Lecture 9: Order Statistics from a Continuous Univariate Distribution

Instructor: Yen-Chi Chen

Let X_{1}, \cdots, X_{n} be IID continuous R.V.'s with a PDF $p_{X}(x)$ and a CDF $F_{X}(x)$. Since they are continuous R.V.s, we assume that they all take distinct values. The order statistics $Y_{1}<Y_{2}<\cdots<Y_{n}$ are the ordered version of these n random variables such that Y_{j} is the j-th smallest values among $\left\{X_{1}, \cdots, X_{n}\right\}$. Thus,

$$
\begin{aligned}
Y_{1} & =\min \left\{X_{1}, \cdots, X_{n}\right\} \\
Y_{n} & =\max \left\{X_{1}, \cdots, X_{n}\right\}
\end{aligned}
$$

Sometimes, we use the notation $X_{(j)}=Y_{j}$. An interesting note: the mapping

$$
\left(X_{1}, \cdots, X_{n}\right) \rightarrow\left(Y_{1}, \cdots, Y_{n}\right)
$$

is not $1-1$ but ($\mathrm{n}!)-1$. This is due to the fact that any of the n ! permutation among X_{1}, \cdots, X_{n} will lead to the same order statistics.

The PDF of Y_{i} 's are associated with the PDF of X_{i} 's:

- Distribution of Y_{j}. Using the fact that

$$
p_{Y_{j}}(y) d y \approx P\left(y \leq Y_{j} \leq y+d y\right)
$$

and the event

$$
\left\{y \leq Y_{j} \leq y+d y\right\}
$$

is approximately the same as
$\left\{(i-1)\right.$ of X_{i} 's are below y and $(n-i)$ of X_{i} 's are above $y+d y$ and one X_{i} falls within $\left.[y, y+d y]\right\}$.
So we conclude

$$
\begin{aligned}
p_{Y_{j}}(y) d y & \approx P\left(y \leq Y_{j} \leq y+d y\right) \\
& =\binom{n}{j-1} F_{X}(y)^{j-1}\binom{n-j+1}{n-j}\left(1-F_{X}(y)\right)^{n-j} p_{X}(y) d y \\
& =\frac{n!}{(j-1)!(n-j)!} F_{X}(y)^{j-1}\left(1-F_{X}(y)\right)^{n-j} p_{X}(y) d y
\end{aligned}
$$

Thus,

$$
p_{Y_{j}}(y) \approx \frac{n!}{(j-1)!(n-j)!} F_{X}(y)^{j-1}\left(1-F_{X}(y)\right)^{n-j} p_{X}(y)
$$

- Distribution of Y_{j}, Y_{ℓ}. WLOG, we assume $j<\ell$. Using the fact that

$$
p_{Y_{j}, Y_{\ell}}(y, z) d y d z \approx P\left(y \leq Y_{j} \leq y+d y, z \leq Y_{\ell} \leq z+d z\right)
$$

and the event

$$
\left\{y \leq Y_{j} \leq y+d y, z \leq Y_{\ell} \leq z+d z\right\}
$$

is approximated by the event that

1. $(i-1) X_{i}$'s are below y,
2. one X_{i} is within $[y, y+d y]$,
3. $\ell-j-1 X_{i}$'s are between $(y+d y, z)$,
4. one X_{i} is within $[z, z+d z]$,
5. the remaining $n-\ell X_{i}$'s are above $z+d x$.

The probability of the above event is about

$$
\frac{n!}{(j-1)!1(\ell-j-1)!1(n-\ell)!} F_{X}(y)^{j-1} p_{X}(y) d y\left(F_{X}(z)-F_{X}(y)\right)^{(\ell-j-1)} p_{X}(z) d z\left(1-F_{X}(z)\right)^{n-\ell}
$$

Thus,

$$
p_{Y_{j}, Y_{\ell}}(y, z) \approx \frac{n!}{(j-1)!1(\ell-j-1)!1(n-\ell)!} F_{X}(y)^{j-1} p_{X}(y)\left(F_{X}(z)-F_{X}(y)\right)^{(\ell-j-1)} p_{X}(z)\left(1-F_{X}(z)\right)^{n-\ell}
$$

You can generalize this method to the joint distribution of more order statistics.

- Distribution of $\left(Y_{1}, \cdots, Y_{n}\right)$. On this extreme end, you can apply the same procedure and you will end up with

$$
p\left(y_{1}, \cdots, y_{n}\right)=n!p_{X}\left(y_{1}\right) \cdots p_{X}\left(y_{n}\right)
$$

9.1 Case study: uniform distribution

Consider the case where X_{1}, \cdots, X_{n} are IID from Uni $[0,1]$. Then $p_{X}(x)=1$ and $F_{X}(x)=x$ when $x \in[0,1]$. Thus,

$$
p_{Y_{j}}(y)=\frac{n!}{(j-1)!(n-j)!} y^{j-1}(1-y)^{n-j}
$$

which is the PDF of $\operatorname{Beta}(j, n-j+1)$.
Here is an interest note about the variance. The variance of Y_{j} is

$$
\operatorname{Var}\left(Y_{j}\right)=\operatorname{Var}\left(X_{j}\right)=\frac{j(n-j+1)}{(n+1)^{2}(n+2)}
$$

which is maximized when $j=\frac{n+1}{2}$ assuming n is an odd number. The value $j=\frac{n+1}{2}$ corresponds to the 'median' of $\left\{X_{1}, \cdots, X_{n}\right\}$. Thus, the median has the highest variability. In this case,

$$
\operatorname{Var}\left(Y_{\frac{n+1}{2}}\right)=\frac{1}{4(n+2)}=O\left(n^{-1}\right)
$$

On the other hand, the maximal or minimal value has the lowest variance:

$$
\operatorname{Var}\left(Y_{1}\right)=\operatorname{Var}\left(Y_{n}\right)=\frac{n}{(n+1)^{2}(n+2)}=O\left(n^{-2}\right)
$$

Now we consider another way to look at the order statistics. Let $W_{1}, \cdots, W_{n}, W_{n+1}$ be the 'spacing' between
consecutive order statistics:

$$
\begin{aligned}
W_{1} & =Y_{1}-0 \\
W_{2} & =Y_{2}-Y_{1} \\
W_{3} & =Y_{3}-Y_{2} \\
\vdots & \\
W_{n} & =Y_{n}-Y_{n-1} \\
W_{n+1} & =1-Y_{n} .
\end{aligned}
$$

It is easy to see that $W_{i} \in[0,1]$ and $W_{1}+W_{2}+\cdots+W_{n+1}=1$. Also, we can reparametrize Y_{j} via W_{i} 's:

$$
Y_{j}=W_{1}+W_{2}+\cdots+W_{j}
$$

Since X_{i} 's are uniform over $[0,1]$, the joint PDF of Y_{1}, \cdots, Y_{n} is

$$
p\left(y_{1}, \cdots, y_{n}\right)=n!
$$

whenever $0<y_{1}<\cdots<y_{n}<1$. By the Jacobian method with the fact that $\operatorname{det}\left(\frac{d Y}{d W}\right)=1$ (think about why), we conclude that

$$
p\left(w_{1}, \cdots, w_{n}\right)=n!
$$

whenever $w_{i} \in[0,1]$ and $w_{1}+\cdots+w_{n}<1$. One can easily see that $p\left(w_{1}, \cdots, w_{n}\right)$ is invariant under the permutation of W_{1}, \cdots, W_{n} (i.e., they are exchangeable), so the marginal distribution of W_{i} is the same as the marginal distribution of W_{j} for all $i, j=1, \cdots, n$. Because $W_{1}=Y_{1}$ follows from Beta($1, n$), we conclude that W_{j} is a $\operatorname{Beta}(1, n)$ random variable.

Note that W_{i} and W_{j} are dependent $(i \neq j)$! Due to the exchangeability property, the joint distribution (W_{i}, W_{j}) is the same as the joint distribution of W_{1}, W_{2}, so

$$
\begin{aligned}
\operatorname{Cov}\left(W_{i}, W_{j}\right) & =\operatorname{Cov}\left(W_{1}, W_{2}\right) \\
& =\frac{1}{2}\left(\operatorname{Var}\left(W_{1}+W_{2}\right)-\operatorname{Var}\left(W_{1}\right)-\operatorname{Var}\left(W_{2}\right)\right) \\
& =\frac{1}{2}\left(\operatorname{Var}\left(Y_{2}\right)-2 \operatorname{Var}\left(Y_{1}\right)\right) \\
& =\frac{1}{2}\left(\frac{2(n-1)}{(n+1)^{2}(n+2)}-2 \frac{n)}{(n+1)^{2}(n+2)}\right) \\
& =\frac{-1}{(n+1)^{2}(n+2)}<0
\end{aligned}
$$

