
STAT 542: Multivariate Analysis Spring 2021

Lecture 1: Likelihood method and exponential family
Instructor: Yen-Chi Chen

1.1 The parametric model and likelihood approach

Consider the problem where we observe IID random variables X1, · · · , Xn from an unknown CDF F . The
parametric model assumes that the underlying CDF belongs to a parametric family F = {Fθ : θ ∈ Θ}, where
Θ ⊂ Rp is called the parameter space. Namely, there exists an element θ∗ ∈ Θ such that the true CDF
F = Fθ∗ . When we assume a parametric model, the parameter of interest is often the underlying parameter
θ indexing elements in F . In many scenarios, the CDF leads to a PDF or a PMF so we often express the
parametric model in terms of the PDF or PMF.

In a parametric model, we often estimate the parameter θ using the maximum likelihood estimator
(MLE). The idea is very simple. Suppose we observe only one observation X from a PDF/PMF p(x). The
parametric model assumes that such a PDF/PMF can be written as p(x) = p(x; θ), where θ is the parameter
of the model (θ is often the parameter of interest) inside a parameter space Θ (θ ∈ Θ). The idea of MLE is
to ask the following question: given the observation X, which θ is the most likely parameter that generates
X? To answer this question, we can vary θ and examine the value of p(X; θ).

Because we are treating X as fixed and θ being something that we want to optimize, we can view the problem
as finding the best θ such that the likelihood function L(θ|X) = p(X; θ) is maximized. The MLE uses
the θ that maximizes the likelihood value. Namely,

θ̂MLE = argmaxθL(θ|X).

When we have multiple observations X1, · · · , Xn, the likelihood function can be defined in a similar way –
we use the joint PDF/PMF to define the likelihood function. Let p(x1, · · · , xn; θ) be the joinr PDF/PMF.
Then the likelihood function is

Ln(θ) = L(θ|X1, · · · , Xn) = p(X1, · · · , Xn; θ).

Note that when we assume IID observations,

Ln(θ) =

n∏
i=1

L(θ|Xi) =

n∏
i=1

p(Xi; θ).

In many cases, instead of using the likelihood function, we often work with the log-likelihood function

`n(θ) = logLn(θ).

Because taking the logarithmic does not change the maximizer of a function, the maximizer of the log-
likelihood function is the same as the maximizer of the likelihood function. There are both computational
and mathematical advantages of using a log-likelihood function over likelihood function. To see this, we
consider the case of IID sample. Computationally, the likelihood function often has a very small value due to
the product form of PDF/PMFs. So it is very likely that the number if too small, making the computation
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very challenging. Mathematically, when we take log of the likelihood function, the product of PDF/PMFs
becomes an additive form

`n(θ) = logLn(θ) =

n∑
i=1

log p(Xi; θ).

Under IID assumption, each log p(Xi; θ) is an IID random variable so the central limit theorem and the law
of large number can be applied to the average, making it possible to analyze it asymptotic behavior.

Since under the IID assumptions, we have many advantages, we will assume IID from now on. Because
MLE finds the maximum of `n(θ), a common trick to find MLE is to study the gradient of the log-likelihood
function, which is also known as the score function:

Sn(θ) = ∇`n(θ) =

n∑
i=1

s(θ|Xi),

where s(θ|Xi) = ∇`(θ|Xi) = ∇θ log p(Xi; θ), where ∇ is the gradient operator and ∇θ refers to the gradient
operator applied to variable θ. Under suitable conditions, the MLE satisfies the score equation:

Sn(θ̂MLE) = 0.

Note that if there are more than one parameter, say θ ∈ Rp, the score equation will be a system of p
equations.

Because the MLE is at the maximal point of the likelihood function, the curvature of the likelihood function
around the maximal will determine its stability. To measure the curvature, we use the Fisher’s information
matrix:

In(θ) = −E [∇∇`n(θ)] = n · I1(θ) = n · −E [∇θ∇θp(X1; θ)] .

Example 1: Binomial Distribution. Assume that we obtain a single observation Y ∼ Bin(n, p), and we
assume that n is known. The goal is to estimate p. The log-likelihood function is

`(p) = Y log p+ (n− Y ) log(1− p) + Cn(Y ),

where Cn(Y ) = log
(
n
Y

)
is independent of p. The score function is

S(p) =
Y

p
− n− Y

1− p

so solving the score equation gives us p̂MLE = Y
n . Moreover, the Fisher’s information is

I(p) = E
{
∂

∂p
S(p)

}
= −E(Y )

p2
− n− E(Y )

(1− p)2
=

n

p(1− p)
.

Example 2: Multinomial Distribution. Let X1, · · · , Xn be IID from a multinomial distribution such
that P (X1 = j) = pj for j = 1, · · · , s and

∑s
j=1 pj = 1. Note that the parameter space is Θ = {(p1, · · · , ps) :

0 ≤ pj ,
∑s
j=1 pj = 1}. By setting Nj =

∑n
i=1 I(Xi = j) for each j = 1, · · · , s, we obtain the random vector

(N1, · · · , Ns) ∼ Multinomial(n, p), where p = (p1, · · · , ps). The parameters of interest are p1, · · · , ps. In this
case, the likelihood function is

Ln(p1, · · · , ps) =
n!

N1! · · ·Ns!
pN1

1 · · · pNs
s

and the log-likelihood function is

`n(p1, · · · , ps) =

s∑
j=1

Nj log pj + Cn,
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where Cn is independent of p. Note that naively computing the score function and set it to be 0 will not grant
us a solution (think about why) because we do not use the constraint of the parameter space – the parameters
are summed to 1. To use this constraint in our analysis, we consider adding the Lagrange multipliers and
optimize it:

F(p, λ) =

s∑
j=1

Nj log pj + λ

1−
s∑
j=1

pj

 .

Differentiating this function with respect to p1, · · · , ps, and λ and set it to be 0 gives

∂F

∂pj
=
Nj
pj
− λ0⇒ Nj = λp̂MLE,j

and 1−
∑s
j=1 pj = 0. Thus, n =

∑s
j=1Nj = λ

∑p
j=1 = λ so p̂MLE,j =

Nj

n .

1.1.1 A rough derivation of the asymptotic normality of the MLE

The MLE has the following asymptotic property:

√
n
(
θ̂MLE − θ∗

)
D→ N(0,Σ(θ∗))

for some matrix-valued function Σ(θ). Namely, the MLE is asymptotically normally distributed around some
parameter θ∗. The above result does NOT require the parametric model to be correct. When the parametric
model is correct, i.e., there exists a parameter θ0 ∈ Θ such that the data is generated from p(x; θ0), θ∗ = θ0

and Σ(θ∗) = I1(θ0).

Here is the usual way of deriving the asymptotic normality of the MLE. We assume that the score equa-
tion exists and the MLE solves the score equation. Recall that Sn(θ) =

∑n
i=1 s(θ|Xi), where s(θ|Xi) =

∇θ log p(Xi; θ). If we divide the score function by n, the law of large numbers implies

1

n
Sn(θ) =

1

n

n∑
i=1

s(θ|Xi)
P→ E(s(θ|X1)) = S0(θ).

Thus, we define the population MLE θ∗ to be the parameter that satisfies S0(θ∗) = 0. You can easily show
that if the parametric model is correct, the population MLE is often the true parameter.

Thus, we now have two equations:
1

n
Sn(θ̂) = 0, S0(θ∗) = 0.

We then consider the following quantity and perform a Tyler expansion:

1

n
Sn(θ∗)− S0(θ∗) =

1

n
Sn(θ∗)− 1

n
Sn(θ̂)

=
1

n

(
θ∗ − θ̂)T∇Sn(θ∗) +OP

(
‖θ∗ − θ̂‖2

))
.

(1.1)

If we keep the leading term, the above equality implies

θ̂ − θ∗ =

(
1

n
∇Sn(θ∗)

)−1(
1

n
Sn(θ∗)− S0(θ∗)

)
=

(
1

n
∇Sn(θ∗)

)−1
(

1

n

n∑
i=1

[s(θ∗|Xi)− E(s(θ∗|Xi)]

)



1-4 Lecture 1: Likelihood method and exponential family

By law of large numbers,

1

n
∇Sn(θ) =

1

n

n∑
i=1

∇θ∇θ log p(Xi; θ)
P→ E (∇θ∇θ log p(X1; θ)) = −I1(θ). (1.2)

Moreover, central limit theorem implies that

√
n

(
1

n

n∑
i=1

[s(θ∗|Xi)− E(s(θ∗|Xi)]

)
d→ N(0,E(s(θ∗|X1)s(θ∗|X1)T )).

Thus, the Slutsky’s theorem further implies

√
n(θ̂ − θ∗) d→ N(0, I−1

1 (θ∗)E(s(θ∗|X1)s(θ∗|X1)T )I−1
1 (θ∗)). (1.3)

The asymptotic normality in equation (1.3) does not require the parametric model to be correct! In fact,
even if the parametric model is incorrect, the MLE still converges to θ∗. The corresponding model p(x; θ∗)
can be viewed as a ‘projection’ of the true PDF onto the specified parametric family. We will discuss this in
greater detail in Section 1.6.

When the model is correct, we can further deduce an elegant form of the covariance function. Note that
when the model is correct, θ0 = θ∗ and our observation is generated from p(x; θ∗). The key is to argue that
E(s(θ∗|X1)s(θ∗|X1)T ) = I1(θ∗). Using the fact

0 = ∇θ∇θ1 = ∇θ∇θ
∫
p(x; θ)dx

=

∫
∇θ∇θp(x; θ)dx

=

∫
∇θ[p(x; θ)∇θ log p(x; θ)dx]

=

∫
p(x; θ) [∇θ log p(x; θ)]︸ ︷︷ ︸

s(θ|x)

[∇θ log p(x; θ)]T + p(x; θ)∇θ∇θ log p(x; θ)dx,

we conclude that
0 = E(s(θ∗|X1)s(θ∗|X1)T )− I1(θ∗).

As a result, √
n(θ̂ − θ∗) d→ N(0, I−1

1 (θ∗)), (1.4)

which is the well-known asymptotic normality of the MLE under correct model.

Based on the above derivation, you can then deduce what are the assumptions we need to achieve this result.
One small note: when the parameter space is univariate, equation (1.1) can be replaced by the mean value
theorem so we only need the existence of the first order derivative. However, there is no multivariate mean
value theorem, so we have to place additional assumptions to ensure that the second-order derivative is
bounded.

1.2 Exponential family

The exponential family is a collection of parametric models that has very elegant properties. Specifically, a
parametric model belongs to the exponential family if the underlying PDF/PMF p(x; θ) can be written as

p(x; θ) =
1

C(θ)
h(x) exp(θT t(x)), (1.5)
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for some functions C(θ), h(x) ∈ R and t(x) ∈ Rp. t(x) is called the canonical statistic and the parameter
θ ∈ Θ is called the canonical parameter and Θ is the parameter space. Note that

C(θ) =

∫
h(x) exp(θT t(x))dx

and can be viewed as a normalizing constant.

Here are some technical terms related to an exponential family. The PDF in equation (1.5) may not be
unique–we can have other representation of the same PDF. The order of an exponential family is the
minimal dimension of t(x) such that we can express the family using equation (1.5). If a representation in
equation (1.5) reaches the order, we call it the minimal representation

Example: non-minimal representation. An example of non-minimal representation is the multinomial
distribution (n, θ). Suppose we have k categories with proportion π1, · · · , πk. We can write the PMF as

p(x; θ) =
n!

x1! · · ·xk!

k∏
j=1

π
xj

j =
n!

x1! · · ·xk!
exp

 k∑
j=1

xj log πj


so θj = log πj . However, there is a hidden constraint that 1 =

∑k
j=1 πj =

∑k
j=1 e

θj so there is only k − 1
parameters. Thus, the above representation is not minimal.

The family is called full if the dimension of θ equals the dimension of the parameter space Θ. An exponential
family of order k is called regular if its parameter space Θ is an open set in Rk. Note that the regularity of
an exponential family is important in terms of the uniqueness and asymptotic normality of the MLE.

Example: non-full exponential family. One example that an exponential family is not full is the
distribution N(µ, µ2), which is a curved-exponential family.

Example: non-regular exponential family. A non-regular exponential family is p(x; θ) = 1
x2C(θ)e−θxI(x >

1) with Θ = (−∞, 0]

You can easily show that popular distributions such as Gaussian, Exponential, Poisson, Binomial, Beta all
belong to the exponential family. And you can easily find their minimal representation and show that they
are full and regular.

The log-likelihood function of an exponential family has a very beautiful form:

`(θ|x) = log p(x; θ) = θT t(x)− logC(θ) + log h(x).

One may notice that the last term log h(x) does not involve θ, so we can ignore it when computing the MLE.

The exponential family has many elegant properties. For instance, if we have IID observations X1, · · · , Xn ∼
p(x; θ), where p(x; θ) = 1

C(θ)h(x) exp(θT t(x)) belongs to an exponential family, then the joint PDF

p(x1, · · · , xn; θ) =

n∏
i=1

p(xi; θ) =
1

Cn(θ)

[
n∏
i=1

h(xi)

]
exp

(
θT

n∑
i=1

t(xi)

)
.

The log-likelihood function is

`n(θ|X1, · · · , Xn) = θT
n∑
i=1

t(Xi)− n logC(θ) +

n∑
i=1

log h(Xi),

so all information about θ is from the canonical statistic
∑n
i=1 t(Xi). This property is related to the classical

concept of sufficient statistic.
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Moment property of logC(θ). The derivative of logC(θ) is related to the moments of t(X). We denote
E(t(X)) ≡ µt(θ) and Cov(t(X)) ≡ Σt(θ).

Lemma 1.1 When X is from an exponential family with p(x; θ) = 1
C(θ)h(x) exp(θT t(x)). Then

E(t(X)) ≡ µt(θ) = ∇ logC(θ), Cov(t(X)) ≡ Σt(θ) = ∇∇ logC(θ).

Proof:

To see the expectation, a direct computation of ∇ logC(θ) shows that

∇ logC(θ) =
1

C(θ)
∇C(θ)

=
1

C(θ)

∫
h(x)∇θ exp(θT t(x))dx

=
1

C(θ)

∫
h(x)t(x) exp(θT t(x))dx

= E(t(X)).

Similarly, when we take the derivative again, we obtain

∇∇ logC(θ) = ∇θ
1

C(θ)

∫
h(x)t(x) exp(θT t(x))dx

=

[
∇θ

1

C(θ)

] ∫
h(x)t(x) exp(θT t(x))dx+

1

C(θ)

∫
h(x)t(x)∇θ exp(θT t(x))dx

= − 1

C2(θ)

[∫
h(x)t(x) exp(θT t(x))

] [∫
h(x)t(x) exp(θT t(x))

]T
+

1

C(θ)

∫
h(x)t(x)t(x)T∇θ exp(θT t(x))dx

= −E(t(X))E(t(X))T + E(t(X)t(X))

= Cov(t(X)).

Not only the mean and variance, you can recover higher-order moments via taking derivatives of logC(θ).
Note that C(θ) is also called partition function in probability theory and statistical physics.

In addition to the moment property, the score of an exponential family also has a nice form. A direct
computation shows

s(θ|x) = ∇`(θ|x) = t(x)−∇θ logC(θ) = t(x)− µt(θ).
Thus, the score equation becomes

0 = Sn(θ̂) =

n∑
i=1

t(Xi)− nµt(θ̂)

or equivalently,

µt(θ̂) =
1

n

n∑
i=1

t(Xi).
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Namely, we find the MLE by tuning the parameter θ until the function µt(θ) equals the value of 1
n

∑n
i=1 t(Xi).

Thus, you can see that all information about the MLE is determined by the canonical statistic
∑n
i=1 t(Xi).

When µt has a well-defined and unique inverse, we may write the MLE as θ̂ = µ−1
t

(
1
n

∑n
i=1 t(Xi)

)
.

1.3 Confidence Intervals

In some analysis, we not only want to have just a point estimate of the parameter of interest, but also want
to use an interval to infer the parameter of interest. And we also want to assign a level to this interval to
describe how ‘accurate’ this interval is. Note that here the concept of accuracy is not well-defined – we will
talk about it later. Ideally, given an accuracy level, we want an interval as small as possible.

The Frequentist and the Bayesian defines the accuracy differently so their construction of intervals are
also different. In short, the Frequentists defines the accuracy as the long term frequency coverage of the
underlying true parameter of interest whereas the Bayesian defines the accuracy in terms of covering the
posterior probability. In this section, we will talk about the Frequentist approach and the interval is known
as the confidence interval. The accuracy that Frequentists are using is called the confidence level.

Formally, given a confidence level 1 − α, a confidence interval of θ0 is a random interval Cn,α that can be
constructed solely from the data (i.e., can be constructed using X1, · · · , Xn) such that

P (θ ∈ Cn,α) ≥ 1− α+ o(1).

Beware, what is random is not θ but the interval Cn,α. The quantity P (θ ∈ Cn,α) is also called the
(Frequentist) coverage. Note that we allow the coverage to be asymptotically 1 − α; when there is no o(1)
term, we will say that the confidence interval has a finite sample coverage. A confidence interval with the
above property is also called a (asymptotically) valid confidence interval.

Normal confidence interval. A traditional approach to constructing a confidence interval of θ0 is based
on the asymptotic normality of the MLE:

√
n(θ̂MLE − θ0)

D→ N(0, I−1
1 (θ0)).

When the dimension of the parameter is 1, a simple confidence interval is

θ̂MLE ± z1−α/2 · σθ0 ,

where σ2
θ0

= 1
nI
−1
1 (θ0) Such interval is not a confidence interval because θ0 is unknown. We can modify it

using a plug-in estimate of the Fisher’s information:

Cn,α = [θ̂MLE − z1−α/2 · σθ̂MLE
, θ̂MLE + z1−α/2 · σθ̂MLE

],

where zβ the β-percentile of the standard normal distribution. Using the slutsky’s theorem, you can easily
show that this confidence interval has the asymptotic coverage.

When the dimension of the parameter is greater than 1, there are multiple ways we can construct a confidence
interval. Note that in this case, the set Cn,α is no longer an interval but a region/set so it is often called a
confidence region/set. A simple approach of constructing a confidence set is via an ellipse. Note that the
asymptotic normality also implies that (using continuous mapping theorem)

n(θ̂MLE − θ0)T I1(θ̂MLE)(θ̂MLE − θ0)
D→ χ2

p,

where χ2
p denotes the χ2 distribution with a degree of freedom p. So we construct the confidence set using

Cn,α =
{
θ : n(θ̂MLE − θ)T I1(θ̂MLE)(θ̂MLE − θ) ≤ χ2

p,1−α

}
,
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where χ2
p,β is the β-percentile of the χ2 distribution with a degree of freedom p.

Bootstrap confidence interval. Bootstrap approach is an Monte Carlo method for assessing the uncer-
tainty of an estimator. It can be used to compute the variance of an estimator (not necessarily the MLE) and
construct a confidence interval. In the case of likelihood inference, the bootstrap approach has an advantage
that we do not need to know the closed-form of I1(θ) to construct the confidence interval or to approximate
the variance of the MLE.

While there are many variant of bootstrap methods, we introduce the simplest one – the empirical bootstrap.
For simplicity, we assume that the dimension of θ is 1 (the bootstrap works for higher dimensions as well).
Let X1, · · · , Xn be the original sample. We then sample with replacement from the original sample to obtain
a new sample of each size X∗1 , · · · , X∗n. This new sample is called a bootstrap sample. We find the MLE

using the bootstrap sample and let θ̂∗MLE denote the bootstrap MLE. Now we repeat the bootstrap process
B times, leading to B bootstrap MLEs

θ̂
∗(1)
MLE , · · · , θ̂

∗(B)
MLE .

Let tβ denotes the β-percentile of these B values, i.e.,

t̂β = Ĝ−1(β), Ĝ(t) =
1

B

B∑
b=1

I(θ̂
∗(b)
MLE ≤ t).

Then the bootstrap confidence interval of θ0 is

Cn,α = [t̂α/2, t̂1−α/2].

One can prove that under very mild conditions, the bootstrap confidence interval has asymptotic coverage.

The power of the bootstrap method is that we do not use anything about the Fisher’s information! As long as
we can compute the estimator, we can construct an asymptotically valid confidence interval. Note that if we
do know the Fisher’s information, the bootstrap method can be modified using the bootstrap t-distribution
method, which provides a better asymptotic coverage (namely, the o(1) decays faster to 0 than the above
method and the normal confidence interval)1.

1.4 Test of Significance

Statistical test is about how to design a procedure that allows us to make scientific discovery. Such a
procedure has to be able to handle the uncertain nature of our data. In statistics, we model the data as
random variables so the testing procedure needs to account for the randomness.

Let Dn = {X1, · · · , Xn} denotes our data. The testing procedure involves two competing hypotheses:

• Null hypothesis H0: the hypothesis that we want to challenge. It is often related to the current scientific
knowledge.

• Alternative hypothesis Ha: the hypothesis that complements to the null hypothesis. It is the hypothesis
we would like to prove to be plausible using our data.

The goal is to see if we have strong enough evidence (from Dn) that we can argue the alternative hypothesis
is more reasonable than the null hypothesis. If we do have enough evidence, then we will reject the null

1see, e.g., Chapter 2 of All of nonparametric statistics by Larry Wasserman and Chapter 3.5 of The bootstrap and Edgeworth
expansion by Peter Hall.
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hypothesis. When the null hypothesis reflects the scenarios that can be explained by the current scientific
knowledge, rejecting the null hypothesis means that we have discovered something new.

Here is a summary of hypothesis test.

1. Based on the model and null hypothesis, design a test statistic.

2. Compute the distribution of the test statistics under the null hypothesis.

3. Plug-in the data into the test statistic, compute the probability of observing a more extreme data
against the null hypothesis. Such a probability is the p-value.

4. Compare p-value to the significance level. If p-value is less than the significance level, we reject the
null hypothesis.

The central idea of hypothesis test is to control the type-1 error, the probability of falsely rejecting H0

when H0 is correct. Essentially, the p-value can be interpreted as if we reject the null hypothesis (under
this p-value), then our type-1 error is the same as the p-value. The significance level reflects the amount of
type-1 error we can tolerate so when p-value is less than the significance level, we can reject H0. Due to the
construction of p-value, a small p-value means that the null hypothesis does not fit to the data very well (so
we are seeing an extreme event if H0 is true). Thus, small p-value or rejecting H0 under a small significance
level means that we have more evidence against H0.

Note that there is another quantity called type-2 error, the probability of not rejecting H0 when H0 is false.
Namely, type-2 error is concerned with the case that we fail to reject H0 when we should.

In statistics, we often control type-1 error first and the hope that the type-2 error is also small. When do
we put more emphasis on type-1 error? This has something to do with the philosophy of scientific research.
The scientific approach is a systematic way to acquire reliable knowledge. Thus, every discovery we made
should be accompanied with sufficient evidences. In Frequentist approach, the measure of evidence against
H0 is the p-value – the smaller p-value, the more evidence. Thus, controlling type-1 error means that we
put requirements on the amount of evidence we need to claim a scientific discovery.

1.4.1 Three popular tests for parameters

For a parametric model, the null hypothesis can often be expressed as

H0 : θ ∈ Θ0, (1.6)

where Θ0 ⊂ Θ. The alternative hypothesis will be HA : θ ∈ Θ\Θ0. We assume that dim(Θ) = p and
dim(Θ0) = s < p.

While there are many possible ways to construct a test statistic of testing H0 in equation (1.6), here we
introduce four popular test and later we will argue that they are all asymptotically equivalent in simple case.
Let the MLE be

θ̂ = argminθ∈ΘLn(θ)

and the MLE under H0 be

θ̂ = argminθ∈Θ0
Ln(θ).

Note that when the null hypothesis is not composite, we have to compute the MLE θ̂0 under the null because
there are infinite number of feasible parameters in Θ0.
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Wald test. The Wald test is based on the insight from the asymptotic normality in equation (1.4):

√
n(θ̂ − θ∗) d→ N(0, I−1

1 (θ∗))

assuming that the parametric model is correct. When H0 is correct, the best approximation to θ∗ is θ̂0. So
we use the test statistic

Tn,Wald = n(θ̂ − θ̂0)T I1(θ̂0)(θ̂ − θ∗).

Under H0, this test statistic

Tn,Wald
d→ χ2

p−s.

Later we will discuss why the degrees of freedom is p− s.

Score test (Rao’s test). In our derivation of the asymptotic normality of MLE (Section 1.2.1), the
‘normality’ comes from the score function:

1

n
Sn(θ∗) =

1

n

n∑
i=1

s(θ∗|Xi).

One can easily show that
1√
n
Sn(θ∗)

d→ N(0, I1(θ∗)).

Thus, under H0, the best approximation to θ∗ is θ̂0, so the score test is based on the test statistic

Tn,Score = nSn(θ̂0)T I−1
1 (θ̂0)Sn(θ̂0).

Note that while Sn(θ̂) = 0, Sn(θ̂0) 6= 0 in general. Similar to the Wald test, the score test has an asymptotic
distribution

Tn,Score
d→ χ2

p−s

under H0.

Likelihood ratio test (LRT). The LRT is one of the most popular test in this scenario. It uses the test
statistic

Tn,LRT = 2 log
Ln(θ̂)

Ln(θ̂0)
.

Similar to the above two tests, the LRT has the asymptotic distribution

Tn,LRT
d→ χ2

p−s,

which is also known as the Wilk’s theorem. Here is a rough derivation of how the asymptotic distribution
of the LRT comes from. Let Hn(θ) = ∇θSn(θ) = ∇θ∇θ`n(θ) be the Hessian matrix of the log-likelihood
function. By the Tyler’s theorem, the LRT test statistic can be expanded as

Tn,LRT = 2 log
Ln(θ̂)

Ln(θ̂0)

= −2(`n(θ̂0)− `n(θ̂))

= −2

(
Sn(θ̂0)T (θ̂0 − θ̂) +

1

2
(θ̂0 − θ̂)THn(θ̂0)(θ̂0 − θ̂) + oP (‖(θ̂0 − θ̂)‖2)

)
.
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The first term Sn(θ̂0)
P→ 0 so we can ignore it. The dominating term is the second quantity. Note that

equation (1.2) implies that 1
nHn(θ)

P→ −I1(θ), so

(θ̂0 − θ̂)THn(θ̂0)(θ̂0 − θ̂) = n(θ̂0 − θ̂)T
1

n
Hn(θ̂0)(θ̂0 − θ̂)

≈ n(θ̂0 − θ̂)T I1(θ̂0)(θ̂0 − θ̂).

As a result,
Tn,LRT ≈ n(θ̂0 − θ̂)T I1(θ̂0)(θ̂0 − θ̂). (1.7)

In the next section, we will argue that n(θ̂0 − θ̂)T I1(θ̂0)(θ̂0 − θ̂)
d→ χ2

p−s. So again, LRT has the same
asymptotic distribution as the Wald and score tests.

1.4.2 A geometric interpretation of the p− s degrees of freedom

Now we argue that under H0,

n(θ̂0 − θ̂)T I1(θ̂0)(θ̂0 − θ̂)
d→ χ2

p−s.

First, under H0, both θ̂ and θ̂0 are approaching the true parameter θ0 ∈ Θ0, so the information matrix

I1(θ̂0)
p→ I1(θ0). As a result, this quantity behaves like

n(θ̂0 − θ̂)T I1(θ̂0)(θ̂0 − θ̂) ≈ n(θ̂0 − θ̂)T I1(θ0)(θ̂0 − θ̂).

Moreover, the above quantity is equivalent to

n(θ̂ − θ̂0)T I1(θ0)(θ̂ − θ̂0). (1.8)

Now we decompose (θ̂0 − θ̂) as

θ̂ − θ̂0 = (θ̂ − θ0)− (θ̂0 − θ0).

Now suppose the space Θ0 is smooth around θ0. Specifically, we need Θ0 to be an s-dimensional manifold
around θ0. Namely, for region in Θ0 around θ0, this region behaves like an s-dimensional Euclidean space.
Then the deviation θ̂0 − θ0 is the in this local s-dimensional Euclidean space (technically, it belongs to the

‘tangent’ space of the manifold Θ0 at θ0) because we have a constraint θ̂0 ∈ Θ0. The other quantity θ̂ − θ0

is without the constraint, so it can be decomposed into

θ̂ − θ0 = VN + VT ,

where VN is the projection of vector θ̂ − θ0 onto the normal space of Θ0 at θ0 and VT is the projection of
θ̂ − θ0 onto the tangent space of Θ0 at θ0. Asymptotically, VT ≈ θ̂0 − θ0, so

θ̂ − θ̂0 = (θ̂ − θ0)− (θ̂0 − θ0) ≈ VN ,

the normal component of θ̂− θ0. The information matrix I1(θ0) in equation (1.8) has normalize (θ̂− θ0) and

(θ̂0 − θ0) so that they behave like a standard normal vector. Thus,

n(θ̂ − θ̂0)T I1(θ0)(θ̂ − θ̂0)

only has the component from the normal direction of θ̂ − θ0. Given that Θ0 has s dimensions, the normal
space of Θ0 has p− s dimensions. Accordingly,

n(θ̂ − θ̂0)T I1(θ0)(θ̂ − θ̂0) ≈ ‖Zp−s‖2
d
= χ2

p−s,
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where Zp−s ∈ Rp−s is a standard normal vector. This proves the asymptotic distribution of Tn,LRT.

For the case of Wald and score tests, we can show that the test statistic is asymptotically the same as the
LRT, so the asymptotic distribution of LRT also applies to the other two tests. While these three tests
are asymptotically the same in this nice scenario, they may be very different under other scenarios; see
https://arxiv.org/abs/1807.04431.

Based on the above derivation, you can see that the ‘distance’ between two parameter θ1 and θ2 in the
LRT scenario is determined by the information matrix I1(θ). This means that the parameter space Θ is not
flat but curved. Using terms from differential geometry, the Riemannian metric of Θ is I1(θ), which is the
information matrix. This leads to the field of information geometry2.

Moreover, the above analysis shows that the LRT and the algebraic/geometric structure of Θ0, the parametric
under the null hypothesis, is closely related. This insight leads to the field of algebraic statistics3, a study
of how the algebraic structure of the parameter space interacts with the behavior of a statistic.

1.5 Model Mis-specification

Many theory about the MLE assumes that the population distribution function belongs to our parametric
family. However, this is a very strong assumption in reality. It is very likely that the population distribution
function does not belong to our parametric family (e.g., the population PDF is not Gaussian but we fit a
Gaussian to it). What will happen in this case for our MLE? Will it still converge to something? If so, what
will be the quantity that it is converging?

Model mis-specification studies the situation like this – we assume a wrong model for the population distri-
bution function. Let p0(x) be the population PDF and we assume that the population PDF can be written

as p(x; θ). However, p0 6= p(x; θ) for every θ ∈ Θ. It turns out that the MLE θ̂MLE still converges under
mild assumptions to a quantity θ∗ in probability. Moreover, the corresponding PDF/PMF p(x; θ∗) has an
interesting relation with p0(x). Assume that the RV X has a PDF/PMF p0. Then

E
{

log

(
p0(X)

p(X; θ∗)

)}
= inf
θ∈Θ

E
{

log

(
p0(X)

p(X; θ)

)}
= inf
θ∈Θ

KL(p0, pθ),

where KL is also known as the Kullback-Liebler (KL) divergence and pθ(x) = p(x; θ). Namely, the MLE
corresponds to the parametric distribution in the specified family that minimizes the KL divergence to the
population distribution. To see why the population model θ∗ is the one that minimizes the KL divergence,
we first recall the definition of population log-likelihood function:

`(θ) = E(θ(θ|X)) = E(log p(X; θ)),

where X ∼ p0. As a result,

`(θ) =

∫
p0(x) log p(x; θ)dx.

Maximizing `(θ) is the same as maximizing `(θ) −
∫
p0(x) log p0(x)dx since the later part does not involve

2See https://en.wikipedia.org/wiki/Information_geometry for more details.
3See https://en.wikipedia.org/wiki/Algebraic_statistics.

https://arxiv.org/abs/1807.04431
https://en.wikipedia.org/wiki/Information_geometry
https://en.wikipedia.org/wiki/Algebraic_statistics
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θ. So we conclude

θ∗ = argmaxθ∈Θ`(θ)

= argmaxθ∈Θ`(θ)−
∫
p0(x) log p0(x)dx

= argmaxθ∈Θ

∫
p0(x) log

(
p(x; θ)

p0(x)

)
dx

= argmaxθ∈Θ − KL(p0, pθ).

In model mis-specification case, the MLE still satisfies the score equation (under appropriate assumption) but
the Fisher’s information may not reflect the actual curvature of the likelihood function around θ∗. Equation
(1.3) still holds, i.e.,

√
n(θ̂MLE − θ∗)

D→ N(0,Σ),

where Σ = I−1
1 (θ∗)E(S1(θ∗)ST1 (θ∗))I−1

1 (θ∗) is the covariance matrix.
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