Statistical Inference for Shards

Yen-Chi Chen

Christopher R. Genovese Larry Wasserman

Department of Statistics
Carnegie Mellon University

May 27, 2015

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

What are Shards?

Source: odysseyseaglass.com, nsudino, the RuneScape Wiki

What are Shards?

- Shards: small regions with high density.

What are Shards?

- Shards: small regions with high density.

What are Shards?

- Shards: small regions with high density.

- Shards are sets, whose parameters space has infinite dimensions.
- Making inference for sets is very tough.
- There are many estimation methods but very few of them mentioned statistical inference.
- Shards are sets, whose parameters space has infinite dimensions.
- Making inference for sets is very tough.
- There are many estimation methods but very few of them mentioned statistical inference.
- \rightarrow In this talk, we will see how one can make inference for sets.

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Example: Climate Data

Source: NASA-GISS

Example: Neuro Image

Source: http://neuroncyto.bii.a-star.edu.sg/

Density Level Set

- Density Level Set: The collection of points where the density is exactly at certain level.
- Applications: clustering, anomaly detection, classification, two-sample comparison

Formal Definition for Density Level Set

Let p be the probability density function.

Formal Definition for Density Level Set

Let p be the probability density function.

- The λ-level set is

$$
D=\{x: p(x)=\lambda\} .
$$

Example for Level Set

Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).

Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).

- The KDE \widehat{p}_{n}

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right) .
$$

Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).

- The KDE \widehat{p}_{n}

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right) .
$$

- The corresponding estimators

$$
\widehat{D}_{n}=\left\{x: \widehat{p}_{n}(x)=\lambda\right\} .
$$

Example: Level Set Estimator

Example: Level Set Estimator

Example: Level Set Estimator

Smoothed Level Set

In particular, we focus on making inference for the smoothed version of the density, denoted as p_{h} :

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{n}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where \otimes denotes the convolution.

- We define D_{h} as the level set using p_{h}.

Smoothed Level Set

In particular, we focus on making inference for the smoothed version of the density, denoted as p_{h} :

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{n}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where \otimes denotes the convolution.

- We define D_{h} as the level set using p_{h}.
- The advantages for focusing on D_{h} :
- Always well-defined.
- Topologically similar.
- Asymptotically the same.
- Fast rate of convergence.

Smoothed Level Set

In particular, we focus on making inference for the smoothed version of the density, denoted as p_{h} :

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{n}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where \otimes denotes the convolution.

- We define D_{h} as the level set using p_{h}.
- The advantages for focusing on D_{h} :
- Always well-defined.
- Topologically similar.
- Asymptotically the same.
- Fast rate of convergence.
- One can always slightly undersmooth so that inference for D_{h} is asymptotically valid for D.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance.

- Haus is an \mathcal{L}_{∞} norm for sets.
- Consistency: $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)=o_{\mathbb{P}}(1)$.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance.

- Haus is an \mathcal{L}_{∞} norm for sets.
- Consistency: $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)=o_{\mathbb{P}}(1)$.
- Useful property:

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

where $A \oplus r=\{x: d(x, A) \leq r\}$.

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.
- Let F_{n} be the CDF for $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.
- Let F_{n} be the $C D F$ for $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.
- It can be shown that

$$
\mathbb{P}\left(D_{h} \subset \widehat{D}_{n} \oplus t_{1-\alpha}\right) \geq 1-\alpha
$$

\rightarrow This follows from the property

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.
- Let F_{n} be the $C D F$ for $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.
- It can be shown that

$$
\mathbb{P}\left(D_{h} \subset \widehat{D}_{n} \oplus t_{1-\alpha}\right) \geq 1-\alpha
$$

\rightarrow This follows from the property

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

- We need to find the distribution F_{n}.

Asymptotic Theory

It can be shown that
$\sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right) \approx \sup \{$ Empirical process $\} \approx \sup \{$ Gaussian process $\}$.
\rightarrow the last approximation follows from [Chernozhukov et. al. 2014].

Asymptotic Theory

It can be shown that
$\sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right) \approx \sup \{$ Empirical process $\} \approx \sup \{$ Gaussian process $\}$.
\rightarrow the last approximation follows from [Chernozhukov et. al. 2014].

Theorem

Under regularity condition, there exists a tight Gaussian process \mathbb{B} defined on a certain function space \mathcal{F} such that

$$
\begin{array}{r}
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathcal{F}}|\mathbb{B}(f)|<t\right)\right| \\
=O\left(\left(\frac{\log ^{7} n}{n h^{d}}\right)^{1 / 8}\right) .
\end{array}
$$

The Bootstrap

- Good news: we have the asymptotic behavior.
- Bad news: the asymptotic behavior is complicated.

The Bootstrap

- Good news: we have the asymptotic behavior.
- Bad news: the asymptotic behavior is complicated.
- A solution: the bootstrap.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap level set \widehat{D}_{n}^{*}.
- Compute $\operatorname{Haus}\left(\widehat{D}_{n}^{*}, \widehat{D}_{n}\right)$ to get a CDF estimator \widehat{F}_{n}.
- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \widehat{F}_{n}.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap level set \widehat{D}_{n}^{*}.
- Compute $\operatorname{Haus}\left(\widehat{D}_{n}^{*}, \widehat{D}_{n}\right)$ to get a CDF estimator \widehat{F}_{n}.
- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \widehat{F}_{n}.
- It can be shown that
$\sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}^{*}, \widehat{D}_{n}\right) \approx \sup \{$ Gaussian process $\} \approx \sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}, D\right)$.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap level set \widehat{D}_{n}^{*}.
- Compute $\operatorname{Haus}\left(\widehat{D}_{n}^{*}, \widehat{D}_{n}\right)$ to get a CDF estimator \widehat{F}_{n}.
- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \widehat{F}_{n}.
- It can be shown that
$\sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}^{*}, \widehat{D}_{n}\right) \approx \sup \{$ Gaussian process $\} \approx \sqrt{n h^{d}} \operatorname{Haus}\left(\widehat{D}_{n}, D\right)$.

Theorem

Under regularity condition,

$$
\mathbb{P}\left(D_{h} \subset \widehat{D}_{n} \oplus \widehat{t}_{1-\alpha}\right)=1-\alpha+O\left(\left(\frac{\log ^{7} n}{n h^{d}}\right)^{1 / 8}\right)
$$

Example: Confidence Sets

Example: Confidence Sets

Properties for the Confidence Sets

(1) Blue: confidence sets for D_{h}

Properties for the Confidence Sets

(1) Blue: confidence sets for D_{h}
(2) Yellow: every point above λ

Properties for the Confidence Sets

(1) Blue: confidence sets for D_{h}
(2) Yellow: every point above λ
(3) Green: every point below λ

Properties for the Confidence Sets

(1) Blue: confidence sets for D_{h}
(2) Yellow: every point above λ
(3) Green: every point below λ
(9) Yellow+Blue: confidence sets for upper level set

Properties for the Confidence Sets

(1) Blue: confidence sets for D_{h}
(2) Yellow: every point above λ
(3) Green: every point below λ
(9) Yellow+Blue: confidence sets for upper level set
(0) Green+Blue: confidence sets for lower level set

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Example: Cosmology

Credit: Millennium Simulation

Example: Neuroscience

Image courtesy Eswar P. R. Iyer.

Density Ridges

- In the above examples, we see curve-like structure with high density.
- This structure can be captured by the density ridges.

Density Ridges

- In the above examples, we see curve-like structure with high density.
- This structure can be captured by the density ridges.

- Data: the Sloan Digital Sky Survey.

Density Ridges

- In the above examples, we see curve-like structure with high density.
- This structure can be captured by the density ridges.

- Data: the Sloan Digital Sky Survey.

Example: Ridges in Mountains

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a
 specific ‘subspace'.

Formal Definition of Density Ridges

- $p(x)$: a density function.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue $/$ vector of $H(x)=\nabla \nabla p(x)$.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2nd to last eigenvectors

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2nd to last eigenvectors
- $V(x) V(x)^{T}$: a projection

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2 nd to last eigenvectors
- $V(x) V(x)^{T}$: a projection
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2 nd to last eigenvectors
- $V(x) V(x)^{T}$: a projection
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\}
$$

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where \widehat{p}_{n} is the KDE.

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where \widehat{p}_{n} is the KDE.

- In general, finding ridges from a given function is hard.

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where \widehat{p}_{n} is the KDE.

- In general, finding ridges from a given function is hard.
- The Subspace Constraint Mean Shift (SCMS; Ozertem2011) algorithm allows us to find \widehat{R}_{n}, the ridges of the KDE.

Example for Estimated Density Ridges

Asymptotic Theory and Statistical Inference

- Can we derive asymptotic theory and make statistical inference for density ridges?

Asymptotic Theory and Statistical Inference

- Can we derive asymptotic theory and make statistical inference for density ridges?
- Yes! We can make it by the similar trick to the level sets.

Asymptotic Theory and Statistical Inference

- Can we derive asymptotic theory and make statistical inference for density ridges?
- Yes! We can make it by the similar trick to the level sets.

Theorem

Under regularity condition,

- $\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R_{h}\right) \approx \sup _{f \in \mathcal{F}}|\mathbb{B}(f)|$ for certain function space \mathcal{F}.
- $\widehat{R}_{n} \oplus \widehat{t}_{1-\alpha}$ is an asymptotic valid confidence set for R_{h}.
- Note: $R_{h}=\operatorname{Ridge}\left(p_{h}\right)$ is the ridges for smoothed density p_{h}.

Example for Confidence Sets

Example for Confidence Sets

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Motivating Examples for Modal Regression

This is a joint work with Ryan J. Tibshirani

Definition for Modal Regression

We assume $x \in \mathbb{K}$, a compact support.

- Regression function-the conditional mean:

$$
m(x)=\mathbb{E}(Y \mid X=x)=\int y p(y \mid x) d y
$$

Definition for Modal Regression

We assume $x \in \mathbb{K}$, a compact support.

- Regression function-the conditional mean:

$$
m(x)=\mathbb{E}(Y \mid X=x)=\int y p(y \mid x) d y
$$

- Modal function-the conditional (local) modes:

$$
M(x)=\operatorname{Mode}(Y \mid X=x)=\left\{y: \frac{d}{d y} p(y \mid x)=0, \frac{d^{2}}{d y^{2}} p(y \mid x)<0\right\}
$$

Definition for Modal Regression

We assume $x \in \mathbb{K}$, a compact support.

- Regression function-the conditional mean:

$$
m(x)=\mathbb{E}(Y \mid X=x)=\int y p(y \mid x) d y
$$

- Modal function-the conditional (local) modes:

$$
M(x)=\operatorname{Mode}(Y \mid X=x)=\left\{y: \frac{d}{d y} p(y \mid x)=0, \frac{d^{2}}{d y^{2}} p(y \mid x)<0\right\} .
$$

- Equivalently,

$$
M(x)=\left\{y: \frac{\partial}{\partial y} p(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} p(x, y)<0\right\}
$$

Definition for Modal Regression

We assume $x \in \mathbb{K}$, a compact support.

- Regression function-the conditional mean:

$$
m(x)=\mathbb{E}(Y \mid X=x)=\int y p(y \mid x) d y
$$

- Modal function-the conditional (local) modes:

$$
M(x)=\operatorname{Mode}(Y \mid X=x)=\left\{y: \frac{d}{d y} p(y \mid x)=0, \frac{d^{2}}{d y^{2}} p(y \mid x)<0\right\}
$$

- Equivalently,

$$
M(x)=\left\{y: \frac{\partial}{\partial y} p(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} p(x, y)<0\right\}
$$

- $M(x)$ is a multi-value function.
- M is called modal manifolds (curves).

Conditional Local Modes

Conditional Local Modes

Conditional Local Modes

Conditional Local Modes

Estimator for Modal Regression

- Our estimator is the plug-in from the KDE:

$$
\widehat{M}_{n}(x)=\left\{y: \frac{\partial}{\partial y} \widehat{p}_{n}(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} \widehat{p}(x, y)<0\right\} .
$$

Estimator for Modal Regression

- Our estimator is the plug-in from the KDE:

$$
\widehat{M}_{n}(x)=\left\{y: \frac{\partial}{\partial y} \widehat{p}_{n}(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} \widehat{p}(x, y)<0\right\} .
$$

- Finding conditional local modes is hard in general.

Estimator for Modal Regression

- Our estimator is the plug-in from the KDE:

$$
\widehat{M}_{n}(x)=\left\{y: \frac{\partial}{\partial y} \widehat{p}_{n}(x, y)=0, \frac{\partial^{2}}{\partial y^{2}} \widehat{p}(x, y)<0\right\} .
$$

- Finding conditional local modes is hard in general.
- Partial mean shift: a simple algorithm for computing $\widehat{M}_{n}(x)$, the plug-in estimator of the KDE, from the data (Einbeck et. al. 2006).

Example for Modal Regression

Example for Modal Regression

Confidence Sets

- Let M_{h} be the modal manifolds for p_{h}.
- Define a uniform metric $\Delta_{n}=\sup _{x} \operatorname{Haus}\left(\widehat{M}_{n}(x), M_{h}(x)\right)$.

Confidence Sets

- Let M_{h} be the modal manifolds for p_{h}.
- Define a uniform metric $\Delta_{n}=\sup _{x} \operatorname{Haus}\left(\widehat{M}_{n}(x), M_{h}(x)\right)$.

Theorem

Under regularity condition,

- $\sqrt{n h^{d+3}} \Delta_{n} \approx \sup _{f \in \mathcal{F}}|\mathbb{B}(f)|$ for certain function space \mathcal{F}.
- The set

$$
\left\{(x, y): y \in \widehat{M}_{n}(x) \oplus \widehat{t}_{1-\alpha}, x \in \mathbb{K}\right\}
$$

is an asymptotic valid confidence set for M_{h}.

Example for Confidence Sets

Example for Confidence Sets

Applications for Modal Regression

- A compact prediction sets.

Applications for Modal Regression

- A compact prediction sets.
- Bandwidth selection via minimizing the size of prediction sets.

Applications for Modal Regression

- A compact prediction sets.
- Bandwidth selection via minimizing the size of prediction sets.
- Regression clustering.

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Summary

- We consider three types of Shards: level sets, ridges and conditional local modes.

Summary

- We consider three types of Shards: level sets, ridges and conditional local modes.
- We derive asymptotic theory and propose confidence sets.

Summary

- We consider three types of Shards: level sets, ridges and conditional local modes.
- We derive asymptotic theory and propose confidence sets.
- Set estimation \longrightarrow Set inference.

Thank you!

reference

1. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Density Level Sets: Asymptotics, Inference, and Visualization." Submitted to the Journal of American Statistical Association. arXiv preprint arXiv:1504.05438 (2015).
2. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." To appear in the Annals of Statistics. arXiv preprint arXiv:1406.5663 (2014).
3. Chen, Yen-Chi, Christopher R. Genovese, Ryan J. Tibshirani, and Larry Wasserman. "Nonparametric Modal Regression." Under review of the Annals of Statistics. arXiv preprint arXiv:1412.1716 (2014).
4. Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Gaussian approximation of suprema of empirical processes." The Annals of Statistics 42, no. 4 (2014): 1564-1597.
5. Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Anti-concentration and honest, adaptive confidence bands." The Annals of Statistics 42, no. 5 (2014): 1787-1818.
6. Einbeck, Jochen, and Gerhard Tutz. "Modelling beyond regression functions: an application of multimodal regression to speedflow data." Journal of the Royal Statistical Society: Series C (Applied Statistics) 55, no. 4 (2006): 461-475.
7. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
8. Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.

Asymptotic Theory

Asymptotic Theory

Asymptotic Theory

Asymptotic Theory

(1) Thus, the projection distance $\approx a$ stochastic process.

Asymptotic Theory

(1) Thus, the projection distance \approx a stochastic process.
(2) This stochastic process \approx empirical process.

Asymptotic Theory

(1) Thus, the projection distance \approx a stochastic process.
(2) This stochastic process \approx empirical process.
(3) $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)=$
$\sup \{$ projection distance $\} \approx$ $\sup \{$ Empirical process $\}$.

Error Measurement

- To measure the errors, we apply a local Hausdorff distance

$$
\Delta_{n}(x)=\operatorname{Haus}\left(\widehat{M}_{n}(x), M(x)\right)
$$

This is like a pointiwise distance.

Error Measurement

- To measure the errors, we apply a local Hausdorff distance

$$
\Delta_{n}(x)=\operatorname{Haus}\left(\widehat{M}_{n}(x), M(x)\right)
$$

This is like a pointiwise distance.

- Generalized to \mathcal{L}_{∞}-type error:

$$
\Delta_{n}=\sup _{x} \Delta_{n}(x)=\sup _{x} \operatorname{Haus}\left(\widehat{M}_{n}(x), M(x)\right) .
$$

Asymptotic Theory

The pointwise errors and \mathcal{L}_{∞}-type errors obey the common nonparametric rate:

Asymptotic Theory

The pointwise errors and \mathcal{L}_{∞}-type errors obey the common nonparametric rate:

Theorem

Under regularity condition,

$$
\begin{aligned}
\Delta_{n}(x) & =O\left(h^{2}\right)+O_{\mathbb{P}}\left(\sqrt{\frac{1}{n h^{d+3}}}\right) \\
\Delta_{n} & =O\left(h^{2}\right)+O_{\mathbb{P}}\left(\sqrt{\frac{\log n}{n h^{d+3}}}\right) .
\end{aligned}
$$

Asymptotic Theory

The pointwise errors and \mathcal{L}_{∞}-type errors obey the common nonparametric rate:

Theorem

Under regularity condition,

$$
\begin{aligned}
\Delta_{n}(x) & =O\left(h^{2}\right)+O_{\mathbb{P}}\left(\sqrt{\frac{1}{n h^{d+3}}}\right) \\
\Delta_{n} & =O\left(h^{2}\right)+O_{\mathbb{P}}\left(\sqrt{\frac{\log n}{n h^{d+3}}}\right) .
\end{aligned}
$$

Rate $=$ Bias + Variance.

Prediction Sets

- Goal: to construct a set $\mathcal{P}_{1-\alpha} \subset \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\mathbb{P}\left((X, Y) \in \mathcal{P}_{1-\alpha}\right) \geq 1-\alpha .
$$

Prediction Sets

- Goal: to construct a set $\mathcal{P}_{1-\alpha} \subset \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\mathbb{P}\left((X, Y) \in \mathcal{P}_{1-\alpha}\right) \geq 1-\alpha
$$

- A simple approach-pick $\widehat{r}_{1-\alpha}$ such that

$$
\widehat{\mathcal{P}}_{1-\alpha}=\left\{(x, y): y \in \widehat{M}_{n}(x) \oplus \widehat{r}_{1-\alpha}, x \in \mathbb{K}\right\} .
$$

Prediction Sets

- Goal: to construct a set $\mathcal{P}_{1-\alpha} \subset \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\mathbb{P}\left((X, Y) \in \mathcal{P}_{1-\alpha}\right) \geq 1-\alpha
$$

- A simple approach-pick $\widehat{r}_{1-\alpha}$ such that

$$
\widehat{\mathcal{P}}_{1-\alpha}=\left\{(x, y): y \in \widehat{M}_{n}(x) \oplus \widehat{r}_{1-\alpha}, x \in \mathbb{K}\right\} .
$$

- We can choose $\widehat{r}_{1-\alpha}$ by cross-validation.

Example: Prediction Sets

Example: Prediction Sets

Bandwidth Selection

- We can choose smoothing parameter h via minimizing the size of prediction set.

Bandwidth Selection

- We can choose smoothing parameter h via minimizing the size of prediction set.
- Namely, we choose

$$
h^{*}=\underset{h>0}{\operatorname{argmin} \mathrm{Vol}}\left(\widehat{\mathcal{P}}_{1-\alpha}\right) .
$$

Example: Bandwidth Selection

Size of 95\% Prediction interval

Clustering-Exploring Hidden Structure

Mixture Inference versus Modal Inference

	Mixture-based	Mode-based
Density estimation	Gaussian mixture	Kernel density estimate
Clustering	K-means	Mean-shift clustering
Regression	Mixture regression	Modal regression
Algorithm	EM	Mean-shift
Complexity parameter	K (number of components)	h (smoothing bandwidth)
Type	Parametric model	Nonparametric model

Table: Comparison for methods based on mixtures versus modes.

Modal Regression VS Density Ridges

Mixture Regression

A general mixture model:

$$
p(y \mid x)=\sum_{j=1}^{K(x)} \pi_{j}(x) \phi_{j}\left(y ; \mu_{j}(x), \sigma_{j}^{2}(x)\right)
$$

where each $\phi_{j}\left(y ; \mu_{j}(x), \sigma_{j}^{2}(x)\right)$ is a density function, parametrized by a mean $\mu_{j}(x)$ and variance $\sigma_{j}^{2}(x)$.
Common assumptions:
(MR1) $K(x)=K$,
(MR2) $\pi_{j}(x)=\pi_{j}$ for each j,
(MR3) $\mu_{j}(x)=\beta_{j}^{T} x$ for each j,
(MR4) $\sigma_{j}^{2}(x)=\sigma_{j}^{2}$ for each j, and
(MR5) $\phi_{j}(x)$ is Gaussian for each j.

