
STAT 512: Statistical Inference Autumn 2020

Lecture 7: Multinomial distribution
Instructor: Yen-Chi Chen

The multinomial distribution is a common distribution for characterizing categorical variables. Suppose a
random variable Z has k categories, we can code each category as an integer, leading to Z ∈ {1, 2, · · · , k}.
Suppose that P (Z = k) = pk. The parameter {p1, · · · , pk} describes the entire distribution of k (with the
constraint that

∑
j pj = 1). Suppose we generate Z1, · · · , Zn IID from the above distributions and let

Xj =

n∑
i=1

I(Zi = j) = # of observations in the category j.

Then the random vector X = (X1, · · · , Xk) is said to be from a multinomial distribution with parameter
(n, p1, · · · , pk). We often write

X ∼Mk(n; p1, · · · , pk)

to denote a multinomial distribution.

Example (pet lovers). The following is a hypothetical dataset about how many students prefer a particular
animal as a pet. Each row (except the ‘total’) can be viewed as a random vector from a multinomial
distribution. For instance, the first row (18, 20, 6, 4, 2) can be viewed as a random draw from a multinomial
distribution M5(n = 50; p1, · · · , p5) . The second and the third row can be viewed as other random draws
from the same distribution.

cat dog rabbit hamster fish total
Class 1 18 20 6 4 2 50
Class 2 15 15 10 5 5 50
Class 3 17 18 8 4 3 50

7.1 Properties of multinomial distribution

The PMF of a multinomial distribution has a simple closed-form. If X ∼Mk(n; p1, · · · , pk), then

p(X = x) = p(X1 = x1, · · · , Xk = xk) =
n!

x1!x2! · · ·xk!
px1

1 · · · p
xk

k .

The multinomial coefficient n!
x1!x2!···xk! =

(
n

x1,··· ,xn

)
is the number of possible ways to put n balls into k boxes.

The famous multinomial expansion is

(a1 + a2 + · · ·+ ak)n =
∑

xi≥0,
∑

i xi=n

n!

x1!x2! · · ·xk!
ax1

1 ax2
2 · · · a

xk

k .

This implies that
∑
xi≥0,

∑
i xi=n

p(X = x) = 1.
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By the construction of a multinomial Mk(n; p1, · · · , pk), one can easily see that if X ∼ Mk(n; p1, · · · , pk),
then

X =

n∑
i=1

Yi,

where Y1, · · · , Yn ∈ {0, 1}k are IID multinomial random variables from Mk(1; p1, · · · , pk).

Thus, the moment generating function of X is

MX(s) = E[es
TX ] = E[es

TY1 ]n =

 k∑
j=1

pje
sj

n

The multinomial distribution has a nice additive property. Suppose X ∼ Mk(n; p1, · · · , pk) and V ∼
Mk(m; p1, · · · , pk) and they are independent. It is easy to see that

X + V ∼Mk(n+m; p1, · · · , pk).

Suppose we focus on one particular category j, then you can easily show that

Xj ∼ Bin(n, pj).

Note that X1, · · · , Xk are not independent due to the constraint that X1 +X2 + · · ·+Xk = n. Also, for any
Xi and Xj , you can easily show that

Xi +Xj ∼ Bin(n, pi + pj).

An intuitive way to think of this is that the number Xi+Xj is the number of observations in either category
i or categoery j. So we are essentially pulling two categories together.

7.2 Conditional distribution of multinomials

The multinomial distribution has many interesting properties when conditioned on some other quantities.
Here we illustrate the idea using a four category multinomial distribution but the idea can be generalized to
other more sophisticated scenarios.

Let X = (X1, X2, X3, X4) ∼ M4(n; p1, p2, p3, p4). Suppose we combine the last two categories into a new
category. Let W = (W1,W2,W3) be the resulting random vector. By construction, W3 = X3 + X4 and
W1 = X1,W2 = X2. Also, it is easy to see that

W ∼M3(n, q1, q2, q3), q1 = p1, q2 = p2, q3 = p3 + p4.

So pulling two or more categories together will result in a new multinomial distribution.

Let Y = (Y1, Y2) such that Y1 = X1 + X2 and Y2 = X3 + X4. We know that Y ∼ M2(n; p1 + p2, p3 + p4).
What will the conditional distribution of X|Y be?

p(X = x|Y = y) =
p(x1, x2, x3, x4)

p(y1, y2)
I(y1 = x1 + x2, y2 = x3 + x4)

=
n!

x1!x2!x3!x4!p
x1
1 px2

2 px3
3 px4

4

n!
y1!y2! (p1 + p2)y1(p3 + p4)y2

I(y1 = x1 + x2, y2 = x3 + x4)

=
(x1 + x2)!

x1!x2!

(
p1

p1 + p2

)x1
(

p2

p1 + p2

)x2

× (x3 + x4)!

x3!x4!

(
p3

p3 + p4

)x3
(

p4

p3 + p4

)x4

= p(x1, x2|y1)p(x3, x4|y2)
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so we conclude that (1)
(X1, X2) ⊥ (X3, X4)|Y,

i.e., they are conditionally independent, and (2)

X1, X2|X1+X2 ∼M2

(
X1 +X2;

p1

p1 + p2
,

p2

p1 + p2

)
, X3, X4|X3+X4 ∼M2

(
X3 +X4;

p3

p3 + p4
,

p4

p3 + p4

)
.

Because X1 +X2 = n−X3 −X4, the above result also implies that

X1, X2|X3, X4
d
= X1, X2|n−X3 −X4 ∼M2

(
n−X3 −X4;

p1

p1 + p2
,

p2

p1 + p2

)
,

where X
d
= Y means that the two random variables have the same distribution. Thus, one can see that

(X1, X2) and (X3, X4) are negatively correlated.

General case. Suppose that we can partition X1, · · · , Xk into r blocks

(X1, · · · , Xk1)︸ ︷︷ ︸
B1

, (Xk1+1, · · · , Xk2)︸ ︷︷ ︸
B2

, · · · , (Xkr−1+1, · · ·Xkr )︸ ︷︷ ︸
Br

.

Then we have B1, · · · , Br are conditionally independent given S1, · · · , Sr, where S1 =
∑k1
i=1Xi =

∑
j Bi,j

and Sr =
∑kr
i=kr−1

Xi =
∑
j Br,j are the block-specific sum.

Also,

Bj |Sj ∼Mkj−kj−1

Sj ; pkj−1+1∑kj
`=kj−1+1 p`

, · · · ,
pkj∑kj

`=kj−1+1 p`

 .

Now we turn to a special case, consider X ∼ Mk(n; p1, · · · , pk). We focus on only two variables Xi and Xj

(i 6= j). What will the conditional distribution of Xi|Xj be?

Using the above formula, we choose r = 2 and the first block contains everything except Xj and the second
block only contains Xj . This implies that S1 = n− S2 = n−Xj . Thus,

(X1, · · · , Xj−1, Xj+1, · · · , Xk)|Xj
d
= (X1, · · · , Xj−1, Xj+1, · · · , Xk)|n−Xj ∼Mk−1

(
n−Xj ;

p1

1− pj
, · · · , pk

1− pj

)
.

So the marginal distribution

Xi|Xj ∼ Bin

(
n−Xj ,

pi
1− pj

)
.

As a result, we see that Xi and Xj are negatively correlated. Also,

Cov(Xi, Xj) = E[Cov(Xi, Xj |Xj)︸ ︷︷ ︸
=0

] + Cov(E[Xi|Xj ],E[Xj |Xj ]︸ ︷︷ ︸
=Xj

)

= Cov(E[Xi|Xj ], Xj)

= Cov

(
(n−Xj)

pi
1− pj

, Xj

)
= − pi

1− pj
Var(Xj)

= −npipj .
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7.3 Estimating the parameter of multinomials

In reality, we observe a random vector X from a multinomial distribution. We often know the total number
of individuals n but the parameters p1, · · · , pk are often unknown that have to be estimated. Here we will
explain how to use the MLE to estimate the parameter.

In a multinomial distribution, the parameter space is Θ = {(p1, · · · , pk) : 0 ≤ pj ,
∑k
j=1 pj = 1}. We observe

the random vector X = (X1, · · · , Xk) ∼Mk(n; p1, · · · , pk). In this case, the likelihood function is

Ln(p1, · · · , pk|X) =
n!

X1! · · ·Xk!
pX1

1 · · · p
Xk

k

and the log-likelihood function is

`n(p1, · · · , pk|X) =

k∑
j=1

Xj log pj + Cn,

where Cn a constant is independent of p. Note that naively computing the score function and set it to be 0
will not grant us a solution (think about why) because we do not use the constraint of the parameter space
– the parameters are summed to 1. To use this constraint in our analysis, we consider adding the Lagrange
multipliers and optimize it:

F (p, λ) =

k∑
j=1

Xj log pj + λ

1−
k∑
j=1

pj

 .

Differentiating this function with respect to p1, · · · , pk, and λ and set it to be 0 gives

∂F

∂pj
=
Xj

pj
− λ⇒ Xj = λ̂ · p̂MLE,j

and 1 −
∑k
j=1 p̂MLE,j = 0. Thus, n =

∑k
j=1Xj = λ̂

∑k
j=1 pj = λ̂ so p̂MLE,j =

Xj

n , which is just the
proportion of category j.

7.4 Dirichlet distribution

The Dirichlet distribution is a distribution of continuous random variables relevant to the Multinomial
distribution. Sampling from a Dirichlet distribution leads to a random vector with length k and each
element of this vector is non-negative and summation of elements is 1, meaning that it generates a random
probability vector.

The Dirichlet distribution is a multivariate distribution over the simplex
∑k
i=1 xi = 1 and xi ≥ 0. Its

probability density function is

p(x1, · · · , xk;α1, · · · , αk) =
1

B(α)

k∏
i=1

xαi−1
i ,

where B(α) =
∏k

i=1 Γ(α)

Γ(
∑k

i=1 αi)
with Γ(a) being the Gamma function and α = (α1, · · · , αK) are the parameters of

this distribution.

You can view it as a generalization of the Beta distribution. For Z = (Z1, · · · , Zk) ∼ Dirch(α1, · · · , αk),
E(Zi) = αi∑k

j=1 αj
and the mode of Zi is αi−1∑k

j=1 αj−k
so each parameter αi determines the relative importance
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of category (state) i. Because it is a distribution putting probability over K categories, Dirchlet distribution
is very popular in social sciences and linguistics analysis.

The Dirchlet distribution is often used as a prior distribution for the multinomial parameter p1, · · · , pk in
Bayesian inference. The fact that it generates a probability vector makes it an excellent candidate for this
job.

Let p = (p1, · · · , pk). Assume that

X|p = (X1, · · · , Xk)|p ∼Mk(n; p1, · · · , pk)

and we place a prior
p ∼ Dirch(α1, · · · , αk).

The two distributional assumptions imply that the posterior distribution of p will be

π(p|X) ∝ n!

x1!x2! · · ·xk!
px1

1 · · · p
xk

k ×
1

B(α)
pα1−1

1 · · · pαk−1
k

∝ px1+α1−1
1 · · · pxk+αk−1

k

∼ Dirch(x1 + α1, · · · , xk + αk).

If we use the posterior mean as our estimate, then

p̂π,i =
xi + αi∑k
j=1 xj + αj

,

which is the MLE when we observe the counts x′ = (x′1, · · · , x′k) such that x′j = xj + αj (but note that αj
does not have to be an integer). So the prior parameter αj can be viewed as a pseudo count of the category
j before collecting the data.
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