
Nonparametric Inference via Bootstrapping the
Debiased Estimator

Yen-Chi Chen

Department of Statistics, University of Washington

ICSA-Canada Chapter Symposium 2017

1 / 21



Problem Setup

Let X1, · · · ,Xn be an IID random sample from an unknown
distribution function with a density function p.
For simplicity, we assume p is supported on [0, 1]d .
Goal: given a level α, we want to find Lα(x),Uα(x) using the
random sample such that

P
(
Lα(x) ≤ p(x) ≤ Uα(x) ∀x ∈ [0, 1]d

)
≥ 1− α+ o(1).

Namely, [Lα(x),Uα(x)] forms an asymptotic simultaneous
confidence band of p(x).
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Simple Approach: using the KDE

A classical approach is to construct Lα(x),Uα(x) using the
kernel density estimator (KDE).
Let

p̂h(x) =
1

nhd

n∑
i=1

K

(
Xi − x

h

)
be the KDE where h > 0 is the smoothing bandwidth and
K (x) is a smooth function such as a Gaussian.
We pick tα such that

Lα(x) = p̂h(x)− tα, Uα(x) = p̂h(x) + tα.

As long as we choose tα wisely, the resulting confidence band
is asymptotically valid.

3 / 21



Simple Approach: the L∞ Error

How do we choose tα to obtain a valid confidence band?
A simple idea: inverting the L∞ error.

Let Fn(t) be the CDF of ‖p̂h − p‖∞ = supx |p̂h(x)− p(x)|.
Then the value t∗α = F−1

n (1− α) has a nice property:

P(‖p̂h − p‖∞ ≤ t∗α) = 1− α.

This implies

P(|p̂h(x)− p(x)| ≤ t∗α ∀x ∈ [0, 1]d) = 1− α.

Thus,

L∗α(x) = p̂h(x)− t∗α, U∗α(x) = p̂h(x) + t∗α

leads to a simultaneous confidence band.
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Simple Approach: the Bootstrap - 1

The previous method is great – it works even in a finite sample
case.
However, it has a critical problem: we do not know the
distribution Fn! So we cannot compute the quantile.

A simple solution: using the bootstrap (we will use the
empirical bootstrap).
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Simple Approach: the Bootstrap - 2

Let X ∗1 , · · · ,X ∗n be a bootstrap sample.
We first compute the bootstrap KDE:

p̂∗h(x) =
1

nhd

n∑
i=1

K

(
X ∗i − x

h

)
.

Then we compute the bootstrap L∞ error W = ‖p̂∗h − p̂h‖∞.
After repeating the bootstrap procedure B times, we obtain
realizations

W1, · · · ,WB .

Compute the empirical CDF

F̂n(t) =
1
B

B∑
`=1

I (W` ≤ t).

Finally, we use t̂∗α = F̂−1
n (1− α) and construct the confidence

band as

L̂∗α(x) = p̂h(x)− t̂∗α, Û∗α(x) = p̂h(x) + t̂∗α.
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Simple Approach: the Bootstrap - 3

Does the bootstrap approach work?

It depends.
The bootstrap works if

‖p̂∗h − p̂h‖∞ ≈ ‖p̂h − p‖∞

in the sense that

sup
t
|P(‖p̂∗h − p̂h‖∞ < t)− P(‖p̂h − p‖∞ < t)| = o(1).

However, the above bound holds if we undersmooth the data
(Neumann and Polzehl 1998, Chernozhukov et al. 2014).
Namely, we choose the smoothing bandwidth h = o(n−

1
4+d ).
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Simple Approach: the Bootstrap - 4

Why do we need to undersmooth the data?

The L∞ error has a bias-variance tradeoff:

‖p̂h − p‖∞ = O(h2)︸ ︷︷ ︸
Bias

+OP

(√
log n
nhd

)
︸ ︷︷ ︸
stochastic error

.

The bootstrap L∞ error is capable of capturing the errors in
the stochastic part. However, it does not capture the bias.
Undersmooth guarantees that the bias is of a smaller order so
we can ignore it.
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Problem of Undersmoothing

‖p̂h − p‖∞ = O(h2)︸ ︷︷ ︸
Bias

+ OP

(√
log n
nhd

)
︸ ︷︷ ︸
stochastic error

.

Undermoothing has a problem: we do not have the optimal
convergence rate.
The optimal rate occurs when we balance the bias and
stochastic error: h = hopt � n−

1
d+4 (ignoring the log n factor).

A remedy to this problem: choose h optimally but correct the
bias (debiased method).
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The Debiased Method - 1

The idea of the debiased method is based on the fact that a
leading term of O(h2) is

h2

2
CK · ∇2p(x),

where CK is a known constant depending on the kernel
function and ∇2 is the Laplacian operator.

We can estimate ∇2p via applying the Laplacian operator to a
KDE p̂h.
However, such an estimator is inconsistent when we choose
hopt � n−

1
d+4 because

∇2p̂h(x)−∇2p(x) = O(h2) + OP

(√
1

nhd+4

)
.

The choice h = hopt � n−
1

d+4 implies

∇2p̂h(x)−∇2p(x) = o(1) + OP(1).
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The Debiased Method - 2

To handle this situation, people suggested using two KDE’s,
one for estimating the density and the other for estimating the
bias.

However, actually we ONLY need one KDE.
We propose using the same KDE p̂h(x) to ‘debias’ the
estimator1.
Namely, we propose to use

p̃h(x) = p̂h(x)−
h2

2
CK · ∇2p̂h(x)

with h = hopt � n−
1

d+4 .
The estimator p̃h(x) is called the debiased estimator.

1This idea has been used in Calonico et al. (2015) for a pointwise
confidence interval.
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The Debiased Method + Bootstrap

To construct a confidence band, we use the bootstrap again
but this time we compute the bootstrap debiased estimator

p̃∗h(x) = p̂∗h(x)−
h2

2
CK · ∇2p̂∗h(x)

and evaluate ‖p̃∗h − p̃h‖∞.
After repeating the bootstrap procedure many times, we
compute the EDF F̃n of the realizations of ‖p̃∗h − p̃h‖∞ and
obtain the quantile t̃∗α = F̃−1

n (1− α).
The confidence band is

L̃α(x) = p̃h(x)− t̃∗α, Ũα(x) = p̃h(x) + t̃∗α.
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Theory of the Debiased Method

Theorem (Chen 2017)

Assume p belongs to β-Hölder class with β > 2 and the kernel
function satisfies smoothness conditions. When h � n−

1
d+4 ,

P
(
L̃α(x) ≤ p(x) ≤ Ũα(x) ∀x ∈ [0, 1]d

)
= 1− α+ o(1).

Namely, the debiased estimator leads to an asymptotic
simultaneous confidence band under the choice h � n−

1
d+4 .
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Why the Debiased Method Work? - 1

Why the debiased method work? Didn’t we have an
inconsistent bias estimator?

We indeed do not have a consistent bias estimator but this is
fine!
Recall that when h � n−

1
d+4 ,

∇2p̂h(x)−∇2p(x) = o(1)︸︷︷︸
bias

+ OP(1)︸ ︷︷ ︸
stochastic variation

.

Thus, our debiased estimator has three errors:

p̃h(x)− p(x) = p̂h(x)−
h2

2
CK∇p̂h(x)− p(x)

=
h2

2
CK∇2p(x) + o(h2)︸ ︷︷ ︸

bias

+OP

(√
1

nhd

)
− h2

2
CK∇2p̂h(x)
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Why the Debiased Method Work? - 2

The above equation equals (h � n−
1

d+4 )

p̃h(x)− p(x) =
h2

2
CK∇p(x) + o(h2)︸ ︷︷ ︸

bias

+OP

(√
1

nhd

)
− h2

2
CK∇p̂h(x)

= o(h2) + OP

(√
1

nhd

)
+

h2

2
CK

(
∇2p(x)−∇2p̂h(x)

)︸ ︷︷ ︸
=o(1)+OP (1)

= o(h2) + OP

(√
1

nhd

)
+ o(h2) + OP(h

2)

= o(h2) + OP

(√
1

nhd

)
+ OP

(
h2).

Both the orange and purple terms are stochastic variation.
Orange: from estimating the density.
Purple: from estimating the bias.

15 / 21



Why the Debiased Method Work? - 3

When h � n−
1

d+4 , the error rate

p̃h(x)− p(x) = o(h2) + OP

(√
1

nhd

)
+ OP

(
h2)

= OP(n
− 2

d+4 )

is dominated by the stochastic variation.
As a result, the bootstrap can capture the errors, leading to an
asymptotic valid confidence band.
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Why the Debiased Method Work? - 4

Actually, after closely inspecting the debiased estimator, you
can find that

p̃h(x) = p̂h(x)−
h2

2
CK · ∇2p̂h(x)

=
1

nhd

n∑
i=1

K

(
Xi − x

h

)
− h2

2
CK ·

1
nhd

n∑
i=1

∇2K

(
Xi − x

h

)

=
1

nhd

n∑
i=1

M

(
Xi − x

h

)
,

where
M(x) = K (x)− CK

2
· ∇2K (x).

Namely, the debiased estimator is a KDE with kernel function
M(x)!
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Why the Debiased Method Work? - 5

The kernel function

M(x) = K (x)− CK

2
· ∇2K (x)

is actually a higher order kernel.

You can show that if the kernel function K (x) is a γ-th order
kernel function, then the corresponding M(x) will be a
(γ + 2)-th order kernel (Calonico et al. 2015, Scott 2015).
Because the debiased estimator p̃h(x) uses a higher order
kernel, the bias is moved to the next order, leaving the
stochastic variation dominating the error.
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Simulation
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Conclusion

We illustrate a bootstrap approach to construct a
simultaneous confidence band via a debiased KDE.
This approach allows us to choose the smoothing bandwidth
optimally and still leads to an asymptotic confidence band.
A similar idea can also be applied to regression problem and
local polynomial estimator.
More details can be found in

Chen, Yen-Chi. "Nonparametric Inference via Bootstrapping
the Debiased Estimator." arXiv preprint arXiv:1702.07027
(2017).

20 / 21



Thank you!
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