to an asymptotic confidence band.
- A similar idea can also be applied to regression problem and local polynomial estimator.
- More details can be found in
- Chen, Yen-Chi. "Nonparametric Inference via Bootstrapping the Debiased Estimator." arXiv preprint arXiv:1702.07027 (2017).

Thank you!

References

(1) Y.-C. Chen. Nonparametric Inference via Bootstrapping the Debiased Estimator. arXiv preprint arXiv:1702.07027, 2017.
(2) Y.-C. Chen. A Tutorial on Kernel Density Estimation and Recent Advances. arXiv preprint arXiv:1704.03924, 2017.
(3) S. Calonico, M. D. Cattaneo, and M. H. Farrell. On the effect of bias estimation on coverage accuracy in nonparametric inference. arXiv preprint arXiv:1508.02973, 2015.
4 V. Chernozhukov, D. Chetverikov, and K. Kato. Anti-concentration and honest, adaptive confidence bands. The Annals of Statistics, 42(5):1787-1818, 2014.
(5) M. H. Neumann and J. Polzehl. Simultaneous bootstrap confidence bands in nonparametric regression. Journal of Nonparametric Statistics, 9(4):307-333, 1998.
(6) D. W. Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley \& Sons, 2015.

