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12.1 Introduction

Copula is a powerful way to model the dependence of a random vector. One key insight is due to the famous
Sklar theorem: the distribution of any continuous random vector can be expressed using copula and the
marginal distribution. It is easy to estimate the marginals of a random vector, so all we need is to estimate
the copula function and this would lead to an estimator of the joint distribution.

12.2 Sklar’s theorem and copulas

Let X ∈ Rd be a random vector. Let F (x) be the CDF of X, i.e., F (x) = P (X1 ≤ x1, · · · , Xd ≤ xd).
Further, we denote F1, · · · , Fd to be the marginal CDF of X1, · · · , Xn.

A copula is a function C : [0, 1]d 7→ [0, 1] with the following properties:

(C1) Marginal. For any j = 1, · · · , d, C(uj , u−j = 1) = uj , where u−j = 1 means that all augments except
j-th augment is 1.

(C2) Isotonic. C(u) ≤ C(v) if u ≤ v, where u ≤ v means that uj ≤ vj for all j = 1, · · · , d.

(C3) d-increasing. C is d-increasing, i.e., for any box [a, b] ⊂ [0, 1]d with non-empty volume, C([a, b]) > 0.

Note that when there are d variables, C is often called the d-copula. A copula can be viewed as a CDF of
d-dimensional random vector U such that Uj ∼ Unif[0, 1].

While the copula may seem to be an abstract object, the following theorem shows its importance to a
multivariate CDF.

Theorem 12.1 (Sklar’s theorem) For a random vector X with CDF F and univariate marginal CDFs
F1, · · · , Fd. There exists a copula C such that

F (x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)).

If X is continuous, then such a copula C is unique.
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Theorem ?? shows that we can write the joint CDF in terms of marginal CDFs and the copula. Conversely,
if we know the joint CDF F and the marginals F1, · · · , Fd, we can find the copula via

C(u1, · · · , ud) = F (F−1
1 (u1), · · · , F−1

d (ud)), (12.1)

where F−1
j (t) = inf{s : Fj(s) ≥ t}.

12.2.1 Copula density

Given that a copula can be viewed as a CDF of a uniform random vector, we can then think about the
corresponding PDF. Such density function is known as a copula density.

Interestingly, the Sklar theorem (Theorem ??) implies that the PDF of X can be written as

p(x1, · · · , xd) = c(F1(x1), · · · , Fd(x2))p1(x1) · · · pd(xd), (12.2)

where pj(xj) is the PDF of Xj and c is the copula density. You can think of c as the corresponding PDF of
the uniform random vector with joint CDF C.

12.3 Examples of copulas

Theorem ?? shows the power of copulas. Here we introduce some basic examples of copulas.

• Independence copula. Cind(u1, · · · , ud) = u1×u2×· · ·×ud. This copula corresponds to the case where
all random variables are independent.

• Comonotonicity copula. Cco(u1, · · · , ud) = min{u1, · · · , ud}. If we view the copula as a CDF of a
uniform random vector U , this is the case where U1 = U2 = · · · = Ud a.s.

• Counter-monotonicity copula. Wcounter(u1, · · · , ud) = max{u1 + u2 + · · · + ud − d + 1, 0}. Note that
Wcounter is not a copula except for d = 2. In the case of d = 2, this corresponds to the case where
U2 = 1− U1.

These basic example provides a lower and an upper bound of any copula, as stated in the following theorem.

Theorem 12.2 (FréchetHoeffding bounds) For any d-copula C, we have

Wcounter(u) ≤ C(u) ≤ Cco(u).

Moreover, the bound is pointwisely sharp, i.e., for each fixed u,

inf
C∈C

C(u) = Wcounter(u), sup
C∈C

C(u) = Cco(u).

The above examples shows the connection of copulas and uniform random vector U . Based on the Sklar’s
theorem (Theorem ??), we know that the copula would provide information on the corresponding random
vector X. The following proposition provides a concrete statement about this:

Proposition 12.3 Suppose the random vector X has a copula C. Let T1, · · · , Td be strictly increasing
functions. Then the copula of (T1(X1), · · · , Td(Xd)) is also C.
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The power of Proposition ?? is that any coordinate-wise monotone transformation will not change the
underlying copula! As a results, we have the following properties:

• X has a copula Cind ⇔ X1, · · · , Xn are independent.

• X has a copula Cco ⇔ there exists a random variable Z and increasing functions T1, · · · , Td such that
Xj = Tj(Z).

• In the case of d = 2, X has a copula Wcounter ⇔ there exists a strictly decreasing function T such that
X2 = T (X1).

12.3.1 Common families of copulas

Here we briefly introduce some popular family of copulas.

• Bivariate Gaussian copula. For the case of d = 2, a popular copula is the bivariate Gaussian copula,
which has a parameter θ such that

C(u1, u2; θ) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1√
2π(1− θ2)

exp

(
− 1

2(1− θ2)
(s2 − 2θst+ t2)

)
dsdt.

Note that the Gaussian copula belongs to a larger family known as the elliptical copula.

• Archimedean copula. The Archimedean copula is a class of copulas that can be written as

C(u) = ψ(ψ−1(u1) + · · · , ψ−1(ud))

for some suitable function ψ. The Gumbel-Hougaard copula is an Archimedean copula with

CGH(u; θ) = exp

−
 d∑
j=1

(− log uj)
θ

1/θ
 .

When θ = 1, we recover the independence copula and when θ → ∞, we recover the comonotonicity
copula. The Mardia-Takahasi-Clayton copula is also an Archimedean copula with

CMTC(u; θ) = max


 d∑
j=1

u−θj − (d− 1)

−1/θ

, 0

 ,

where θ ≥ −1
d−1 . Note that when θ = 0, this reduces to independence copula.

• EFGM copula. The EFGM (Eyraud-Farlie-Gumbel-Morgenstern) copula is a family of copula generated
by a product rule and a set of parameter. In the case of d = 2,

CEFGM (u1, u2; θ12) = u1u2(1 + θ12(1− u1)(1− u2)).

In the case of d = 3,

CEFGM (u1, u2, u3; θ) = u1u2u3(1 + θ12(1− u1)(1− u2) + θ13(1− u1)(1− u3)

+ θ23(1− u2)(1− u3) + θ123(1− u1)(1− u2)(1− u3)).

This copula can be generalized to any d by the same reasoning.
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Remark. You may be wondering if we can place a parametric model on the copula density. Yes we could do
that, but we have to be very careful. The major reason is that the copula density is the PDF of marginally
uniform random variables. So there are constraints on how the PDF will be like in the marginal cases. Not
any PDF over [0, 1]d will satisfy this constraint.

12.4 Estimation of copula

With a slightly abuse of notations, we let our random sample be random vectors X1, · · · , Xn ∈ Rd ∼ F and
let C be the corresponding unknown copula and F1, · · · , Fd be the corresponding unknown marginal CDF.

In practice, we need to estimate C and F1, · · · , Fd to obtain an estimator of the joint CDF F . There are
three popular approaches to this ends: parametric, semi-parametric, and nonparametric approaches.

12.4.1 Parametric approach

A simple parametric approach is that we place a parametric model of each marginal CDF Fj(·;αj) and
let pj(·;αj) be the corresponding PDF. Similarly, we also place a parametric model of the copula density
c(u1, · · · , ud; θ).

By the Sklar’s theorem and the copula density form in equation (??), the joint PDF is

p(x;α, θ) = c(F1(x1;α1), · · · , Fd(xd;αd); θ)p1(x1;α1) · · · pd(xd;αd).

Thus, the log-likelihood function is

`(α, θ|x) = `c(α, θ|x) +

d∑
j=1

log pj(αj |xj),

where `c(α, θ|x) = log c(F1(x1;α1), · · · , Fd(xd;αd); θ).

Ideally, we want to estimate the parameters α, θ by maximizing the above log-likelihood function. But this
could be challenging since the parameter α also appears in the copula part.

A common approach to reduce the complexity is that we first estimate α by marginal distribution, i.e.,

α̂j,IFM = argmaxαj

n∑
i=1

log pj(αj |Xi,j)

and then plug-in this to `c(α̂IFM, θ|X) and solve for θ, i.e.,

θ̂IFM = argmaxθ

n∑
i=1

`c(α̂IFM, θ|Xi).

This idea is called the method of inference functions for margins (IFM).

12.4.2 Semi-parametric approach

Since the marginal CDF can be estimated easily via the marginal empirical distribution function (EDF), we
may only place a parametric model on the copula part and use the marginal EDF to handle the marginal
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Figure 12.1: Two vine graphs of p(x1, · · · , x4).

CDF. Namely, we only use a parametric model of c(F1(x1), · · · , Fd(xd); θ). Specifically, we use

F̂j(xj) =
1

n

n∑
i=1

I(Xi,j ≤ xj)

as an estimator of Fj . Then we compute the likelihood function of θ

`c(θ|x) = log c(F̂1(x1), · · · , F̂d(xd); θ).

Note that F̂−1
j (Xi,j) is the normalized rank of Xi,j among X1,j , · · · , Xn,j . The normalized rank is the rank

divided by n. With this, one can use the MLE to find θ̂.

12.4.3 Nonparametric approach

Given that the copula C(u) = F (F−1
1 (u1), · · ·F−1

d (ud)), a simple nonparametric estimator is

Ĉ(u) = F̂ (F̂−1
1 (u1), · · · F̂−1

d (ud)),

where F̂ is the joint EDF of X1, · · · , Xd and F̂j is the marginal EDF.

While this estimator has nice theoretical properties, it does not give a smooth copula and we cannot use it
to estimate the copula density.

If the goal is to obtain a smooth copula or a copula density estimator, we may apply a density estimator
using Û1, · · · , Ûn,, where

Ûi,j = F̂j(Xi,j).

Namely, we first transform X1, · · · , Xn based on the marginal ranks so they become rank vectors Û1, · · · , Ûn.
Then we apply a nonparametric density estimator to Û1, · · · , Ûn. One can use the KDE, histogram, basis or
any estimator that will be suitable in this case.

12.5 Pair-copula and vine construction

The vine copula is a representation of the joint distribution using a set of bivariate copulas. To give a
concrete example, consider d = 4 cases. We can factorize the joint PDF as

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3). (12.3)
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Here is an interesting insight from the bivariate copula density. Any joint PDF of two variables, say X1, X2,
can be factorized as

p(x1, x2) = c12(F1(x1), F2(x2))p(x1)p(x2). (12.4)

The above factorization can be applied to conditional PDF as well:

p(x1, x2|xj) = c12|j(F1|j(x1|xj), F2|j(x2|xj))p(x1|xj)p(x2|xj) (12.5)

for j = 3, 4. Equation (??) further implies that

p(x1|x2, xj) =
p(x1, x2|xj)
p(x2|xj)

= c12|j(F1|j(x1|xj), F2|j(x2|xj))p(x1|xj).

Thus,

p(x2|x1) = c12(F1(x1), F2(x2))p(x2)

= c12 · p2,

p(x3|x1, x2) = c23|1(F2|1(x2|x1), F3|1(x3|x1))p(x3|x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1))c13(F1(x1), F3(x3))p(x3)

= c23|1 · c13 · p3

p(x4|x1, x2, x3) = c34|12(F3|12(x3|x1, x2), F4|12(x4|x1, x2))p(x4|x1, x2)

= c34|12 · c24|1 · c14 · p4.

As a result, equation (??) can be written as

p(x1, x2, x3, x4) = p1 · p2 · p3 · p4 · c12 · c13 · c14 · c23|1 · c24|1 · c34|12. (12.6)

Note that each copula here is a bivariate copula (the conditional component only affects the augment’s
distribution, not the copula function). So we only need specify/estimate each bivariate copula and the
corresponding conditional CDF to obtain an estimator of the joint PDF. The factorization in equation (??)
is known as Canonical vine representation (C-vine). It is called vine because there is an elegant graphical
representation of how each component is constructed; see the left panel of Figure ??.

An important note is that the factorization in equation (??) is NOT unique. The same joint distribution
can admit several different factorizations, which leads to different vine representations. The C-vine is one of
the most popular representation. Another popular factorization is the D-vine (D: drawable):

p(x1, x2, x3, x4) = p1 · p2 · p3 · p4 · c12 · c23 · c34 · c13|2 · c24|3 · c14|23. (12.7)

Equation (??) is based on the graph in the right panel of Figure ??.

This idea can be applied to any arbitrary d. So we can factorize the joint distribution using a vine copula
representation. Note that while different vine graphs lead to the same distribution, when we place parametric
models on copulas, they may lead to different joint distributions. So some works have been proposed to choose
the vine graph that is best fitted to the observed data. Formally, the ‘best fitted vine graph’ is under the
specific models of bivariate copulas. If we estimate all copulas (and conditional CDFs) nonparametrically,
any vine graph representation will eventually lead to the same distribution.

Here is a paper that provides a gentle introduction on vine copulas:

Czado, C. (2010). Pair-copula constructions of multivariate copulas. In Copula theory and its
applications (pp. 93-109). Springer, Berlin, Heidelberg. https://mediatum.ub.tum.de/doc/

1079253/file.pdf

https://mediatum.ub.tum.de/doc/1079253/file.pdf
https://mediatum.ub.tum.de/doc/1079253/file.pdf
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12.6 Compatibility and Fréchet classes

The compatibility is an important issue when we are trying to use copula to analyze the data. To give
a concrete example, consider three uniform random variables U1, U2, U3. When we analyze three variables
together, we use a 3-copula C(u1, u2, u3). If now we ignore one of the variable and focus on the other two,
we will be using 2-copula. There will be three possible 2-copulas C12, C13, C23, depending on which two
variables we are using. If we start with 3-copula and derive the implied 2-copula, we are generally fine. But
if we start with the three 2-copulas C12, C13, C23, we may not be able to find a 3-copula whose marginals
agree with these 2-copulas. Namely, any three arbitrary 2-copulas C12, C13, C23 may NOT lead to a 3-copula.
Given C12, C13, C23, if there exists a 3-copula whose marginals are these three, then we say that C12, C13,
C23 are compatible. If C12, C13, C23 are compatible, the set of 3-copulas with these three 2-copulas as the
marginals is called the Fréchet class.

There has been some results on the compatibility of 2-copula, see, e.g.,

Durante, F., Klement, E. P., & Quesada-Molina, J. J. (2007). Copulas: compatibility and Fréchet
classes. arXiv preprint arXiv:0711.2409.

But this is still an open question for general d-copula cases.


