# Statistical Inference using Geometric Features 

Yen-Chi Chen

Department of Statistics
University of Washington


## Collaborators



## Collaborators

Astronomy


Astronomy


Andrew Connolly (UW)


Matthew McQuinn (UW)


Rachel Mandelbaum (CMU)


Matthew Wilde (UW)

## What are Geometric Features?



## What are Geometric Features?

The data can be viewed as

$$
X_{1}, \cdots, X_{n} \sim p
$$

$p$ is a probability density function.


## What are Geometric Features?

The data can be viewed as

$$
X_{1}, \cdots, X_{n} \sim p
$$

$p$ is a probability density function.

Scientists are interested in geometric features of $p$.


## What are Geometric Features?

The data can be viewed as

$$
X_{1}, \cdots, X_{n} \sim p,
$$

$p$ is a probability density function.

Scientists are interested in geometric features of $p$.

Level Sets


## What are Geometric Features?

The data can be viewed as

$$
X_{1}, \cdots, X_{n} \sim p
$$

$p$ is a probability density function.

Scientists are interested in geometric features of $p$.

Local Modes


## What are Geometric Features?

The data can be viewed as

$$
X_{1}, \cdots, X_{n} \sim p
$$

$p$ is a probability density function.

Scientists are interested in geometric features of $p$.

Ridges


## What are Geometric Features?

The data can be viewed as

$$
X_{1}, \cdots, X_{n} \sim p,
$$

$p$ is a probability density function.

Scientists are interested in geometric features of $p$.

Level Sets + Local Modes + Ridges


## Geometric Features

Common examples:

## Geometric Features

## Common examples:

- Level Sets

$\rightarrow$ Chen et al. 'Density Level Sets: Asymptotics, Inference, and Visualization' JASA-TEM (2016+).


## Geometric Features

## Common examples:

- Level Sets
- Ridges

$\rightarrow$ Chen et al. 'Asymptotic Theory for Density Ridges.' The Annals of Statistics (2015).
$\rightarrow$ Chen et al. 'Optimal Ridge Detection using Coverage Risk.' NIPS (2015).


## Geometric Features

## Common examples:

- Level Sets
- Ridges
- Clusters

$\rightarrow$ Chen et al. 'A Comprehensive Approach to Mode Clustering.' The Electronic Journal of Statistics (2016).
$\rightarrow$ Chen et al. 'Statistical Inference Using the Morse-Smale Complex.' (2015).


## Geometric Features

Common examples:

- Level Sets
- Ridges
- Clusters
- Density Trees

$\rightarrow$ Kim and Chen et al. 'Confidence Sets for Density Trees.' NIPS (2016).
$\rightarrow$ Chen. 'Generalized Cluster Trees and Singular Measures.' (2016)


## Geometric Features

Common examples:

- Level Sets
- Ridges
- Clusters
- Density Trees
- Modal Regression


## Modal Regression


$\rightarrow$ Chen et al. 'Nonparametric Modal Regression.' The Annals of Statistics (2016).

## Geometric Features

## Common examples:

- Level Sets
- Ridges
- Clusters
- Density Trees
- Modal Regression

Applications:

- Astronomy
- Biology
- Image Analysis

$\rightarrow$ Chen et al. 'Cosmic Web Reconstruction through Density Ridges: Catalogue.' Mon. Not. Roy. Astro. Soc. (2016).
$\rightarrow$ Chen et al. 'Cosmic Web Reconstruction through Density Ridges: Method and Algorithm.' Mon. Not. Roy. Astro. Soc. (2015).


## Geometric Features

Common examples:

- Level Sets
- Ridges
- Clusters
- Density Trees
- Modal Regression

Applications:

- Astronomy
- Biology
- Image Analysis
$\rightarrow$ Chen et al. 'Asymptotic Theory for Density Ridges.' The Annals of Statistics (2015).
$\rightarrow$ Chen et al. 'Optimal Ridge Detection using Coverage Risk.' NIPS (2015).
$\rightarrow$ Chen et al. 'Cosmic Web Reconstruction through Density Ridges: Method and Algorithm.' Mon. Not. Roy. Astro. Soc. (2015).
$\rightarrow$ Chen et al. 'Nonparametric Modal Regression.' The Annals of Statistics (2016).


## DENSITY RIDGES

## Example: Cosmology



Credit: Millennium Simulation

## Example: Cosmology



Credit: Millennium Simulation

## The Importance of Filaments

- A galaxy's brightness, size, and mass are associated with the distance to filaments.

$\rightarrow$ Chen et al. 'Detecting Effects of Filaments on Galaxy Properties in Sloan Digital Sky Survey III'(Mon. Not. Roy. Astro. Soc. 2016+)


## The Importance of Filaments

- A galaxy's brightness, size, and mass are associated with the distance to filaments.
- A galaxy's alignment is associated with filaments.

$\rightarrow$ Chen et al. 'Investigating Galaxy-Filament Alignment in Hydrodynamic Simulations using Density Ridges' (Mon. Not. Roy. Astro. Soc. 2015)


## The Importance of Filaments

- A galaxy's brightness, size, and mass are associated with the distance to filaments.
- A galaxy's alignment is associated with filaments.
- Filaments can be used to test cosmological theories.

warm dark matter

- Credit: Kavli Institute for Cosmology, Cambridge


## Density Ridges

We formalize the notion of filaments as density ridges.

## Literature Review

Early work on ridges is in image analysis (Eberly 1996, Damon 1999).

## Literature Review

Early work on ridges is in image analysis (Eberly 1996, Damon 1999). The concept of ridges in point clouds was introduced in Hall et al. (1992) and Hall and Peng (2001).

## Literature Review

Early work on ridges is in image analysis (Eberly 1996, Damon 1999). The concept of ridges in point clouds was introduced in Hall et al. (1992) and Hall and Peng (2001).

Recent work:

- Algorithm for finding ridges: Ozertem and Erdogmus (2011).
- Consistency for ridge estimators: Genovese et al. (2014).
- Asymptotic analysis: Qiao and Polonik (2014).


## Literature Review

Early work on ridges is in image analysis (Eberly 1996, Damon 1999). The concept of ridges in point clouds was introduced in Hall et al. (1992) and Hall and Peng (2001).

Recent work:

- Algorithm for finding ridges: Ozertem and Erdogmus (2011).
- Consistency for ridge estimators: Genovese et al. (2014).
- Asymptotic analysis: Qiao and Polonik (2014).
$\longrightarrow$ In our work, we derive the asymptotic theory for ridge estimators and propose methods for constructing confidence sets.


## Example: Ridges in Mountains



Credit: Google

## Example: Ridges in Smooth Functions



## Example: Ridges in Smooth Functions



## Ridges: Local Modes in Subspace



A generalized local mode in a specific 'subspace'.

## Ridges: Local Modes in Subspace



A generalized local mode in a specific 'subspace'.

## Ridges: Local Modes in Subspace



A generalized local mode in a specific 'subspace'.


## Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.


## Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.


## Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$ : $j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$ : matrix of the 2nd eigenvector to the last eigenvector.


## Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$ : matrix of the 2nd eigenvector to the last eigenvector.
- $V(x) V(x)^{T}$ : a projection.


## Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$ : matrix of the 2nd eigenvector to the last eigenvector.
- $V(x) V(x)^{T}$ : a projection.
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\} .
$$

## Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$ : matrix of the 2nd eigenvector to the last eigenvector.
- $V(x) V(x)^{T}$ : a projection.
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\} .
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\}
$$

## Dimension of Ridges

The dimension of a ridge is 1 .
This is because ridges are points satisfying $V(x) V(x)^{T} \nabla p(x)=0$.
$V(x) V(x)^{T}$ has rank $d-1$, so there are $d-1$ effective constraints.
By the Implicit Function Theorem, ridges have dimension 1.

## Dimension of Ridges

The dimension of a ridge is 1 .
This is because ridges are points satisfying $V(x) V(x)^{T} \nabla p(x)=0$.
$V(x) V(x)^{T}$ has rank $d-1$, so there are $d-1$ effective constraints.
By the Implicit Function Theorem, ridges have dimension 1.
Note that there are higher dimensional ridges but in this talk, we will focus on 1 dimensional ridges.

## Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{h}=\operatorname{Ridge}\left(\widehat{p}_{h}\right),
$$

where $\widehat{p}_{h}=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)$ is the kernel density estimator (KDE).
$h$ is the smoothing bandwidth, which controls the amount of smoothing.

- In general, finding ridges from a given function is hard.
- The Subspace Constraint Mean Shift ${ }^{1}$ (SCMS) algorithm allows us to find $\widehat{R}_{h}$, ridges of the KDE.

[^0]
## SCMS: Ridge Recovery Algorithm



SCMS moves blue mesh points by gradient ascent and a projection.

## Example for Estimated Density Ridges



## 3D Example for Estimated Ridges



Blue curves: density ridges.
Red points: density local modes.

## Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.

## Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
Namely, we want to find a set $C_{1-\alpha, n}$ from the data such that

$$
\mathbb{P}\left(R \subset C_{1-\alpha, n}\right) \geq 1-\alpha .
$$

## Smoothed Density Ridges

In particular, we focus on making inference for the smoothed ridges $R_{h}=\operatorname{Ridge}\left(p_{h}\right)$.
$p_{h}$ is the smoothed density function:

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{h}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where $\otimes$ denotes the convolution.

## Smoothed Density Ridges

In particular, we focus on making inference for the smoothed ridges $R_{h}=\operatorname{Ridge}\left(p_{h}\right)$.
$p_{h}$ is the smoothed density function:

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{h}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where $\otimes$ denotes the convolution.

- The advantages of $R_{h}$ over $R$ :
- Always well-defined.
- Topologically similar.
- We can undersmooth so that inference for $R_{h}$ is also valid for $R$.


## Ridges VS Smoothed Ridges



## Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance from point $x$ to a set $A$.

## Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance from point $x$ to a set $A$.

- Haus is an $L_{\infty}$ metric for sets.


## The $\oplus$ Operation

We define $A \oplus r=\{x: d(x, A) \leq r\}$.


## $A \oplus r$

## The $\oplus$ Operation

We define $A \oplus r=\{x: d(x, A) \leq r\}$.


Then we have the following inclusion property:

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

## Confidence Sets

We can use the Hausdorff distance and $\oplus$ operation to construct confidence sets.

Let $F_{n}$ be the CDF for $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

## Confidence Sets

We can use the Hausdorff distance and $\oplus$ operation to construct confidence sets.

Let $F_{n}$ be the CDF for $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

- It can be shown that

$$
\mathbb{P}\left(R_{h} \subset \widehat{R}_{h} \oplus t_{1-\alpha}\right) \geq 1-\alpha
$$

$\rightarrow$ This follows from the property

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

## Confidence Sets

We can use the Hausdorff distance and $\oplus$ operation to construct confidence sets.

Let $F_{n}$ be the CDF for $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

- It can be shown that

$$
\mathbb{P}\left(R_{h} \subset \widehat{R}_{h} \oplus t_{1-\alpha}\right) \geq 1-\alpha
$$

$\rightarrow$ This follows from the property

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

- We need to find the distribution $F_{n}$.


## Asymptotic Theory

Need: $F_{n}$, the CDF of $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$.

## Asymptotic Theory

Need: $F_{n}$, the CDF of $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$.
Key observation:

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right) & \approx \sqrt{n h^{d+2}} \sup _{x \in R_{h}} d\left(x, \widehat{R}_{h}\right) \\
& \approx \sup \left\{\text { Empirical process on } R_{h}\right\} \\
& \approx \sup \left\{\text { Gaussian process on } R_{h}\right\} .
\end{aligned}
$$

## Asymptotic Theory

Need: $F_{n}$, the CDF of $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$.
Key observation:

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right) & \approx \sqrt{n h^{d+2}} \sup _{x \in R_{h}} d\left(x, \widehat{R}_{h}\right) \\
& \approx \sup \left\{\text { Empirical process on } R_{h}\right\} \\
& \approx \sup \left\{\text { Gaussian process on } R_{h}\right\} .
\end{aligned}
$$

## Theorem (Chen, Genovese, and Wasserman (2015))

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$, there exists a Gaussian process $\mathbb{B}_{n}$ defined on a certain function space $\mathscr{F}$ such that

$$
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathscr{F}}\left|\mathbb{B}_{n}(f)\right|<t\right)\right|=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
$$

## Asymptotic Theory

Need: $F_{n}$, the CDF of $\operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)$.
Key observation:

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right) & \approx \sqrt{n h^{d+2}} \sup _{x \in R_{h}} d\left(x, \widehat{R}_{h}\right) \\
& \approx \sup \left\{\text { Empirical process on } R_{h}\right\} \\
& \approx \sup \left\{\text { Gaussian process on } R_{h}\right\} .
\end{aligned}
$$

## Theorem (Chen, Genovese, and Wasserman (2015))

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$, there exists a Gaussian process $\mathbb{B}_{n}$ defined on a certain function space $\mathscr{F}$ such that

$$
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathscr{F}}\left|\mathbb{B}_{n}(f)\right|<t\right)\right|=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
$$

## The Bootstrap

## Theorem (Chen, Genovese, and Wasserman (2015))

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$, there exists a Gaussian process $\mathbb{B}_{n}$ defined on a certain function space $\mathscr{F}$ such that

$$
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathscr{F}}\left|\mathbb{B}_{n}(f)\right|<t\right)\right|=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
$$

- Good news: we have the limiting distribution.


## The Bootstrap

## Theorem (Chen, Genovese, and Wasserman (2015))

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$, there exists a Gaussian process $\mathbb{B}_{n}$ defined on a certain function space $\mathscr{F}$ such that

$$
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathscr{F}}\left|\mathbb{B}_{n}(f)\right|<t\right)\right|=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
$$

- Good news: we have the limiting distribution.
- Bad news: the limiting distribution involves unknown quantities.


## The Bootstrap

## Theorem (Chen, Genovese, and Wasserman (2015))

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$, there exists a Gaussian process $\mathbb{B}_{n}$ defined on a certain function space $\mathscr{F}$ such that

$$
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathscr{F}}\left|\mathbb{B}_{n}(f)\right|<t\right)\right|=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
$$

- Good news: we have the limiting distribution.
- Bad news: the limiting distribution involves unknown quantities.
$\longrightarrow$ A solution: the bootstrap.


## Bootstrap Confidence Set

- Bootstrap sample $\Longrightarrow$ bootstrap ridges $\widehat{R}_{h}^{*}$.
- Repeat $B$ times, we obtain $B$ bootstrap ridges $\widehat{R}_{h}^{*(1)}, \cdots, \widehat{R}_{h}^{*(B)}$.
- Compute the CDF estimator $\widehat{F}_{n}$ by

$$
\widehat{F}_{n}(t)=\frac{1}{B} \sum_{\ell=1}^{B} I\left(\operatorname{Haus}\left(\widehat{R}_{h}^{*(\ell)}, \widehat{R}_{h}\right)<t\right)
$$

- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for $\widehat{F}_{n}$.
- The confidence set is

$$
C_{1-\alpha, n}=\widehat{R}_{h} \oplus \widehat{t}_{1-\alpha}
$$

## Bootstrap Consistency

We proved that

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}^{*}, \widehat{R}_{h}\right) & \approx \sup \left\{\text { Gaussian process on } \widehat{R}_{h}\right\} \\
& \approx \sup \left\{\text { Gaussian process on } R_{h}\right\} \\
& \approx \sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right) .
\end{aligned}
$$

## Bootstrap Consistency

We proved that

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}^{*}, \widehat{R}_{h}\right) & \approx \sup \left\{\text { Gaussian process on } \widehat{R}_{h}\right\} \\
& \approx \sup \left\{\text { Gaussian process on } R_{h}\right\} \\
& \approx \sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right) .
\end{aligned}
$$

This implies that $\widehat{t}_{1-\alpha} / t_{1-\alpha} \xrightarrow{P} 1$.

## Bootstrap Consistency

We proved that

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}^{*}, \widehat{R}_{h}\right) & \approx \sup \left\{\text { Gaussian process on } \widehat{R}_{h}\right\} \\
& \approx \sup \left\{\text { Gaussian process on } R_{h}\right\} \\
& \approx \sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{h}, R_{h}\right) .
\end{aligned}
$$

This implies that $\widehat{t}_{1-\alpha} / t_{1-\alpha} \xrightarrow{P} 1$.

## Theorem (Chen, Genovese, and Wasserman (2015))

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$,

$$
\mathbb{P}\left(R_{h} \subset \widehat{R}_{h} \oplus \widehat{t}_{1-\alpha}\right)=1-\alpha+O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right)
$$

## Example of Confidence Sets



## Example of Confidence Sets



We have checked the coverage by simulation.

## Example of Confidence Sets



## Example of Confidence Sets



## Summary for Density Ridges

- Ridges of the density function.



## Summary for Density Ridges

- Ridges of the density function.
- An algorithm for the estimator.



## Summary for Density Ridges

- Ridges of the density function.
- An algorithm for the estimator.
- Confidence sets.



## Summary for Density Ridges

- Ridges of the density function.
- An algorithm for the estimator.
- Confidence sets.
- Applications in Astronomy.


Modal Regression

## A Motivating Example for Modal Regression



## A Motivating Example for Modal Regression



## A Motivating Example for Modal Regression



## A Motivating Example for Modal Regression



## A Motivating Example for Modal Regression



## A Motivating Example for Modal Regression



## Literature Review

Modal regression first appeared in Sager and Thisted (1982), Lee (1989), and Scott (1992).

## Literature Review

Modal regression first appeared in Sager and Thisted (1982), Lee (1989), and Scott (1992).

Then it was used in meteorology (Hyndman et al., 1996), astronomy (Rojas, 2005), and transportation (Einbeck and Tutz, 2006).

## Literature Review

Modal regression first appeared in Sager and Thisted (1982), Lee (1989), and Scott (1992).

Then it was used in meteorology (Hyndman et al., 1996), astronomy (Rojas, 2005), and transportation (Einbeck and Tutz, 2006).

Recently, some generalizations are proposed in Yao and Lindsay (2009), Yao et al. (2012), and Yao and Li (2014).

## Literature Review

Modal regression first appeared in Sager and Thisted (1982), Lee (1989), and Scott (1992).

Then it was used in meteorology (Hyndman et al., 1996), astronomy (Rojas, 2005), and transportation (Einbeck and Tutz, 2006).

Recently, some generalizations are proposed in Yao and Lindsay (2009), Yao et al. (2012), and Yao and Li (2014).

In most of the above work, they consider the mode of the conditional density function.
$\longrightarrow$ In our work, we consider the multiple local modes of the conditional density function.

## Definition for Modal Regression

We assume $x \in \mathbb{K} \subset \mathbb{R}^{d}$, where $\mathbb{K}$ is a compact set.

- Modal function-the conditional (local) modes:

$$
M(x)=\operatorname{Mode}(Y \mid X=x)=\left\{y: \frac{d}{d y} p(y \mid x)=0, \frac{d^{2}}{d y^{2}} p(y \mid x)<0\right\}
$$

## Definition for Modal Regression

We assume $x \in \mathbb{K} \subset \mathbb{R}^{d}$, where $\mathbb{K}$ is a compact set.

- Modal function-the conditional (local) modes:

$$
M(x)=\operatorname{Mode}(Y \mid X=x)=\left\{y: \frac{d}{d y} p(y \mid x)=0, \frac{d^{2}}{d y^{2}} p(y \mid x)<0\right\}
$$

- $M(x)$ is a multi-valued function.


## Definition for Modal Regression

We assume $x \in \mathbb{K} \subset \mathbb{R}^{d}$, where $\mathbb{K}$ is a compact set.

- Modal function-the conditional (local) modes:

$$
M(x)=\operatorname{Mode}(Y \mid X=x)=\left\{y: \frac{d}{d y} p(y \mid x)=0, \frac{d^{2}}{d y^{2}} p(y \mid x)<0\right\}
$$

- $M(x)$ is a multi-valued function.
- An equivalent expression:

$$
M(x)=\left\{y: \frac{\partial}{\partial y} p(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} p(x, y)<0\right\}
$$

## Conditional Local Modes



## Conditional Local Modes



## Conditional Local Modes



## Conditional Local Modes



## Estimator for Modal Regression

- Our estimator is the plug-in from the KDE:

$$
\widehat{M}_{n}(x)=\left\{y: \frac{\partial}{\partial y} \widehat{p}_{n}(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} \widehat{p}_{n}(x, y)<0\right\} .
$$

- Partial mean shift ${ }^{2}$ : a simple algorithm for computing $\widehat{M}_{n}(x)$, the plug-in estimator of the KDE, from the data.

[^1]
## Example for Modal Regression



## Example for Modal Regression



## Losses of Modal regression

To measure the errors, we consider the following two losses:

## Losses of Modal regression

To measure the errors, we consider the following two losses:

- the pointwise loss

$$
\Delta_{n}(x)=\operatorname{Haus}\left(\widehat{M}_{n}(x), M(x)\right)
$$

where $\operatorname{Haus}(A, B)$ is the Hausdorff distance.

## Losses of Modal regression

To measure the errors, we consider the following two losses:

- the pointwise loss

$$
\Delta_{n}(x)=\operatorname{Haus}\left(\widehat{M}_{n}(x), M(x)\right)
$$

where $\operatorname{Haus}(A, B)$ is the Hausdorff distance.

- the uniform loss

$$
\Delta_{n}=\sup _{x} \Delta_{n}(x)=\sup _{x} \operatorname{Haus}\left(\widehat{M}_{n}(x), M(x)\right) .
$$

## Illustration for Losses



## Illustration for Losses



## Illustration for Losses



## Illustration for Losses



## Rate of Convergence

Both the pointwise and the uniform losses obey the common nonparametric rate:

## Theorem (Chen, Genovese, and Wasserman (2016))

Under regularity conditions and $\frac{\log n}{n h^{d+3}} \rightarrow 0$,

$$
\begin{aligned}
\Delta_{n}(x) & =O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{1}{n h^{d+3}}}\right) \\
\Delta_{n} & =O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{\log n}{n h^{d+3}}}\right)
\end{aligned}
$$

Risk $=$ Bias $+\sqrt{\text { Variance }}$.
$d+3=d+1+2=\operatorname{dim}(X)+\operatorname{dim}(Y)+$ gradient.

## Confidence Sets

We can construct confidence sets using the uniform loss and the bootstrap.

Reason: the uniform loss $\Delta_{n}$ is an $L_{\infty}$ metric for modal regression.
Bootstrap consistency follows in a similar way as density ridges.


## Confidence Sets

We can construct confidence sets using the uniform loss and the bootstrap.

Reason: the uniform loss $\Delta_{n}$ is an $L_{\infty}$ metric for modal regression.
Bootstrap consistency follows in a similar way as density ridges.


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.

## Select: Sample 1



## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.

Compute: Modal Function 1


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.

Compute: Residuals 2


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.

Select: Sample 2


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.

Compute: Modal Function 2


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.

Compute: Residuals 1


## Prediction Sets

We can use modal regression to construct a prediction set.
Here we use 2 -fold cross validation to compute the prediction set.


## Examples of Prediction Sets

Modal Regression


Local Regression


## Examples of Prediction Sets

Modal Regression


Local Regression


## Bandwidth Selection

We can choose the smoothing parameter $h$ via minimizing the size of the prediction set.

Namely, we choose

$$
h^{*}=\underset{h>0}{\operatorname{argmin}} \operatorname{Vol}\left(\widehat{\mathscr{P}}_{1-\alpha}\right),
$$

where $\widehat{\mathscr{T}}_{1-\alpha}$ is the prediction set.

## Example: Bandwidth Selection



## Regression Clustering

- Clustering based on the response $Y$.
- Clusters as functions of covariates X.



## Modal Regression VS Mixture Regression

Modal regression and mixture regression are solving different problems.

Here is a case where modal regression gives a better result.


CONCLUDING REMARKS

## Geometric Features

Common examples:

- Level Sets
- Ridges
- Clusters
- Density Trees
- Modal Regression

Applications:

- Astronomy
- Biology
- Image Analysis
$\rightarrow$ Chen et al. 'Asymptotic Theory for Density Ridges.' The Annals of Statistics (2015).
$\rightarrow$ Chen et al. 'Optimal Ridge Detection using Coverage Risk.' NIPS (2015).
$\rightarrow$ Chen et al. 'Cosmic Web Reconstruction through Density Ridges: Method and Algorithm.' Mon. Not. Roy. Astro. Soc. (2015).
$\rightarrow$ Chen et al. 'Nonparametric Modal Regression.' The Annals of Statistics (2016).


## Geometric Features

Common examples:

- Level Sets
- Ridges
- Clusters
- Density Trees
- Modal Regression

Applications:

- Astronomy
- Biology
- Image Analysis
$\rightarrow$ Chen et al. 'Density Level Sets: Asymptotics, Inference, and Visualization' JASA-TEM (2016+).
$\rightarrow$ Chen et al. 'A Comprehensive Approach to Mode Clustering.' The Electronic Journal of Statistics (2016).
$\rightarrow$ Chen et al. 'Statistical Inference Using the Morse-Smale Complex.' (2015).
$\rightarrow$ Kim and Chen et al. 'Confidence Sets for Density Trees.' NIPS (2016).
$\rightarrow$ Chen. 'Generalized Cluster Trees and Singular Measures.' (2016).


## Future Work

Some future directions:

- More to do in geometric features.
- High-dimensional density clustering.
- Topological data analysis.



## Future Work

Some future directions:

- More to do in geometric features.
- High-dimensional density clustering.
- Topological data analysis.



## Future Work

Some future directions:

- More to do in geometric features.
- High-dimensional density clustering.
- Topological data analysis.


> More details can be found in:
> http://faculty.washington.edu/yenchic/

More details can be found in:
http://faculty.washington.edu/yenchic/

## Thank you!

4. Backups for Density Ridges
4.1 Regularity Conditions
4.2 Bandwidth Selection
4.3 Local Uncertainty
4.4 Why Smoothed Structures?
4.5 General Ridges
4.6 Illustration for Asymptotics
5. Backups for Modal Regression
5.1 Regularity Conditions
5.2 3D Modal Regression
5.3 Bifurcation and Merge
5.4 Comparisons
5.5 Theory for Prediction Sets
5.6 More about Confidence Sets

## BACKUPS FOR DENSITY RIDGES

## Regularity Conditions

(K1) The kernel function $K$ is $\mathbf{B C}^{4}$ and integrable.
(K2) K satisfies the VC-type class condition.
$\left(\mathbf{P}_{1}\right)$ The density $p$ is in $\mathbf{B C}^{4}$.
( $\mathbf{P}_{2}$ ) The eigengap $\lambda_{1}(x)-\lambda_{2}(x) \geq \beta_{0}>0$ for points around ridges.
$\left(\mathrm{P}_{3}\right)$ The orientation of each ridge point is close to the gradient.

## Regularity Conditions on Kernel Functions

(K1) The kernel $K$ is in $\mathbf{B C}^{4}$ and $\|K\|_{\infty, 4}^{*}<\infty$.
(K2) Let

$$
\mathscr{K}_{r}=\left\{y \mapsto K^{(\alpha)}\left(\frac{x-y}{h}\right): x \in \mathbb{R}^{d},|\alpha|=r\right\},
$$

where $K^{(\alpha)}$ is the $\alpha$-th derivative and let $\mathscr{K}_{l}^{*}=\bigcup_{r=0}^{l} \mathscr{K}_{r}$. We assume that $\mathscr{K}_{4}^{*}$ is a VC-type class. i.e. there exists constants $A, v$ and a constant envelope $b_{0}$ such that

$$
\begin{equation*}
\sup _{Q} N\left(\mathscr{K}_{4}^{*}, \mathscr{L}^{2}(Q), b_{0} \epsilon\right) \leq\left(\frac{A}{\epsilon}\right)^{v} \tag{1}
\end{equation*}
$$

where $N\left(T, d_{T}, \epsilon\right)$ is the $\epsilon$-covering number for an semi-metric set $T$ with metric $d_{T}$ and $\mathscr{L}^{2}(Q)$ is the $L_{2}$ norm with respect to the probability measure $Q$.

## Regularity Conditions on Distributions

$\left(\mathbf{P}_{1}\right)$ The density $p_{h}$ is in $\mathbf{B C} \mathbf{C}^{4}$.
$\left(\mathbf{P}_{2}\right)$ There exists constants $\beta_{0}, \beta_{1}, \beta_{2}, \delta_{0}>0$ such that

$$
\begin{align*}
\lambda_{2}(x) & \leq-\beta_{1} \\
\lambda_{1}(x) & \geq \beta_{0}-\beta_{1}  \tag{2}\\
\left\|g_{h}(x)\right\| \max _{|\alpha|=3}\left|p_{h}^{(\alpha)}(x)\right| & \leq \beta_{0}\left(\beta_{1}-\beta_{2}\right)
\end{align*}
$$

for all $x \in R_{h} \oplus \delta_{0}$.
( $\mathbf{P}_{3}$ ) For each $x \in R_{h},\left|e(x)^{T} g_{h}(x)\right|^{2} \geq \frac{\lambda_{1}(x)}{\lambda_{1}(x)-\lambda_{2}(x)}$ where $e(x)$ is the direction of $R_{h}$ at point $x \in R_{h}$.
(P4) The above assumptions hold for all sufficiently small $h$.

## Bandwidth Selection





## Bandwidth Selection




## Bandwidth Selection


$L_{1}$ distance are like the area of the shady regions.
We estimate this distance by data splitting or the bootstrap.
Reference: Chen et al. 'Optimal Ridge Detection using Coverage Risk' (NIPS 2015).

## Local Uncertainty and Pointwise Confidence Sets



Color denotes the amount of uncertainty.
Red: unstable filaments.
Blue: stable filaments.

## Local Uncertainty and Pointwise Confidence Sets



Color denotes the amount of uncertainty.
Red: unstable filaments.
Blue: stable filaments.

## Why Smoothed Density? - Bias Consideration

We have the following decomposition:

$$
\begin{aligned}
\operatorname{Haus}\left(\widehat{R}_{h}, R\right) & \leq \operatorname{Haus}\left(R_{h}, R\right)+\operatorname{Haus}\left(\widehat{R}_{h}, R\right) \\
& =O\left(h^{2}\right)+O_{P}\left(\sqrt{\frac{\log n}{n h^{d+2}}}\right)
\end{aligned}
$$

Bias $+\sqrt{\text { Variance }}$.
Work on smoothed ridges $R_{h}$ allows us to avoid the problem of bias.
Optimal rate: $O_{P}\left(\left(\frac{\log n}{n}\right)^{\frac{2}{d+6}}\right)$ when we choose $h=O\left(\left(\frac{\log n}{n}\right)^{\frac{1}{d+6}}\right)$.

## Why Smoothed Density? - A Level Set Example




## Ridges VS Smoothed Ridges

Radius of ring: $r=1$. Smoothing bandwidth: $h=0.25$. Gaussian noise level: $\sigma=0.1$


## General Ridges

We can generalize ridges to higher dimensions. Pick $V_{r}(x)=\left[v_{r+1}(x), \cdots, v_{d}(x)\right]$.

We define

$$
r \text {-Ridge }(p)=\left\{x: V_{r}(x) V_{r}(x)^{T} \nabla p(x)=0, \lambda_{r+1}(x)<0\right\} .
$$

$V_{r}(x)$ is a $d \times(d-r)$ matrix. There are $d-r$ constraints.
By Implicit Function Theorem, $r$-ridges are $r$-manifolds.
In Astronomy, $r=2$ can be used to model 'Cosmic Sheets (Walls)'.
$r=0$ coincides with the definition of local modes.

## Asymptotic Theory



## Asymptotic Theory



## Backups for Modal Regression

## Regularity Conditions

(K1) The kernel function $K$ is $\mathbf{B C}^{4}$ and integrable.
(K2) K satisfies the VC-type class condition.
(P1) The density $p$ is in $\mathbf{B C}^{4}$.
$\left(\mathbf{P}_{2}\right)$ The second derivative along $y$ axis is bounded away from 0 for points on $M$.
$\left(\mathrm{P}_{3}\right) M$ contains $L$ well-separated, connected components.

## Regularity Conditions on Kernel Functions

(K1) The kernel $K$ is in $\mathbf{B C}^{4}$ and $\|K\|_{\infty, 4}^{*}<\infty$.
(K2) Let

$$
\mathscr{K}_{r}=\left\{y \mapsto K^{(\alpha)}\left(\frac{x-y}{h}\right): x \in \mathbb{R}^{d},|\alpha|=r\right\},
$$

where $K^{(\alpha)}$ is the $\alpha$-th derivative and let $\mathscr{K}_{l}^{*}=\bigcup_{r=0}^{l} \mathscr{K}_{r}$. We assume that $\mathscr{K}_{2}^{*}$ is a VC-type class. i.e. there exists constants $A, v$ and a constant envelope $b_{0}$ such that

$$
\begin{equation*}
\sup _{Q} N\left(\mathscr{K}_{2}^{*}, \mathscr{L}^{2}(Q), b_{0} \epsilon\right) \leq\left(\frac{A}{\epsilon}\right)^{v} \tag{3}
\end{equation*}
$$

where $N\left(T, d_{T}, \epsilon\right)$ is the $\epsilon$-covering number for an semi-metric set $T$ with metric $d_{T}$ and $\mathscr{L}^{2}(Q)$ is the $L_{2}$ norm with respect to the probability measure $Q$.

## Regularity Conditions on Distributions

$\left(\mathbf{P}_{1}\right)$ The density $p$ is in $\mathbf{B C}^{4}$.
(P2) There exists constants $\lambda_{0}>0$ such that for any $(x, y) \in \mathbb{K} \times \mathbb{R}$ with $\frac{\partial}{\partial y} p(x, y)>0$, the second derivative satisfies $\frac{\partial^{2}}{\partial^{2} y} p(x, y) \leq-\lambda_{0}<0$.
( $\mathrm{P}_{3}$ ) Modal function $M=\cup_{j=1}^{L} M_{j}$, where each $M_{j}$ is a connected component with $M_{j} \cap M_{i}=\phi$ for $i \neq j$.

## 3D Modal Regression



## Bifurcation and Merge



## Comments on Mixture Regression

A general model for mixture regression:

$$
p(y \mid x)=\sum_{j=1}^{K} \pi_{j}(x) \phi_{j}\left(y_{j} \mu_{j}(x), \sigma_{j}^{2}(x)\right)
$$

where each $\phi_{j}\left(y ; \mu, \sigma^{2}\right)$ is a density function with mean $\mu$ and variance $\sigma^{2}$.

Common assumptions:

1. $\pi_{j}(x)=\pi_{j}$.
2. $\mu_{j}(x)=\beta_{j}^{T} x$.
3. $\sigma_{j}^{2}(x)=\sigma_{j}^{2}$.
4. $\phi_{j}$ is a Gaussian.

Generally, we need to use EM algorithm to estimate the parameters.

## Modal Regression VS Density Ridges



## Mixture Inference versus Modal Inference

|  | Mixture-based | Mode-based |
| :--- | :--- | :--- |
| Density estimation | Gaussian mixture | Kernel density estimate |
| Clustering | K-means | Mean-shift clustering |
| Regression | Mixture regression | Modal regression |
| Algorithm | EM | Mean-shift |
| Complexity parameter | K (number of components) | $h$ (smoothing bandwidth) |
| Type | Parametric model | Nonparametric model |

Table: Comparison for methods based on mixtures versus modes.

## Theory for Prediction Sets

Modal Regression


Local Regression


## Theorem (Chen, Genovese, and Wasserman (2015))

When the signal-to-noise ratio S/ $\sigma$ is sufficiently large, the modal regression has a smaller prediction set than the nonparametric regression.

## Confidence Sets

We can construct confidence sets using the uniform loss.
Reason: the uniform loss $\Delta_{n}$ is like an $L_{\infty}$ metric for modal regression.
Let $t_{1-\alpha}$ be the $1-\alpha$ quantile of $F_{n}$, the CDF of $\Delta_{n}$.
$\widehat{M}_{n}(x) \pm t_{1-\alpha}$ is a confidence set for $M(x)$ uniformly for all $x$.
Problem: $t_{1-\alpha}$ cannot be computed.
Solution: the bootstrap.

## The Bootstrap

- Bootstrap sample $\Longrightarrow$ bootstrap modal function $\widehat{M}_{n}^{*}$.
- Repeat $B$ times, we obtain $B$ bootstrap modal functions $\widehat{M}_{n}^{*(1)}, \cdots, \widehat{M}_{n}^{*(B)}$.
- Compute $\widehat{\Delta}_{n}^{*(1)}, \cdots, \widehat{\Delta}_{n}^{*(B)}$ by $\widehat{\Delta}_{n}^{*(\ell)}=\sup _{x} \operatorname{Haus}\left(\widehat{M}_{n}^{*(\ell)}(x), \widehat{M}_{n}(x)\right)$.
- Compute the CDF estimator $\widehat{F}_{n}$ by

$$
\widehat{F}_{n}(t)=\frac{1}{B} \sum_{\ell=1}^{B} I\left(\widehat{\Delta}_{n}^{*(\ell)}<t\right)
$$

- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for $\widehat{F}_{n}$.
- $\widehat{M}_{n}(x) \pm \widehat{t}_{1-\alpha}$ is an asymptotic confidence set uniformly for all $x$.

Bootstrap consistency follows in the similar way as ridges.

## Pointwise Confidence Sets




[^0]:    ${ }^{1}$ Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." JMLR (2011).

[^1]:    ${ }^{2}$ Einbeck, Jochen, and Gerhard Tutz. "Modelling beyond regression functions: an application of multimodal regression to speed-flow data." JRSSC (2006)

