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14.1 Introduction

The median-of-means (MoM) is an old method but it has received a lot of attentions these day. The MoM
estimator gives a nice concentration bound around the target parameter under mild conditions and it can
be applied to an empirical process as well (it is called a median-of-means process in [L2019]).

14.2 MoM estimator of the mean

Consider a simple scenario where we observe X1, · · · , Xn ∼ F . The goal is to estimator the mean of the
underlying distribution µ0 = E(X1) =

∫
xdF (x).

The MoM estimator works as follows. Assume that the sample size n = K · B, where K is the number of
subsamples and B is the size of each subsample. We first randomly split the data into K subsample and
compute the mean using each subsample, which leads to estimators

µ̂1, · · · , µ̂K

and each estimator is based on B observations. The MoM estimator is the median of all these estimator,
i.e.,

µ̂MoM = median(µ̂1, · · · , µ̂K).

Why is this estimator useful? It turns out that even with a very mild condition: Var(X1) = σ2 < ∞, the
MoM estimator has nice concentration inequality under ‘finite sample’ case.

Proposition 14.1 Assume that Var(X1) <∞. Then the MoM estimator has the following property:

P (|µ̂MoM − µ0| > ε) ≤ e−2K
(

1
2−

K
n
σ2

ε2

)2

= e
−2 nB

(
1
2−

σ2

Bε2

)2

for every n = K ·B.

Proposition 14.1 implies the following two forms, with different choices of ε. When we choose ε =
√

(2 + δ)K/n =√
(2 + δ)/B, which leads to

P (|µ̂MoM − µ0| >
√

(2 + δ)K/n) ≤ e−K
δ2

2(2+δ)2 (14.1)
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and when we further choose δ = 2, it becomes

P (|µ̂MoM − µ0| >
√

4K/n) ≤ e−K/8. (14.2)

A powerful feature of Proposition 14.1 is that finite sample exponential concentration is not easy to obtain
when we only assume variance exists. Xi’s can be unbounded in this case (when Xi is bounded, Hoeffding’s
inequality implies such a concentration).

Now we prove Proposition 14.1. The proof is very simple and elegant.

Proof: First, observe that the event
{|µ̂MoM − µ0| > ε}

implies that at least K/2 of µ̂` has to be outside ε distance to µ0. Namely,

{|µ̂MoM − µ0| > ε} ⊂

{
K∑
`=1

I(|µ̂` − µ0| > ε) ≥ K

2

}
.

Define Z` = I(|µ̂` − µ0| > ε) and let pε,B = E(Z`) = P (|µ̂` − µ0| > ε), then the above implies that

P (|µ̂MoM − µ0| > ε) ≤ P

(
K∑
`=1

Z` ≥
K

2

)

= P

(
K∑
`=1

(Z` − E(Z`)) ≥
K

2
−Kpε,B

)

= P

(
1

K

K∑
`=1

(Z` − E(Z`)) ≥
1

2
− pε,B

)
.

The key trick of the MoM estimator is that the random variable Z` is IID and is bounded. So by Hoeffding’s
inequality (one-sided),

P

(
1

K

K∑
`=1

(Z` − E(Z`)) ≥ t

)
≤ e−2Kt

2

.

As a result,

P (|µ̂MoM − µ0| > ε) ≤ P

(
1

K

K∑
`=1

(Z` − E(Z`)) ≥
1

2
− pε,B

)
≤ e−2K( 1

2−pε,B)2 .

To conclude that proof, note that the variance σ2 = Var(X1) <∞ and the Chebeshev’s inequality implies

pε,B = P (|µ̂` − µ0| > ε) ≤ σ2

Bε2
=
K

n

σ2

ε2
.

So the bound becomes

P (|µ̂MoM − µ0| > ε) ≤ e−2K( 1
2−pε,B)2 ≤ e−2K( 1

2−
K
n
σ2

ε2
)2 .
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14.3 MoM process: example of the KDE

The MoM approach can also be applied to an empirical process. To motivate the problem, we consider the
kernel density estimator (KDE). The observations X1, · · · , Xn are IID from an unknown distribution with
a PDF p. With a full-sample, the KDE is

p̂(x) =
1

nhd

n∑
i=1

K

(
Xi − x
h

)
,

where K is a kernel function such as a Gaussian and h > 0 is the smoothing bandwidth.

Under the MoM procedure, we split the sample into K subsamples and compute the KDE within each
sample, leading to

p̂1(x), · · · , p̂K(x).

The MoM KDE is
p̂MoM(x) = median(p̂1(x), · · · , p̂K(x))

Note: this estimator may not be a density (it may not integrate to 1) but we can simply rescale it to resolve
this issue.

Now we will show that suppose we have a bound of the form

P (sup
x
|p̂(x)− p(x)| > ε) ≤ qn,ε. (14.3)

We then have a bound on p̂MoM as

P

(
sup
x
|p̂MoM(x)− p(x)| > ε

)
≤ e−2K( 1

2−qε,B)2 . (14.4)

Derivation of equation (14.4). We use a similar derivation as the proof of Proposition 14.1. The following
derivation is modified from

[HBMV2020] Humbert, P., Bars, B. L., Minvielle, L., & Vayatis, N. (2020). Robust Kernel
Density Estimation with Median-of-Means principle. arXiv preprint arXiv:2006.16590.

Note that the event{
sup
x
|p̂MoM(x)− p(x)| > ε

}
⊂

{
sup
x

K∑
`=1

I(|p̂`(x)− p(x)| > ε) >
K

2

}
.

Using the fact that
|p̂`(x)− p(x)| ≤ sup

x
|p̂`(x)− p(x)|,

we have
I(|p̂`(x)− p(x)| > ε) ≤ I(sup

x
|p̂`(x)− p(x)| > ε)

which implies

sup
x

K∑
`=1

I(|p̂`(x)− p(x)| > ε) ≤
∑
`=1K

I(sup
x
|p̂`(x)− p(x)| > ε).
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As a result, {
sup
x
|p̂MoM(x)− p(x)| > ε

}
⊂

{
sup
x

K∑
`=1

I(|p̂`(x)− p(x)| > ε) >
K

2

}

⊂

{
K∑
`=1

I(sup
x
|p̂`(x)− p(x)| > ε) >

K

2

}

Define Y` = I(supx |p̂`(x) − p(x)| > ε) and denote E(Y`) = P (supx |p̂`(x) − p(x)| > ε) = qε,B . Then we
conclude that

P

(
sup
x
|p̂MoM(x)− p(x)| > ε

)
≤ P

(
K∑
`=1

Y` ≥
K

2

)

= P

(
K∑
`=1

(Y` − E(Y`)) ≥
K

2
−Kqε,B

)

= P

(
1

K

K∑
`=1

(Y` − E(Y`)) ≥
1

2
− qε,B

)
≤ e−2K( 1

2−qε,B)2 ,

which is equation (14.4).

Concrete rate under KDE. Suppose the PDF p belongs to a β-Hölder class, then we have the following
concentration under suitable conditions of K and h:

P

(
sup
x
|p̂(x)− p(x)| > C1

√
δ| log h|
nhd

+ C2h
β

)
≤ e−δ,

where C1 and C2 are some constants depending on the Hölder class and the kernel function; see Lemma 1

of [HBMV2020]. By choosing ε = C1

√
log t| log h|

nhd
+ C2h

β with t ≥ 1 and use the fact that B plays the same

role as n, we obtain

qε,B ≤
1

t
,

which leads to

P

(
sup
x
|p̂MoM(x)− p(x)| > C1

√
log t| log h|

Bhd
+ C2h

β

)
≤ e−2K( 1

2−
1
t )

2

.

When t = 4 and use the fact that B = n/K, we further obtain

P

(
sup
x
|p̂MoM(x)− p(x)| > C1

√
K log 4| log h|

nhd
+ C2h

β

)
≤ e−K/8.

After some algebra, we conclude that

p̂MoM(x)− p(x) = O(hβ) +OP

(√
K log h

nhd

)
.

If we set the total number of subsample K to be fixed and let n → ∞, the convergence rate is the same as
the original KDE.
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Robustness of MoM KDE. Although MoM KDE does not improve the convergence rate (in fact, it may
have a slower rate depending on the choice of K), it improves the robustness of the density estimator against
outliers. In [HBMV2020], the authors showed that as long as we have outliers that are strictly less than
K/2 points, the MoM KDE will not be affected by these outliers. One intuition is that when the number of
outliers is less than K/2, then we have at least K/2 subsamples that are not affected by the outliers, which
occupy more than half of the subsamples.

14.4 MoM process: general case

To conclude this note, we briefly describe a general MoM process. Suppose that the parameter of interest is
µ(f) = E(f(X1)) for f ∈ F . Then a full-sample estimator is

µ̂(f) =
1

n

n∑
i=1

f(Xi)

for each f ∈ F . Using the MoM procedure, we obtain K subsample estimators (K = nB)

µ̂1(f), · · · , µ̂K(f).

The MoM estimator is then

µ̂MoM(f) = median(µ̂1(f), · · · , µ̂K(f)), f ∈ F .

In reality, we are often interested in the L∞ loss of the estimator, i.e.,

sup
f∈F
|µ̂MoM(f)− µ(f)|.

Suppose that for a full-sample estimator µ̂(f), we have

P (sup
f∈F
|µ̂(f)− µ(f)| > ε) ≤ ηε,n,

or equivalently,

P (sup
f∈F
|µ̂(f)− µ(f)| > φδ,n) ≤ 1

δ
, (14.5)

for some δ > 2.

Using the same derivation as equation (14.4), one can show that equation (14.5) implies

P

(
sup
f∈F
|µ̂MoM(f)− µ(f)| > φδ,n/K

)
≤ e−2K( 1

2−
1
δ )

2

. (14.6)

14.5 Remarks.

Finite-sample exponential concentration without sub-Gaussian. A feature of an MoM estimator
is that it establishes a finite-sample exponential concentration without assuming sub-Gaussian or bounded
condition. In Proposition 14.1, all we need is the existence of the second moment, which is a very mild
condition. We allow for a heavy tail and the estimator can still be concentrating rapidly. The key is the use
of median, which makes the estimator more robust.
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Optimal rate without sub-Gaussian assumption in high-dimensions. Following the previous point
on the exponential concentration, one can show that the MoM estimator of a multivariate sample mean in

Rd can achieve a rate of OP

(√
log d
n

)
without assuming that X is sub-Gaussian. All we need is moment

conditions with at least 2 log d moments exists. See Theorem 48 and Remark 49 in [L2019].

Two major benefits of using an MoM estimator. To sum up, there are two major benefits of using an
MoM estimator. First, it allows a heavy tail distribution–we can still obtain an exponential concentration
with only moment conditions. Second, it allows outliers in the data. As is argued in the MoM KDE case, an
MoM estimator is often more robust to outliers. This feature is not limited to the KDE case, the robustness
against outliers also applies to other scenarios.
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