Asymptotic Theory for Density Ridges

Yen-Chi Chen

Christopher R. Genovese Larry Wasserman

Department of Statistics
Carnegie Mellon University
November 14, 2015

Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.

Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.

Density Ridges: High Density Curves

Density ridges are curves characterizing high density regions.

Application of Ridges: Cosmology

Credit: Millennium Simulation

Application of Ridges: Cosmology

Credit: Millennium Simulation

The Importance of Filaments

Cosmic filaments play key roles in astronomy research.

The Importance of Filaments

Cosmic filaments play key roles in astronomy research.

- A galaxy's color, mass, and size are associated with filaments.

\rightarrow Chen et al. 'Detecting Effects of Filaments on Galaxy Properties in Sloan Digital Sky Survey III' (2015)

The Importance of Filaments

Cosmic filaments play key roles in astronomy research.

- A galaxy's color, mass, and size are associated with filaments.
- A galaxy's shape is associated with filaments.

\rightarrow Chen et al. 'Investigating Galaxy-Filament Alignment in Hydrodynamic Simulations using Density Ridges' (Mon. Not. Roy. Astro. Soc. 2015)

The Importance of Filaments

Cosmic filaments play key roles in astronomy research.

- A galaxy's color, mass, and size are associated with filaments.
- A galaxy's shape is associated with filaments.
- Filaments can be used to constrain the cosmological models.

- Credit: Millennium Simulation and ESO/M. Kornmesser.

Density Ridges

A statistical model for filaments is the density ridges.

Example: Ridges in Mountains

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific ‘subspace'.

Formal Definition of Density Ridges

- $p(x)$: a density function.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue $/$ vector of $H(x)=\nabla \nabla p(x)$.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: j th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2 nd to last eigenvectors.
- $V(x) V(x)^{T}$: a projection.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors.
- $V(x) V(x)^{T}$: a projection.
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]:$ matrix of $2 n d$ to last eigenvectors.
- $V(x) V(x)^{T}$: a projection.
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\}
$$

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where \widehat{p}_{n} is the KDE.

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where \widehat{p}_{n} is the KDE.

- In general, finding ridges from a given function is hard.

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where \widehat{p}_{n} is the KDE.

- In general, finding ridges from a given function is hard.
- The Subspace Constraint Mean Shift (SCMS; Ozertem2011) algorithm allows us to find \widehat{R}_{n}, ridges of the KDE.

SCMS: Ridge Recovery Algorithm

Example for Estimated Density Ridges

Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference. We need confidence sets for density ridges.

Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
Namely, we want to find a set $C_{1-\alpha, n}$ from the data such that

$$
\mathbb{P}\left(R \subset C_{1-\alpha, n}\right) \geq 1-\alpha
$$

Statistical Inference: Confidence Sets

Having estimators is not enough for statistical inference.
We need confidence sets for density ridges.
Namely, we want to find a set $C_{1-\alpha, n}$ from the data such that

$$
\mathbb{P}\left(R \subset C_{1-\alpha, n}\right) \geq 1-\alpha
$$

In what follows, we ignore the bias for estimating R and focus only on the stochastic variation of \widehat{R}_{n}.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$
\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}
$$

where $d(x, A)=\inf _{y \in A}\|x-y\|$ is the projection distance.

- Haus is an \mathcal{L}_{∞} metric for sets.
- Consistency: $\operatorname{Haus}\left(\widehat{R}_{n}, R\right)=o_{\mathbb{P}}(1)$.

The \oplus Operation

We define $A \oplus r=\{x: d(x, A) \leq r\}$.

A
$A \oplus r$

The \oplus Operation

We define $A \oplus r=\{x: d(x, A) \leq r\}$.

A
$A \oplus r$

Then we have the following inclusion property:

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and \oplus operation to construct confidence sets.
Let F_{n} be the $C D F$ for $\operatorname{Haus}\left(\widehat{R}_{n}, R\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and \oplus operation to construct confidence sets.
Let F_{n} be the CDF for $\operatorname{Haus}\left(\widehat{R}_{n}, R\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

- It can be shown that

$$
\mathbb{P}\left(R \subset \widehat{R}_{n} \oplus t_{1-\alpha}\right) \geq 1-\alpha
$$

\rightarrow This follows from the property

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

Hausdorff Distance and Confidence Sets

We can use Hausdorff distance and \oplus operation to construct confidence sets.
Let F_{n} be the CDF for $\operatorname{Haus}\left(\widehat{R}_{n}, R\right)$ and $t_{1-\alpha}=F_{n}^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

- It can be shown that

$$
\mathbb{P}\left(R \subset \widehat{R}_{n} \oplus t_{1-\alpha}\right) \geq 1-\alpha
$$

\rightarrow This follows from the property

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

- We need to find the distribution F_{n}.

Asymptotic Theory

Key observation:

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R\right) & \approx \sqrt{n h^{d+2}} \sup _{x \in R} d\left(x, \widehat{R}_{n}\right) \\
& \approx \sup \{\text { Empirical process on } R\} \\
& \approx \sup \{\text { Gaussian process on } R\} .
\end{aligned}
$$

Asymptotic Theory

Key observation:

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R\right) & \approx \sqrt{n h^{d+2}} \sup _{x \in R} d\left(x, \widehat{R}_{n}\right) \\
& \approx \sup \{\text { Empirical process on } R\} \\
& \approx \sup \{\text { Gaussian process on } R\} .
\end{aligned}
$$

Theorem

Under regularity conditions, there exists a tight Gaussian process \mathbb{B} defined on a certain function space \mathcal{F} such that

$$
\begin{aligned}
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathcal{F}}|\mathbb{B}(f)|<t\right)\right| \\
=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
\end{aligned}
$$

The Bootstrap

Good news: we have the asymptotic behavior. Bad news: the asymptotic behavior is complicated.

The Bootstrap

Good news: we have the asymptotic behavior. Bad news: the asymptotic behavior is complicated.
\longrightarrow A solution: the bootstrap.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap ridges \widehat{R}_{n}^{*}.
- Compute $\operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right)$ to get a CDF estimator \widehat{F}_{n}.
- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \widehat{F}_{n}.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap ridges \widehat{R}_{n}^{*}.
- Compute $\operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right)$ to get a CDF estimator \widehat{F}_{n}.
- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \widehat{F}_{n}.

It can be shown that

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right) & \approx \sup \left\{\text { Gaussian process on } \widehat{R}_{n}\right\} \\
& \approx \sup \{\text { Gaussian process on } R\} \\
& \approx \sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R\right) .
\end{aligned}
$$

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap ridges \widehat{R}_{n}^{*}.
- Compute $\operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right)$ to get a CDF estimator \widehat{F}_{n}.
- Choose $\widehat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \widehat{F}_{n}.

It can be shown that

$$
\begin{aligned}
\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right) & \approx \sup \left\{\text { Gaussian process on } \widehat{R}_{n}\right\} \\
& \approx \sup \{\text { Gaussian process on } R\} \\
& \approx \sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R\right) .
\end{aligned}
$$

Theorem

Under regularity conditions,

$$
\mathbb{P}\left(R \subset \widehat{R}_{n} \oplus \widehat{t}_{1-\alpha}\right)=1-\alpha+O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right) .
$$

Example for Confidence Sets

Example for Confidence Sets

Concluding Remarks

Density ridges are very cool objects because
(1) they have cosmological applications,

Concluding Remarks

Density ridges are very cool objects because
(1) they have cosmological applications,
(2) they are well-defined objects,

Concluding Remarks

Density ridges are very cool objects because
(1) they have cosmological applications,
(2) they are well-defined objects,
(3) there is a fast algorithm to compute them,

Concluding Remarks

Density ridges are very cool objects because
(1) they have cosmological applications,
(2) they are well-defined objects,
(3) there is a fast algorithm to compute them,
(0) their statistical properties are well-studied.

Thank you!

References

1. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Density Level Sets: Asymptotics, Inference, and Visualization." Submitted to the Journal of American Statistical Association. arXiv preprint arXiv:1504.05438 (2015).
2. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." To appear in the Annals of Statistics. arXiv preprint arXiv:1406.5663 (2014).
3. Chen, Yen-Chi, Christopher R. Genovese, Ryan J. Tibshirani, and Larry Wasserman. "Nonparametric Modal Regression." Under review of the Annals of Statistics. arXiv preprint arXiv:1412.1716 (2014).
4. Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Gaussian approximation of suprema of empirical processes." The Annals of Statistics 42, no. 4 (2014): 1564-1597.
5. Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Anti-concentration and honest, adaptive confidence bands." The Annals of Statistics 42, no. 5 (2014): 1787-1818.
6. Einbeck, Jochen, and Gerhard Tutz. "Modelling beyond regression functions: an application of multimodal regression to speedflow data." Journal of the Royal Statistical Society: Series C (Applied Statistics) 55, no. 4 (2006): 461-475.
7. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
8. Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.

Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of the density, denoted as p_{h} :

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{n}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where \otimes denotes the convolution.

- We define $R_{h}=\operatorname{Ridge}\left(p_{h}\right)$.

Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of the density, denoted as p_{h} :

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{n}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where \otimes denotes the convolution.

- We define $R_{h}=\operatorname{Ridge}\left(p_{h}\right)$.
- The advantages for focusing on R_{h} :
- Always well-defined.
- Topologically similar.
- Asymptotically the same.
- Fast rate of convergence.

Smoothed Density Ridges

In particular, we focus on making inference for the smoothed version of the density, denoted as p_{h} :

$$
p_{h}(x)=p \otimes K_{h}(x)=\mathbb{E}\left(\widehat{p}_{n}(x)\right), \quad K_{h}(x)=\frac{1}{h^{d}} K\left(\frac{x}{h}\right),
$$

where \otimes denotes the convolution.

- We define $R_{h}=\operatorname{Ridge}\left(p_{h}\right)$.
- The advantages for focusing on R_{h} :
- Always well-defined.
- Topologically similar.
- Asymptotically the same.
- Fast rate of convergence.
- One can always slightly undersmooth so that inference for R_{h} is asymptotically valid for R.

Bandwidth Selection for Density Ridges

Effect of Smoothing Bandwidth

Risk for Ridges

Let R and \widehat{R}_{n} be the density ridges and their estimators.
Let

$$
U_{R} \sim \operatorname{Unif}(R), \quad U_{\widehat{R}_{n}} \sim \operatorname{Unif}\left(\widehat{R}_{n}\right) .
$$

Risk for Ridges

Let R and \widehat{R}_{n} be the density ridges and their estimators.
Let

$$
U_{R} \sim \operatorname{Unif}(R), \quad U_{\widehat{R}_{n}} \sim \operatorname{Unif}\left(\widehat{R}_{n}\right) .
$$

Define

$$
W_{n}=d\left(U_{R}, \widehat{R}_{n}\right), \quad \widetilde{W}_{n}=d\left(U_{\widehat{R}_{n}}, R\right)
$$

be the projected distance of U_{R} onto \widehat{R}_{n} and $U_{\widehat{R}_{n}}$ onto R. We define L_{2} risk as

$$
\text { Risk }_{2, n}=\frac{1}{2} \mathbb{E}\left(W_{n}^{2}+\widetilde{W}_{n}^{2}\right) .
$$

Risk for Ridges

Let R and \widehat{R}_{n} be the density ridges and their estimators.
Let

$$
U_{R} \sim \operatorname{Unif}(R), \quad U_{\widehat{R}_{n}} \sim \operatorname{Unif}\left(\widehat{R}_{n}\right) .
$$

Define

$$
W_{n}=d\left(U_{R}, \widehat{R}_{n}\right), \quad \widetilde{W}_{n}=d\left(U_{\widehat{R}_{n}}, R\right)
$$

be the projected distance of U_{R} onto \widehat{R}_{n} and $U_{\widehat{R}_{n}}$ onto R. We define L_{2} risk as

$$
\text { Risk }_{2, n}=\frac{1}{2} \mathbb{E}\left(W_{n}^{2}+\widetilde{W}_{n}^{2}\right) .
$$

- This is a generalized mean integrated square errors.
- Similarly, one can define Risk $_{1, n}$ using L_{1} loss.

Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risk ${ }_{2, n}$. Let \widehat{R}_{n}^{*} be the bootstrap version of \widehat{R}_{n}. Let

$$
W_{n}^{*}=d\left(U_{\widehat{R}_{n}}, \widehat{R}_{n}^{*}\right), \quad \widetilde{W}_{n}^{*}=d\left(U_{\widehat{R}_{n}^{*}}, \widehat{R}_{n}\right)
$$

Define

$$
\widehat{\operatorname{Risk}}_{2, n}=\frac{1}{2} \mathbb{E}\left(W_{n}^{* 2}+\widetilde{W}_{n}^{* 2} \mid X_{1}, \cdots, X_{n}\right) .
$$

Estimating Risks

We can use bootstrap or data splitting to estimate the risk Risk ${ }_{2, n}$. Let \widehat{R}_{n}^{*} be the bootstrap version of \widehat{R}_{n}. Let

$$
W_{n}^{*}=d\left(U_{\widehat{R}_{n}}, \widehat{R}_{n}^{*}\right), \quad \widetilde{W}_{n}^{*}=d\left(U_{\widehat{R}_{n}^{*}}, \widehat{R}_{n}\right)
$$

Define

$$
\widehat{\operatorname{Risk}}_{2, n}=\frac{1}{2} \mathbb{E}\left(W_{n}^{* 2}+\widetilde{W}_{n}^{* 2} \mid X_{1}, \cdots, X_{n}\right) .
$$

Theorem

Under regularity conditions,

$$
\frac{{\widehat{\operatorname{Risk}_{2, n}}}_{\text {Risk }_{2, n}}^{P} 1, \quad{\widehat{\text { Risk }_{1, n}}}_{\text {Risk }_{1, n}}^{\rightarrow} 1 .}{}
$$

Bandwidth Selection via Risk Minimization

Application to Cosmology Dataset

Illustration for Asymptotic Theory

Asymptotic Theory

Asymptotic Theory

Asymptotic Theory

Asymptotic Theory

(1) Thus, the projection distance $\approx a$ stochastic process.

Asymptotic Theory

(1) Thus, the projection distance \approx a stochastic process.
(2) This stochastic process \approx empirical process.

Asymptotic Theory

(1) Thus, the projection distance \approx a stochastic process.
(2) This stochastic process \approx empirical process.
(3) $\operatorname{Haus}\left(\widehat{D}_{n}, D_{h}\right)=$
$\sup \{$ projection distance $\} \approx$ $\sup \{$ Empirical process $\}$.

