
STAT 542: Multivariate Analysis Spring 2021

Lecture 6: Item response theory
Instructor: Yen-Chi Chen

The item response theory (IRT) is a popular model in psychometrics and educational statistics. In this
note, we will briefly discuss the simplest IRT model called the Rasch model, which is named after Danish
statistician Georg Rasch. A useful reference of this note is Chapter 12 of the following book:

Sundberg, R. (2019). Statistical modelling by exponential families (Vol. 12). Cambridge Univer-
sity Press.

Suppose that we have i = 1, · · · , n individuals and j = 1, · · · , k items and the data is summarized as a n× k
binary table/matrix Y = {Yij}, i.e., Yij ∈ {0, 1}. The Rasch model assumes that every cell (i.e., Yij) is
independently drawn from a probability model:

P (Yij = 1;α, β) =
αiβj

1 + αiβj
.

The parameter αi ∈ R denotes the i-th individual’s ability and βj ∈ R denotes the j-th item difficulty.

The goal is to infer the underlying parameters from the observed data table Y .

6.1 Joint Rasch Model

The Rasch model aims at finding both α and β jointly. Since the Rasch model is essentially a collection of
Bernoulli random variables, the joint PDF is

p(y;α, β) =

n∏
i=1

k∏
j=1

(αiβj)
yij

1 + αiβj
,

which belongs to the exponential family.

Thus, after reparametrization, we obtain

p(y;α, β) ∝
n∏
i=1

k∏
j=1

(αiβj)
yij

=

(
n∏
i=1

α
∑k

j=1 yij
i

) k∏
j=1

β
∑n

i=1 yij
j


=

(
n∏
i=1

α
yi+
i

) k∏
j=1

β
y+j

j

 ,

where

yi+ =

k∑
j=1

yij , y+j =

n∑
i=1

yij
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are the row sum and column sum of the table y. Thus, the sufficient statistic of αi is Yi+ and the sufficient
statistic of βj is Y+j . The quantity Yi+ is the number of 1 in i-th individual’s response, which can be
interpreted as the scores of i. The quantity Y+j is the number of 1 in item j, which can be interpreted as
the number of individuals correctly answering question j.

Using the theory of exponential families, the MLE of α and β can be obtained by solving the likelihood
equations:

Yi+ = E(Yi+; α̂, β̂) =

k∑
j=1

α̂iβ̂j

1 + α̂iβ̂j

Y+j = E(Y+j ; α̂, β̂) =

n∑
i=1

α̂iβ̂j

1 + α̂iβ̂j

(6.1)

for each i = 1, · · · , n and j = 1, · · · , k.

Solving equation (5.1) is challenging so we need to do some reductions. First, there is an identifiability issue
that if we multiply every α by a factor 10 and dividing all β by the same factor, the probability model remains
the same. So here we often set β̂1 = 1 to avoid this problem. Second, each individual Yi+ ∈ {0, 1, 2, · · · , k}
because there are only k items. For individual with the same values of Yi+, one would notice that their
likelihood equations are identical! Namely, for each s ∈ {0, 1, 2, · · · , k} and Yi+ = Yi′+ = s,

s = Yi+ =

k∑
j=1

α̂iβ̂j

1 + α̂iβ̂j

= Yi′+ =

k∑
j=1

α̂i′ β̂j

1 + α̂i′ β̂j
,

which implies α̂i = α̂i′ . Thus, αi will only takes at most k + 1 distinct values. So now we reparametrize
them as

θ̂1, · · · , θ̂k+1,

where

α̂i = θ̂s if s = Yi+.

Let

ns =

n∑
i=1

I(Yi+ = s)

be the number of individuals with a score s. We can rewrite equation (5.1) as

s =

k∑
j=1

θ̂sβ̂j

1 + θ̂sβ̂j
= θ̂s

k∑
j=1

β̂j

1 + θ̂sβ̂j

Y+j = E(Y+j ; α̂, β̂) =

k+1∑
s=0

ns
θ̂sβ̂j

1 + θ̂sβ̂j
= β̂j

k+1∑
s=0

ns
θ̂s

1 + θ̂sβ̂j

(6.2)

for s = 0, · · · , k and j = 2, · · · , k.

There are two special cases that we do not need to solve. The first one is s = 0 (all responses are 0); this

leads to θ̂0 = 0. The other case is s = k, which leads to θ̂k =∞. For other parameters, unfortunately, there
is no closed-form solution to the above equations so we need other approach to find the estimators. Luckily,
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the following iterative procedure provides a numerical solution to finding the MLE:

θ̂(t+1)
s = s/

 k∑
j=1

β̂
(t)
j

1 + θ̂
(t)
s β̂

(t)
j


β̂

(t+1)
j = Y+j/

(
k+1∑
s=0

ns
θ̂

(t)
s

1 + θ̂
(t)
s β̂

(t)
j

) (6.3)

for t = 0, 1, 2, · · · with a proper initial parameter θ̂(0), β̂(0).

Although we are able to compute the MLE, it may not be consistent! Namely, even if the model is correct,
the MLE may not converge to the correct parameter values (for both individual-specific parameter α and
item-specific parameter β). The major issue here is that the number of parameters increase linearly with
respect to the sample size (number of individuals).

6.2 Conditional Rasch model

Here is an interesting property. Suppose that we are interested in only the item-specific parameters β, it can
be consistently estimated using a modification called conditional Rasch model (consistent here refers to the
number of individuals n→∞).

The idea of conditional Rasch model relies on asking the following question: suppose the individual i correctly
answers s = Yi+ questions, what will the itemwise correct answers {Yi1, · · · , Yik} informs us about the
parameters β1, · · · , βk. This question can be answered by the conditional distribution

p(yi1, · · · yik|Yi+ = s;β) ∝
k∏
j=1

β
yij
j .

The normalizing constant in the above probability will be∑
yi1,···yik:

∑
j yij=s

k∏
j=1

β
yij
j = γs(β),

where γs(β) is known as elementary symmetric polynomial of degree s. Note that

γ0(β) = 0, γ1(β) =
∑
j

βj , γ2(β) =
∑
j1<j2

βj1βj2 , γ3(β) =
∑

j1<j2<j3

βj1βj2βj3 .

With this, we can rewrite

p(yi1, · · · yik|Yi+ = s;β) =

∏k
j=1 β

yij
j

γs(β)
.

This defines the likelihood function of an individual i.

Using the fact that individuals are IID, the likelihood of using all individuals will be

L(β|Y ) = p(Y |Y1+, · · · , Yn+;β)

=

n∏
i=1

∏k
j=1 β

Yij

j

γYi+
(β)

=

∏k
j=1 β

Y+j

j∏k
s=0 γs(β)ns

,

(6.4)
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where ns =
∑n
i=1 I(Yi+ = s).

The MLE of L(β|Y ) solves the likelihood equations. Note that

E(Yij |Yi+ = s) =
βi · γs−1(β−j)

γs(β)
,

where β−j = β\{βj} is the vector of β without j-th element. The likelihood equations will be

Y+j =

n∑
i=1

Yij =

n∑
i=1

β̂j · γYi+−1(β̂−j)

γYi+(β̂)

= β̂j ·
k∑
s=0

ns
γs−1(β̂−j)

γs(β̂)
.

Although solving the above equation is not simple, there has been several methods to it. In R, the package
eRm is dedicated to the Rasch model and has a built-in function to solve this problem.

Unlike the joint Rasch model, the MLE in the conditional Rasch model leads to a consistent estimator of β.
An intuitive way to understand this is that the single likelihood function (of i-th individual)

L(β|Yi) = p(Yi1, · · ·Yik|Yi+;β) =

∏k
j=1 β

Yij

j

γYi+
(β)

provides information on β. When sample size increases, the number of parameters remains fixed and the
above likelihood function will be repeatedly used, leading to more and more information on the parameter.
Thus, under regularity conditions, the MLE will be asymptotic normal and centered at β.

Here is an interesting note on the testing of conditional Rasch model. Since Yi+ ∈ {0, 1, 2, · · · , k}, without
using the Rasch model, we can characterize the distribution of Yi using

βjs : j = 1, · · · , k; s = 0, 1, · · · , k.

Namely, we allow the distribution to vary depending on the total number of correct answer. Note that by
convention we set β1s = 1 to avoid the identifiability issue (similar to the joint model). Also, similar to the
joint model, there is no need to consider the case s = 0, k since they corresponds to all 0’s and all 1’s. So
the total free parameters without the Rasch model are

βjs : j = 2, · · · , k; s = 1, · · · , k − 1.

Namely, there will be a total of (k − 1)(k − 1) free parameters. With this, the Rasch model can be written
as the null hypothesis

H0 : βjs = βj for all s = 0, 1, · · · , k; j = 1, · · · k.

Under H0 (Rasch model), there will be a total of k−1 free parameters. Thus, testing the feasibility of Rasch
model is equivalent to testing H0. There are a couple of ways we can perform this test such as the likelihood
ratio test or the Wald test. Suppose that we use the likelihood ratio test, the test statistic will follows a χ2

distribution with a degree of freedom (k − 1)(k − 1)− (k − 2) = (k − 2)(k − 1).

6.3 Latent trait model

The latent trait model is a generalization of the Rasch model and is a popular model in item response theory.
Similar to the conditional Rasch model, the latent trait model aims at recovering item-specific parameters.
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The latent trait model uses a latent variable Zi for each individual that denotes the individual’s ability. Let

πj(Zi) = P (Yij = 1|Zi)

be a question-specific response function of the j-th question. The latent trait model assumes that

g(πj(z)) = ξj + ηjz,

where g is a known link function and ξj , ηj are problem-specific parameters (later we will explain what they
are). In a sense, the latent trait model is a generalized linear model.

A popular link function is the logit function, which corresponds to

logit(πj(z)) = ξj + ηjz.

With this, the probability model is

P (Yij = 1|Zi; ξ, η) =
exp(ξj + ηjZi)

1 + exp(ξj + ηjZi)
.

This model reduces to the Rasch model when we choose ηj = η0 for all j. The parameters αi = exp(η0Zi)
and βj = exp(ξj).

Here is an interesting note. If we assume Z1, · · · , Zn ∼ N(0, 1), then the logit model becomes

logit(πj(Zi)) = ξj + ηjZi ∼ N(ξj , η
2
j ).

Thus, ξj is often referred to as the difficulty parameter and ηj is referred to as the discrimination parameter.
If ξj is very small (negatively large), then everyone has a low chance of correctly answering it. For the effect
of ηj , for individual with high ability, i.e., Zi is large, ηjZi will be large. So indeed ηj describes how the
individual’s ability influences the chance of correctly answering item j.

When given the data table Y , we estimate ξ̂, η̂ via the ML procedure. This is a regular incomplete-likelihood
problem so in general, there is no closed-form of the MLE. A common approach to numerically find the MLE
is the EM algorithm1. In this problem, the Q function in the EM algorithm (under the logit link function)
will be

Q(ξ, η; ξ(t), η(t)|Yij) = E

(
log

(
exp(ξjYij + ηjZiYij)

1 + exp(ξj + ηjZi)

) ∣∣∣∣∣Yij ; ξ(t), η(t)

)
= ξjYij + ηjYijω(Yij ; ξ

(t), η(t))− E
(

log (1 + exp(ξj + ηjZi)) |Yij ; ξ(t), η(t)
)

︸ ︷︷ ︸
∆

,

ω(Yij ; ξ
(t), η(t)) = E(Zi|Yij ; ξ(t), η(t)) =

∫
z · πj(z)Yij (1− πj(z))1−Yijφ(z)dz∫
πj(z)Yij (1− πj(z))1−Yijφ(z)dz

,

where πj(z) = P (Yij = 1|Zi = z; ξ, η) =
exp(ξj+ηjz)

1+exp(ξj+ηjz)
. In the E-step, we compute the conditional expectation

of both ω and ∆. In the Q-step, we attempt to find the maximizer. A numerical challenge here is that both
ω and ∆ do not have a simple closed-form. Thus, generally we use a Monte Carlo approximation to the
expectation part; this is known as the Monte Carlo EM-algorithm.

1See http://faculty.washington.edu/yenchic/19A_stat535/Lec13_EM_SGD.pdf for an introduction

http://faculty.washington.edu/yenchic/19A_stat535/Lec13_EM_SGD.pdf
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