Cosmic Web Reconstruction through Density Ridges

Yen-Chi Chen

Shirley Ho Peter E. Freeman
Christopher R. Genovese Larry Wasserman
Department of Statistics McWilliams Center for Cosmology
Carnegie Mellon University

June 1, 2015

Outline

- Introduction to Cosmic Web
- Model and Algorithm
- Analysis
- Summary

Outline

- Introduction to Cosmic Web
- Model and Algorithm
- Analysis
- Summary

Cosmic Web: What Does Our Universe Look Like

Credit: Millennium Simulation

Cosmic Web: What Does Our Universe Look Like

Credit: Millennium Simulation

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.
- Several properties of a galaxy are influenced by filaments.

Outline

- Introduction to Cosmic Web
- Model and Algorithm
- Analysis
- Summary

An Example

An Example

Statistical Model for Filaments: Density Ridges

Formally, we define a filament to be a ridge of the density.

Example: Ridges in Mountains

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a
 specific ‘subspace'.

Formal Definition of Density Ridges

- $p(x):$ a density function, $x \in \mathbb{R}^{d}$.

Formal Definition of Density Ridges

- $p(x):$ a density function, $x \in \mathbb{R}^{d}$.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue $/$ vector of $H(x)=\nabla \nabla p(x)$.

Formal Definition of Density Ridges

- $p(x)$: a density function, $x \in \mathbb{R}^{d}$.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue $/$ vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]:$ matrix of $2 n d$ to last eigenvectors.

Formal Definition of Density Ridges

- $p(x)$: a density function, $x \in \mathbb{R}^{d}$.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue $/$ vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors.
- $V(x) V(x)^{T}$: a projection.

Formal Definition of Density Ridges

- $p(x)$: a density function, $x \in \mathbb{R}^{d}$.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors.
- $V(x) V(x)^{T}$: a projection.
- Ridges:

$$
\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

Formal Definition of Density Ridges

- $p(x)$: a density function, $x \in \mathbb{R}^{d}$.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors.
- $V(x) V(x)^{T}$: a projection.
- Ridges:

$$
\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\}
$$

Detection of Density Ridges

- Finding ridges from a given function is very hard.

Detection of Density Ridges

- Finding ridges from a given function is very hard.
- A special case that we can find ridges easily-using the kernel density estimation:

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right) .
$$

Detection of Density Ridges

- Finding ridges from a given function is very hard.
- A special case that we can find ridges easily-using the kernel density estimation:

$$
\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right) .
$$

- \rightarrow Subspace Constrained Mean Shift Algorithm [Ozertem and Erdogmus 2011].

Algorithm

(1) Rawdata

Algorithm

(1) Rawdata
(2) Density Reconstruction

Algorithm

(1) Rawdata
(2) Density Reconstruction
(3) Thresholding

Algorithm

(1) Rawdata
(2) Density Reconstruction
(3) Thresholding
(a) Ridge Recovery

SCMS: Ridge Recovery Algorithm

Density Ridges on an Example

Outline

- Introduction to Cosmic Web
- Model and Algorithm
- Analysis
- Summary

Massive Blackhole Simulation

- Method: smoothed particle hydrodynamics.

Galaxy Alignment to Filaments

- Key variable 1: Principal axes for a galaxy $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$.
- Key variable 2: Orientation of the nearest filament $\left(\mu_{F}\right)$.
- Key variable 3: Distance to the nearest filament $\left(d_{F}\right)$.

Galaxy Alignment to Filaments

- Key variable 1: Principal axes for a galaxy $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$.
- Key variable 2: Orientation of the nearest filament $\left(\mu_{F}\right)$.
- Key variable 3: Distance to the nearest filament $\left(d_{F}\right)$.

Galaxy Alignment to Filaments

- Key variable 1: Principal axes for a galaxy $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$.
- Key variable 2: Orientation of the nearest filament $\left(\mu_{F}\right)$.
- Key variable 3: Distance to the nearest filament $\left(d_{F}\right)$.

Galaxy Alignment to Filaments

- Key variable 1: Principal axes for a galaxy $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$.
- Key variable 2: Orientation of the nearest filament $\left(\mu_{F}\right)$.
- Key variable 3: Distance to the nearest filament $\left(d_{F}\right)$.

Sloan Digital Sky Survey

- Data: the Sloan Digital Sky Survey, data release 12.
- We take 2-D slices of the Universe to detect filaments ($\Delta z=0.005$).
- Blue: filaments. Red: galaxy clusters (redMaPPer).

Sloan Digital Sky Survey

- Data: the Sloan Digital Sky Survey, data release 12.
- We take 2-D slices of the Universe to detect filaments ($\Delta z=0.005$).
- Blue: filaments. Red: galaxy clusters (redMaPPer).

Sloan Digital Sky Survey

- Data: the Sloan Digital Sky Survey, data release 12.
- We take 2-D slices of the Universe to detect filaments ($\Delta z=0.005$).
- Blue: filaments. Red: galaxy clusters (redMaPPer).

SDSS: Red and Blue Galaxies

- Redshift range: $0.05<z<0.20$ (main sample galaxy).
- Color cut: $(g-r)=0.73-0.02\left(M_{r}+20\right)$ [Masters et. al. 2010].

SDSS: Red and Blue Galaxies

SDSS: Stellar Mass of Galaxies

- Mass from Flexible Stellar Population Synthesis method [Conroy, Gunn, and White 2009].
- We partition galaxies into three groups according to their mass.
- We compare the average distance to filaments for each group.

SDSS: Stellar Mass of Galaxies

SDSS: Stellar Mass of Galaxies

SDSS: Stellar Mass of Galaxies

Clusters (redMaPPer), CMASS

Outline

- Introduction to Cosmic Web
- Model and Algorithm
- Analysis
- Summary

Summary

(1) Model: density ridges.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.
(3) Works in simulation and real dataset.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.
(3) Works in simulation and real dataset.
(4) Consistent with galaxy clusters.

Filaments, CMASS

Thank you!

reference

1. Chen, Yen-Chi, Shirley Ho, Peter E. Freeman, Christopher R. Genovese, and Larry Wasserman. "Cosmic Web Reconstruction through Density Ridges: Method and Algorithm." arXiv preprint arXiv:1501.05303 (2015).
2. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." arXiv preprint arXiv:1406.5663 (2014).
3. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Generalized mode and ridge estimation." arXiv preprint arXiv:1406.1803 (2014).
4. Conroy, Charlie, James E. Gunn, and Martin White. "The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies." The Astrophysical Journal 699.1 (2009): 486.
5. Eberly, David. Ridges in image and data analysis. Vol. 7. Springer Science \& Business Media, 1996.
6. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
7. Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.
8. Masters, Karen L., et al. "Galaxy Zoo: passive red spirals." Monthly Notices of the Royal Astronomical Society 405.2 (2010): 783-799.

Density Ridges on the SDSS data

Density Ridges on the SDSS data

Curse of Number Density

SDSS: Red and Blue Galaxies

SDSS: Red and Blue Galaxies

SDSS: Size for Galaxies

(1) Size: 50% luminosity radii.
(2) Data: LOWZ ($0.20<z<0.43$)
(3) Partitioning galaxies into three groups according to their size.

Hisrogram for Size distribution

SDSS: Size for Galaxies

Filaments, LOWZ

Clusters (redMaPPer), LOWZ

SDSS: Size for Galaxies

Filaments, LOWZ

Clusters (redMaPPer), LOWZ

SDSS: Size for Galaxies

Filaments, LOWZ

Clusters (redMaPPer), LOWZ

Age for Galaxies

Age for Galaxies

Age for Galaxies

Clusters (redMaPPer), CMASS

Comparison: Voronoi Model

Comparison: Voronoi Model

Ridges and all galaxies

Comparison: Voronoi Model

Ridges and Clusters (Voronoi)

Comparison: Voronoi Model

Ridges and Filaments (Voronoi)

Comparison: Voronoi Model

Ridges and Walls (Voronoi)

Comparison: Voronoi Model

Ridges and Voids (Voronoi)

