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Lecture 11: Multiple hypothesis test
Instructor: Yen-Chi Chen

11.1 Introduction

The multiple hypothesis testing is the scenario that we are conducting several hypothesis tests at the same
time. Suppose we have n tests, each leads to a p-value. So we can view the ‘data’ as P1, · · · , Pn ∈ [0, 1],
where Pi is the p-value of the i-th test. We can think of this problem as conducting hypothesis tests of n
nulls: H1,0, · · · , Hn,0.

Example. As an illustration example, consider linear regression with a univariate response Y ∈ R and a
multivariate covariate X ∈ Rd. We consider a linear model: E(Y |X) = α + XTβ. A common scenario in
scientific study is to test if every coefficient is 0. Namely, the null hypotheses are

H1,0 : β1 = 0, H2,0 : β2 = 0, · · · , Hd,0 : βd = 0,

where β = (β1, · · · , βd)T . In this case, n = d.

A multiple testing procedure is a map Γ : [0, 1]n → [0, 1] the quantity Γ(P1, · · · , Pn) is the final threshold
we will be using. We reject the i-th null hypothesis if

Pi < Γ(P1, · · · , Pn).

The case where we do not perform any correct for multiple testing corresponds to the choice Γun(P1, · · · , Pn) =
α. It is known that such choice could lead to many falsely rejected null hypothesis. For instance, suppose
all null hypothesis are correct, we will reject about α proportion of them! The chance that we do not falsely
reject any null hypothesis is 1− (1− α)n, which will be close to 1 when n is large.

11.2 Familywise error rate (FWER) control: Bonferroni correc-
tion

The Bonferroni correction is a simple method that aims at controlling the Familywise error rate (FWER).
The FWER is the chance of making any type-1 error when we perform the hypothesis testing for all the n
tests. The usual type-1 error rate is P (reject H0;H0 is true). The FWER is

P (there exist i such that reject Hi,0;H0,i is true).

Namely, controlling FWER to be α means that we want to ensure that when we reject any null hypothesis,
the chance of falsely reject any null is less than α.

As we have argue, if we reject a null when the p-value is less than α, we may not be able to control the
FWER to be α.

The Bonferroni correction provides an elegant solution to this problem. Using the Bonferroni correction, we
reject null hypothesis i if

Pi < α/n.
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Suppose we have n = 100 tests and we want to control FWER at α = 0.05 (5%). We will reject any null
hypothesis if its p-value is less than 0.05/100 = 0.0005.

To see why Bonferroni correction leads to a FWER control, we consider the most extreme case that all null
hypotheses are correct. The FWER is

P (there exist i such that reject Hi,0;H0,i is true) = P (there exist i such that Pi < α/n)

= P (∪ni=1{Pi < α/n})

≤
n∑
i=1

P (Pi < α/n)

= n× α/n = α.

Note that Bonferroni correction controls the FWER at α regardless of the p-values are independent or not.
So it is a conservative approach.

The Bonferroni correction corresponds to the multiple testing procedure

ΓBC(P1, · · · , Pn) =
α

n
.

11.3 Controlling the FDR: BH approach

While Bonferroni correction is a simple method to control FWER, it tends to reject very few null hypothesis.
In some applied research, falsely rejecting a few hypotheses may not be a severe problem as long as the falsely
rejection proportion is small. This leads to another concept called false discovery rate (FDR).

The FDR is the expected proportion of falsely rejected null hypothesis. In multiple testing, given any
threshold Γ(P1, · · · , Pn) = γ, the final result can be viewed as in the following table (note that this table is
unknown to us but we can think of that there exists such table):

Correct hypothesis Not Reject Reject Total
H0 U V n0
H1 T S n1

W R n

Namely, V is the total number of correct nulls but we falsely reject them and S is the total number of
incorrect nulls and we successfully reject them. The FWER is the probability P (V = 0).

With the above table, the FDR is the quantity

FDR = E
(

V

R ∨ 1

)
,

where R∨ 1 = max{R, 1}. Sometimes people will write it as FDR = E
(
V
R

)
. We modify the denominator to

avoid problems when R = 0.

Formally, if we use a multiple testing procedure with threshold Γ(P1, · · · , Pn) = γ, quantities in Table (11.3)
may depends on γ. A proper way to write it is Table 11.3.

So the FWER when we use the procedure Γ(P1, · · · , Pn) = γ is FWER(γ) = P (Vγ > 0) and the FDR is

FDR(γ) = E
(

Vγ
Rγ ∨ 1

)
.
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Correct hypothesis Not Reject Reject Total
H0 Uγ Vγ n0
H1 Tγ Sγ n1

Wγ Rγ n

As we have seen in the Bonferroni correction, choosing γ = α/n controls FWER to be α. How should we
choose γ to control the FDR?

The Benjamini-Hochberg (BH) approach is a very popular method to control the FDR at α. It is based on
a simple reference rule from ordered p-values. Let

P(1) ≤ P(2) ≤ · · · ≤ P(n)

be the ordered p-values. The BH procedure first finds the number

k̂ = max

{
k : p(k) ≤

k

n
α

}
. (11.1)

And then reject all the null hypotheses with p-values less than the k̂-th smallest p-value. Namely, the
threshold is

ΓBH(P1, · · · , Pn) = p(k̂) =
k̂

n
α.

It was proved in

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B (Method-
ological), 57(1), 289-300.

11.4 Controlling the FDR: Storey’s approach

In this section, we introduce a famous approach to control the FDR called Storey’s approach, which is based
on the following paper:

Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64(3), 479-498.

Storey’s approach is an asymptotic method for controlling the FDR that has a much better power than the
BH approach. Storey’s idea is to view the multiple testing as a random procedure as follows.

Suppose we have n hypothesis, each hypothesis can be viewed as IID Bernoulli random variablesA1, · · · , An ∼
Ber(1− π0) such that Ai = 0 if the null hypothesis Hi,0 is correct. The proportion π0 can be viewed as the
proportion of null hypothesis. Let P1, · · · , Pn be the p-values of each test. We assume that P1, · · · , Pn are in-
dependent (but not necessarily identically distributed). Note that the above stochastic model on hypothesis
was first appeared in

Efron, B., Tibshirani, R., Storey, J. D., & Tusher, V. (2001). Empirical Bayes analysis of a
microarray experiment. Journal of the American statistical association, 96(456), 1151-1160.
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If we reject all p-values less than γ, the FDR can be written as the following probability:

FDR(γ) = P (A = 0|P < γ) =
P (A = 0, P < γ)

P (P < γ)
=
P (P < γ|A = 0)P (A = 0)

P (P < γ)
=

γπ0
P (P < γ)

. (11.2)

Thus, for any γ, we can estimate its FDR by

F̂DR(γ) =
γπ̂0

P̂ (P < γ)
, (11.3)

where

P̂ (P < γ) =
1

n

n∑
i=1

I(Pi < γ) =
R

n

and p̂i0 is some suitable estimator of π0, the proportion of null hypothesis.

Storey has a key insight on how to estimate π0. We know that large p-values are mostly from the null
hypothesis, i.e., for λ >> 0, P (P > λ|A = 1) ≈ 0, and the p-value under H0 will be from a uniform
distribution over [0, 1]. This implies that

P (P > λ) = P (P > λ,A = 1) + P (P > λ,A = 0)

= P (P > λ|A = 1)︸ ︷︷ ︸
≈0

P (A = 1) + P (P > λ|A = 0)P (A = 0)

≈ (1− λ)π0.

The probability P (P > λ) can be estimated by empirical proportion P̂ (P > λ) = 1
n

∑n
i=1 I(Pi > λ), which

leads to the estimator

π̂0,λ =
1

n(1− λ)

n∑
i=1

I(Pi > λ). (11.4)

Therefore, we obtain an elegant estimator of FDR(γ) as

F̂DR
†
λ(γ) =

γnπ̂0,λ
R

=
γ

(1− λ)R

n∑
i=1

I(Pi > λ) =
γnπ̂0,λ

1
n

∑n
i=1 I(Pi < γ)

. (11.5)

Note that the total number of rejected nulls R = Rγ =
∑n
i=1 I(Pi < γ). In finite sample case, we may have

R = 0 so the above estimator is often refined as

F̂DRλ(γ) =
γ

(1− λ)(R ∨ 1)

n∑
i=1

I(Pi > λ).

The quantity λ is a tuning parameter in this procedure.

Note that sometimes we may be interested in the positive FDR (pFDR)

pFDR(γ) = E
(
V

R
|R > 0

)
= FDR(γ)/P (R > 0).

In this case, we can estimate P (R > 0) via 1− (1− π0)n so an estimator of pFDR is

p̂FDRλ(γ) =
F̂DRλ(γ)

1− (1− π̂0,λ)n
.

While this idea is elegant, it estimates the FDR asymptotically. So in the finite sample case, we may not be
able to control FDR exactly.
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Finally, a simple threshold to control the FDR to be α is via rejecting all null hypothesis whose p-value is
less than γ̂α, where

γ̂α,λ = sup

{
γ :

π̂0,λγ
1
n

∑n
i=1 I(Pi < γ)

≤ α
}
. (11.6)

Using the notation at the beginning, this corresponds to the multiple testing procedure

ΓST,λ(P1, · · · , Pn) = γ̂α,λ = sup

{
γ :

π̂0,λγ
1
n

∑n
i=1 I(Pi < γ)

≤ α
}
.

The threshold in equation (11.6) corresponds to a population threshold

γ∗α = γα(π0, G) = sup

{
γ :

π0 · γ
G(γ)

≤ α
}
,

where G(t) = P (P < t) is the marginal distribution of p-values. If we have any estimator of π0 and G, we
can use it to form a plug-in estimate of the threshold. The threshold γα(π0, G) is called oracle threshold in
the following paper:

[GW2004] Genovese, C., & Wasserman, L. (2004). A stochastic process approach to false discov-
ery control. The annals of statistics, 32(3), 1035-1061.

The Storey’s approach corresponds to the threshold γα(π̂0,λ, Ĝ), where Ĝ is the empirical distribution and

you can show that the BH approach corresponds to γα(1, Ĝ).

11.4.1 Connection to BH approach

Using equation (11.2), we can show that BH approach is a conservative method that controls the asymptotic
FDR at α · π0, rather than α.

Recall that in BH approach, we reject all null hypothesis whose p-value is less than k̂
nα, where k̂ =

max
{
k : p(k) ≤ k

nα
}

is from equation (11.1). Using equation (11.2), the choice γ = k̂
nα controls the FDR at

k̂
nαπ0

k̂/n
= απ0.

Note that we replace P (P < γ) by P̂ (P < k̂
nα) = k̂

n . As a result, choose γ that controls F̂DRλ(γ) < α
will lead to a more powerful method (compared to the BH approach) that asymptotically controls the same
FDR at α

11.4.2 Identifiability issue

While the stochastic model on multiple testing is appealing, it may not be identifiable. Namely, given the
same distribution that we can observed (G: p-value distribution), there could be different pairs (π, F ) such
that

G(t) = π · t+ (1− π) · F (t),

where π = P (A = 0) is the chance of null hypothesis is correct and F is the p-value distribution under H1.
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A simple assumption to identification is to assume that the CDF F is pure, i.e., the essential infimum1 of its
PDF f is 0. One way to think of this is that we need the PDF of F to drop to 0 at some point inside [0, 1],
so the density at that point is completely from the density of uniform (p-value density under null), which
uniquely determines the proportion π. See Section 3.1 of [GW2004].

11.5 False discovery/negative processes

Given a threshold γ, we define the false discovery process (FDP) as

FDP (γ) =

∑n
i=1 I(Pi < γ)Ai∑n

i=1 I(Pi < γ) + I(all Pi ≥ γ)

and the false negative process (FNP) as

FNP (γ) =

∑n
i=1 I(Pi ≥ γ)(1−Ai)∑n

i=1 I(Pi ≥ γ) + I(all Pi < γ)
.

They both are stochastic processes (indexed by γ). Moreover,

E(FDP (γ)) = FDR(γ), E(FNP (γ)) = FNR(γ),

where FNR is the false negative rate.

1see https://en.wikipedia.org/wiki/Essential_supremum_and_essential_infimum

https://en.wikipedia.org/wiki/Essential_supremum_and_essential_infimum
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