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Lecture 3: Mixture models and variational inference
Instructor: Yen-Chi Chen

3.1 Mixture models

While the parametric model is featured with a fast convergence rate and interpretability, it has a limitation
that the real data is generally not so well-approximated by a parametric model. The mixture model is a
popular approach that generalizes conventional parametric models to a flexible class of models that can fit
to the data better.

Again, we consider random sample X1, · · · , Xn ∼ p, where p is the underlying PDF. Consider a parametric
model p(x; θ) with θ ∈ Θ. Instead of using a single parametric model, the mixture model consists of K
models and considers the following PDF:

p(x; η) =

K∑
`=1

π`p(x; θ`), (3.1)

where θ1, · · · , θK ∈ Θ are K parameters and π1, · · · , πK ≥ 0 with
∑K
`=1 π` = 1. The parameter π` is the

weight/proportion of the `-th component. The quantity

η = (θ1, π1, · · · , θK , πK)

is the set of all parameters in this model. The PDF in equation (3.1) is called a K-mixture model. As can
be seen easily, the PDF p(x; η) is indeed a mixture of K individual parametric model.

The mixture model can be generated by the following two-stage procedure. First, we generate a discrete
random variable Z ∈ {1, 2, 3, · · · ,K} such that P (Z = `) = π`. Then we generate X|Z ∼ p(x; θZ). The
marginal PDF of X is p(x; η).

Thus, a random variable following p(x; η) can always be viewed as a random variable sampling from the
above two-stage procedure and the variable Z is unobserved. Since Z is unobserved, it is often called a
latent/hidden variable.

Example (Gaussian mixture). One of the most famous example is the Gaussian mixture model (GMM).
An example of 3-GMM (K = 3) is the case where

p(x; η) = π1φ(x;µ1, σ
2
1) + π2φ(x;µ2, σ

2
2) + π3φ(x;µ3, σ

2
3),

where φ(x;µ, σ2) = 1√
2πσ2

exp(− 1
2σ2 (x− µ)2) is the PDF of N(µ, σ2). In this case, the parameter

η = (µ1, σ
2
1 , π1, µ2, σ

2
2 , π2, µ3, σ

2
3 , π3).

Sampling from this Gaussian mixture can be done by first generating Z from

P (Z = `) = π`, ` = 1, 2, 3,

and then sampling
X|Z ∼ N(µZ , σ

2
Z).

3-1



3-2 Lecture 3: Mixture models and variational inference

Example (kernel density estimator). The kernel density estimator (KDE) is one of the most popular
nonparametric density estimator. It can be viewed as a special type of mixture models under some choices
of kernel functions. To see this we consider Gaussian KDE. Given observations X1, · · · , Xn, the KDE is

p̂h(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
,

where K(x) is a smooth function known as the kernel function and h > 0 is the smoothing bandwidth.

Suppose we choose K(x) to be the Gaussian kernel, i.e., K(x) = 1√
2π
e−

1
2x

2

. Then the KDE is

p̂h(x) =
1

nh

n∑
i=1

1√
2π
e−

1
2 (Xi−x

h )
2

=

n∑
i=1

1

n

1√
2πh2

e−
1

2h2 (Xi−x)2

=

n∑
i=1

1

n
φ(x;Xi, h).

So it is an n-Gaussian mixture with each component’s mean being µ1 = X1, · · · , µn = Xn and variance being
h2 and the weight being 1

n . The fact that we can generate from a mixture model implies a simple approach
of generating from the KDE p̂h(x). Using samples from the KDE is called the smooth bootstrap method.

Remark (continuous mixture). Here is an interesting way of re-expressing the mixture model. Let H(z)
be a probability measure that place discrete probability mass π` at value z = `. Then equation (3.1) can be
written as

p(x; η) =

∫
p(x; θz)H(dz).

As a result, if we rewrite the model p(x; θz) as p(x|z; θ), then we obtain

p(x; θ) =

∫
p(x|z; θ)H(dz).

This allows us to assume that H(z) has a PDF p(z), which leads to

p(x; θ) =

∫
p(x|z; θ)p(z)dz,

which is known as a continuous mixture model and is related to Bayesian inference and measurement error
models.

3.2 EM algorithm

When we specify a mixture model p(x; η), the parameter η is often unknown to us and has to be estimated
from the data X1, · · · , Xn. A classical approach of estimating η is via the MLE. Namely,

η̂ = argmaxη`(η|X1, · · · , Xn) = argmaxη

n∑
i=1

`(η|Xi) = argmaxη

n∑
i=1

log

(
K∑
`=1

π`p(Xi; θ`)

)
.

While the theoretical analysis of this MLE follows from the usual MLE theory, the MLE generally does not
have a closed-form. So we need a numerical method to compute the MLE.
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The EM algorithm (expectation-maximization algorithm) is one of the most popular algorithm for computing
the MLE. It is an iterative algorithm that starts with an initial guess of the MLE η̂(0) and then gradually
improves until convergence.

To derive the EM algorithm, we first recall the latent variable representation of this problem. Under the
mixture model, each Xi can be viewed as an outcome from the two-stage sampling procedure. So Xi is
associated with a latent variable Zi ∈ {1, 2, · · · ,K}. If we observe both Xi and Zi, then the complete-data
log-likelihood is

`c(η|Xi = xi, Zi = zi) = log p(xi, zi; η)

= log p(xi|zi; η)p(zi; η)

=

K∑
`=1

I(zi = `) log (π`p(x; θ`)) +

K∑
`=1

I(zi = `) log π`.

(3.2)

Let η̂(t) be a prior guess of the parameter. Given the observation Xi, the expected complete-likelihood using
this prior guess of parameter will be

Qi(η|Xi; η̂
(t)) = EZi∼p(z|Xi;η̂(t))(`c(η|Xi, Zi)|Xi).

So with all observations X1, · · · , Xn, we define the Q-function

Qn(η; η̂(t)) =

n∑
i=1

Qi(η|Xi; η̂
(t)).

We then improve the current estimate η̂(t) to be

η̂(t+1) = argmaxηQn(η; η̂(t)).

While the above procedure may seem to be complicated, here is an elegant way to write it as a two-step
updating procedure.

• E-step. Given Xi and a prior step parameter η̂(t) = (π̂
(t)
` , θ̂

(t)
` : ` = 1, · · · ,K), we first compute

τ
(t)
i,` = P (Zi = `|Xi; η̂

(t)) =
π̂
(t)
` p(Xi; θ̂

(t)
` )∑K

j=1 π̂
(t)
j p(Xi; θ̂

(t)
j )

. (3.3)

This is because the complete data log-likelihood in equation (3.2) only involves indicator functions of
Zi. So the conditional expectation step in each Qi can be done easily with the above weight. With

τ
(t)
i,` , we compute

Qi(η|Xi; η̂
(t)) =

K∑
`=1

τ
(t)
i,` [log p(Xi; θ`) + log π`]

and

Qn(η; η̂(t)) =

n∑
i=1

K∑
`=1

τ
(t)
i,` [log p(Xi; θ`) + log π`]. (3.4)

• M-step. With the above Qn function, we find the maximizer

η̂(t+1) = argmaxηQn(η; η̂(t)).
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While the M-step may seem to be hard, maximizing Q can be done easily if we know how to maximize
the individual model `(θ`|Xi) = log p(x; θ`). To see this, we can rewrite equation (3.4) as

Qn(η; η̂(t)) =

n∑
i=1

K∑
`=1

τ
(t)
i,` [log p(Xi; θ`) + log π`]

=

K∑
`=1

(
n∑
i=1

τ
(t)
i,` log p(Xi; θ`)

)
︸ ︷︷ ︸

A`(θ`)

+

K∑
`=1

(
n∑
i=1

τ
(t)
i,` log π`

)
︸ ︷︷ ︸

B

.
(3.5)

Each quantity in A`(θ`) only involves parameter θ` so the maximization can be done easily without
affecting other θj with j 6= `! Namely,

θ̂
(t+1)
` = argmaxθ`

n∑
i=1

τ
(t)
i,` log p(Xi; θ`).

This is essentially the MLE when we are using the single model p(x; θ`) and each observation is assigned

with a weight τ
(t)
i,` .

For the component B, there is a closed-form solution to it using Lagrangian multiplier method:

π̂
(t+1)
` =

∑n
i=1 τ

(t)
i,`

n
.

Thus, we actually only need to compute the weight τ
(t)
i,` in equation (3.3) and the remaining part is

just the simple MLE problem with no mixture.

3.2.1 The ascending property of the EM

Here is a simple derivation showing that when we update η̂(t) to η̂(t+1), the observed-data likelihood function
will not decrease. Formally, we have the following result:

Proposition 3.1 The observed-data log-likelihood value is non-decreasing during the EM updates, i.e.,

`(η̂(t+1)|X1, · · · , Xn) ≥ `(η̂(t)|X1, · · · , Xn), (3.6)

where

`(η|X1, · · · , Xn) =

n∑
i=1

`o(η|Xi) =

n∑
i=1

log p(Xi; η).

Proof: For simplicity, here we consider n = 1 case. The proof can be easily generalized to any n.

The joint PDF
p(X,Z; η) = p(Z|X; η)p(X; η)

so the log-likelihood function
`(η|X) = log p(X,Z; η)− log p(Z|X; η).

This implies

`(η̂(t+1)|X)− `(η̂(t)|X) = [log p(X,Z; η̂(t+1))− log p(X,Z; η̂(t))]− [log p(Z|X; η̂(t+1))− log p(Z|X; η̂(t))].
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Note that
Q1(η; η̂(t)) = E(log p(X,Z; η)|X;Z ∼ p(·|X; η̂(t)))

so taking expectation in both sides of the equality with Z ∼ p(·|X; η̂(t)) leads to

`(η̂(t+1)|X)− `(η̂(t)|X) = Q1(η̂(t+1); η̂(t))−Q1(η̂(t); η̂(t))− E
(

log
p(Z|X; η̂(t+1))

p(Z|X; η̂(t))
|X;Z ∼ p(·|X; η̂(t))

)
≥ −E

(
log

p(Z|X; η̂(t+1))

p(Z|X; η̂(t))
|X;Z ∼ p(·|X; η̂(t))

)
.

Finally, by Jensen’s inequality,

E
(

log
p(Z|X; η̂(t+1))

p(Z|X; η̂(t))
|X;Z ∼ p(·|X; η̂(t))

)
≤ logE

(
p(Z|X; η̂(t+1))

p(Z|X; η̂(t))
|X;Z ∼ p(·|X; η̂(t))

)
= log

∫
p(z|X; η̂(t+1))

p(z|X; η̂(t))
p(z|X; η̂(t))dz

= log

∫
p(z|X; η̂(t+1))dz = log(1) = 0.

Thus, we conclude that
`(η̂(t+1)|X)− `(η̂(t)|X) ≥ 0,

which proves the desired result.

3.2.2 Convergence of the EM algorithm

While Proposition 3.1 shows that the EM algorithm will not decrease the observed-likelihood value, it does
not imply that the EM algorithm will converge to the MLE. In fact, the EM algorithm may not converge
to an MLE but could stuck at a local optimum if we do not initialize η̂(0) nicely. This spurious local modes
problem is a notorious issue for EM and many other similar algorithm. Thus, in practice, we often re-initialize
the algorithm multiple times and choose the convergent point with highest observed-likelihood value.

A classical convergence result of the EM algorithm is in the following paper:

Wu, C. J. (1983). On the convergence properties of the EM algorithm. The Annals of statistics,
95-103.

It proves that the EM algorithm converges to a local mode of the observed-data log-likelihood function, as
long as we do not initialize the algorithm at a saddle point or a local minimum.

The following paper provides a stronger statement on the behavior of the EM algorithm when it is initialized
around the MLE:

Balakrishnan, S., Wainwright, M. J., & Yu, B. (2017). Statistical guarantees for the EM algo-
rithm: From population to sample-based analysis. Annals of Statistics, 45(1), 77-120.

It proves the so-called linear convergence property of the EM algorithm; namely, there exists a constant
c ∈ (0, 1) such that

‖η̂(t) − η̂‖ ≤ ct‖η̂(0) − η̂‖
when the initial point η̂(0) ∈ B(η̂, r) for some constant r and η̂ is the theoretical MLE (not computable).
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3.3 Other variants of mixture models

Here are some other variants of the mixture models. For readers who are interested in more details, I would
recommend the following book chapter:

Gormley, I. C., & Frühwirth-Schnatter, S. (2019). Mixture of experts models. Handbook of
Mixture Analysis, 271-307.

Since here we may involve some concept of regression, we will change our notations a bit so that Y (rather
than X) plays the central role in the mixture models. Let Y ∈ R be a continuous random variable that
is our primary response variable and Z ∈ {1, 2, · · · ,K} be a discrete/categorical variable and X ∈ Rd be
a multivariate covariate. We only observe (X,Y ) and Z is unobserved; here Z is often refers to the latent
class label or the label of an expert. In mixture models or mixture of experts, we often use a parametric
form of the conditional densities. Depending on the relation among X,Y, Z, there are 4 popular mixture-type
models:

• Mixture model. In the usual mixture model, there is no covariate X so we only observe Y . The
mixture model can be written as a graphical model with a direct arrow Z → Y . Suppose we observe
both (Y,Z), then

p(y, z) = p(y|z)p(z) = pz(y)πz ⇒ p(y) =
∑
k

pk(y)πk,

where pk(y) is the conditional distribution of Y given Z = k and πk = P (Z = k) is the proportion of
the k-th component. Let θk be the parameter of pk(y), then the marginal distribution is

p(y; θ) =
∑
k

p(y; θk)πk,

which is the usual mixture model. The Gaussian mixture model is that each p(y; θk) is a Gaussian,
i.e., p(y; θk) = p(y;µk, σ

2
k), where µk and σ2

k is the mean and variance of k-th component.

• Mixture of expert. In the mixture of expert, the model can be expressed as a graphical model with
two arrows X → Z and Z → Y . Note that Z is unobserved–we only observe X,Y . In this case,

p(x, y, z) = p(y|z)p(z|x)p(x) = pz(y)πz(x)p(x)⇒ p(y, z|x) = pz(y)πz(x)

⇒ p(y|x) =
∑
k

pk(y)πk(x).

Namely, in the mixture of expert, the density of Y at each component remains the same across different
X. What changes with respect to X is the proportion πk(x).

In this case, we need parameters for both pk(y) and πk(x), which leads to

p(y|x; θ, η) =
∑
k

p(y; θk)πk(x; η).

A popular model is place a Gaussian model over p(y; θk) and a logistic model of πk(x; η), i.e.,

πk(x; η) =
exp(η0,k + ηT1,kx)∑
m exp(η0,m + ηT1,mx)

.

• Mixture of regression. The mixture of regression (a.k.a. regression mixture) looks very similar to
the mixture of expert from a graphical perspective. The mixture of regression has two arrows: X → Y
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and Z → Y . This, the difference compared to the mixture of expert is that the arrow X → Z becomes
X → Y . In this case,

p(x, y, z) = p(y|x, z)p(z)p(x) = pz(y|x)πzp(x)⇒ p(y, z|x) = pz(y|x)πz

⇒ p(y|x) =
∑
k

pk(y|x)πk.

In particular, the conditional mean (regression function) becomes

m(x) = E(Y |X = x) =

∫ ∑
k

pk(y|x)πkdy =
∑
k

πk ·mk(x),

where mk(x) = E(Y |Z = k,X = x) is the regression function of the k-th component. So the regres-
sion function is written as a mixture of several regression function. Note that the proportion πk is
independent of X.

• Mixture of expert regression. The mixture of expert and the mixture of regression can be combined
into the mixture of expert regression. It corresponds to the graph with three arrows: X → Y , X → Z,
and Z → Y . In this case,

p(x, y, z) = p(y|x, z)p(z|x)p(x) = pz(y|x)πz(x)p(x)⇒ p(y, z|x) = pz(y|x)πz(x)

⇒ p(y|x) =
∑
k

pk(y|x)πk(x).

The conditional mean (regression function) is

m(x) = E(Y |X = x) =

∫ ∑
k

pk(y|x)πk(x)dy =
∑
k

πk(x) ·mk(x).

So it is the mixture of regression with the proportion πk(x) being allowed to change with respect to x.

3.4 Variational inference

Variational inference (VI; also known as variational approximation) is a popular tool in machine learning. It
has became more and more popular in statistics communities as well. In short, VI is a method to approximate
an intractable quantity using a tractable quantity. It can be used in both Frequentist estimation as well as
Bayesian inference.

However, the fact that VI can be used in both Frequentist and Bayesian inference had made VI sometimes
confusing. Here we will discuss how VI can be used in both cases and how the two problems are associated.

3.4.1 Approximating an MLE (Frequentist)

Consider a regular latent variables problem where we observe IID

X1, · · · , Xn ∼ p

and each observation has a latent variable Z that is unobserved. Namely, the complete data should be

(X1, Z1), · · · , (Xn, Zn)
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but we only observe X1, · · · , Xn.

In the latent variable problem, we often place a parametric model on the complete-data distribution:

p(x, z;λ), λ ∈ Λ.

This parametric model implies the observed model

p(x;λ) =

∫
p(x, z;λ)dz

that generates our observations.

In this case, the MLE is defined as

λ̂ = argmaxλ
1

n

n∑
i=1

log p(Xi;λ).

Namely, we maximizes the observed log-likelihood `(λ|x) = p(x;λ). A population version of this problem is

λ∗ = argmaxλE(log p(X1;λ)).

In most cases, the MLE does not have a closed-form so we need to use numerical procedure such as the EM
algorithm to compute it. However, EM algorithm may not have a simple form and can still be intractable
(this occurs a lot when the Q function in the EM algorithm is complicated).

The VI offers a remedy to this problem. Note that we can write the observed model as

p(x;λ) =

∫
p(x, z;λ)dz

=

∫
p(x, z;λ)

q(z;ω)
q(z;ω)dz

= EZ∼q(·;ω)
(
p(x, Z;λ)

q(Z;ω)

)
,

where ω ∈ Ω is another class of parameters and Q = {q(·;ω) : ω ∈ Ω} is called the variational family. The
variational family often consists of parametric densities that are easy to compute and sample.

Using the Jensen’s inequality, the observed log-likelihood function becomes

`(λ|x) = log p(x;λ)

= logEZ∼q(·;ω)
(
p(x, Z;λ)

q(Z;ω)

)
≥ EZ∼q(·;ω)

(
log

p(x, Z;λ)

q(Z;ω)

)
= EZ∼q(·;ω) log p(x, Z;λ)− EZ∼q(·;ω)(log q(Z;ω))

= ELBO(ω, λ|x).

The quantity ELBO(ω, λ|x) is called the evidence lower bound. Note that sometime people would write it
as ELBO(q) and abbreviate λ, x but here for completeness I would keep both of them. When we observe n
observations, we write

ELBOn(ω, λ) =
1

n

n∑
i=1

ELBO(ω, λ|Xi).
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With the ELBO, the idea of variational inference is very simple. Instead of maximizing the intractable
log-likelihood, we maximize ELBO to find our estimator. Namely, our estimator is

(ω̂VI, λ̂VI) = argmaxω,λELBOn(ω, λ).

Again, in general there is no closed-form to the above estimators. But we can solve this maximization
problem numerically. The power of VI is that the variational family is designed so that evaluation and
computation are easy. So the expectation EZ∼q(·;ω)(· · · ) that appears in the ELBO is a tractable quantity.

A famous method called mean field variational family is the collection of densities

q(z;ω) =

d∏
j=1

q(zj ;ωj),

where z = (z1, · · · , zd). In this case, sampling of z can be decomposed into sampling each coordinate
independently and the optimization of ωj can be obtained by the coordinate ascent variational inference
algorithm in the following book:

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer New York.

One thing to keep in mind is that when using VI, we are no longer solving the original problem. In general,
the VI estimator will not converge to the MLE (in the Frequentist setting) but instead, it will still converge
to a population quantity; see the following paper:

Chen, Y. C., Wang, Y. S., & Erosheva, E. A. (2018). On the use of bootstrap with varia-
tional inference: Theory, interpretation, and a two-sample test example. The Annals of Applied
Statistics, 12(2), 846-876.

3.4.2 Density evaluation problem (Bayesian)

A good review from the Bayesian perspective is

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518), 859-877.

Consider a simple Bayesian setting where

X|θ ∼ p(x|θ), θ ∼ π(θ).

Here, X is the random variable for the observation and θ is the underlying parameter of the distribution
and π is the prior. The Bayesian inference relies heavily on the posterior distribution (density):

π(θ|x) =
p(x|θ)π(θ)

p(x)
∝ p(x|θ)π(θ) = p(x, θ).

Here we write p(x, θ) = p(x|θ)π(θ) for simplicity. In addition to the posterior distribution, the evidence
p(x) =

∫
p(x, θ)dθ is also sometimes of interest.

Since p(x, θ) = p(x|θ)π(θ), it is often very easy to evaluate the value of p(x, θ) for any given x, θ. Although
the joint distribution is easy to compute, both the posterior and the evidence are often intractable. Take
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the evidence as an example, it can be written as the integral p(x) =
∫
p(x, θ)dθ. When the dimension of θ

is large (say a mixture model), this integration is very difficult to evaluate even if we can easily compute
p(x, θ).

Here is an interesting note. The problem of evaluating the evidence and the problem of evaluating the
posterior distribution are the same via the following relation:

π(θ|x) =
p(x, θ)

p(x)
.

p(x, θ) is tractable so we can easily convert the evidence and the posterior to each other.

To obtain a tractable approximation of π(θ|x), we use the idea of VI. The quantity θ now plays the role of
latent variable z in the previous section. Let q(θ;ω) be a computable density and

Q = {q(·;ω) : ω ∈ Ω}

be the variational family. We attempt to find the best density q(;ω∗) ∈ Q such that

q(·;ω∗) = argminq∈QKL(q(·)||π(·|x)),

where KL is the Kullback-Leibler divergence. Namely,

ω∗ = argminωKL(q(·;ω)||π(·|x)),

However, minimizing the KL divergence may again ran into the same computation problem (need to evaluate
the integral). The idea of VI uses the following insight:

log p(x) = KL(q(·;ω)||π(·|x)) + Eθ∼q(·;ω)(log p(x, θ))− Eθ∼q(·;ω)(log q(θ;ω))

= KL(q(·;ω)||π(·|x)) + ELBO(ω|x).

Therefore, minimizing the KL divergence is equivalent to maximizing ELBO.

The variational approximation chooses

ω∗VI = argmaxωELBO(ω|x)

and use q(θ;ω∗V I) as an approximation to π(θ|x).

In the case of observing X1, · · · , Xn, the ELBO will be

ELBOn(ω) = Eθ∼q(·;ω)(log p(X1, · · · , Xn, θ))− Eθ∼q(·;ω)(log q(θ;ω))

= Eθ∼q(·;ω)

(
log π(θ) +

n∑
i=1

log p(Xi|θ)

)
− Eθ∼q(·;ω)(log q(θ;ω))

and we estimate ω using
ω̂VI = argmaxωELBOn(ω).

Again, this maximization is often tractable since the expectation is with respect to the variational distribution
q, which is by design easy to compute.

The posterior is then approximated by

π(θ|X1, · · · , Xn) ≈ p(θ; ω̂VI)

and the evidence is approximated by

p(X1, · · · , Xn) ≈
π(θ)

∏n
i=1 p(X1|θ)

p(θ; ω̂VI)
.

Note that the approximated evidence may depend on θ because it is an approximation rather than an exact
value.


	Mixture models
	EM algorithm
	The ascending property of the EM
	Convergence of the EM algorithm

	Other variants of mixture models
	Variational inference
	Approximating an MLE (Frequentist)
	Density evaluation problem (Bayesian)


