STAT 512: Statistical Inference

Autumn 2020

Lecture 7: Multinomial distribution

Instructor: Yen-Chi Chen

The multinomial distribution is a common distribution for characterizing categorical variables. Suppose a random variable Z has k categories, we can code each category as an integer, leading to $Z \in\{1,2, \cdots, k\}$. Suppose that $P(Z=k)=p_{k}$. The parameter $\left\{p_{1}, \cdots, p_{k}\right\}$ describes the entire distribution of k (with the constraint that $\sum_{j} p_{j}=1$). Suppose we generate Z_{1}, \cdots, Z_{n} IID from the above distributions and let

$$
X_{j}=\sum_{i=1}^{n} I\left(Z_{i}=j\right)=\# \text { of observations in the category } j
$$

Then the random vector $X=\left(X_{1}, \cdots, X_{k}\right)$ is said to be from a multinomial distribution with parameter $\left(n, p_{1}, \cdots, p_{k}\right)$. We often write

$$
X \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)
$$

to denote a multinomial distribution.
Example (pet lovers). The following is a hypothetical dataset about how many students prefer a particular animal as a pet. Each row (except the 'total') can be viewed as a random vector from a multinomial distribution. For instance, the first row $(18,20,6,4,2)$ can be viewed as a random draw from a multinomial distribution $M_{5}\left(n=50 ; p_{1}, \cdots, p_{5}\right)$. The second and the third row can be viewed as other random draws from the same distribution.

	cat	dog	rabbit	hamster	fish	total
Class 1	18	20	6	4	2	50
Class 2	15	15	10	5	5	50
Class 3	17	18	8	4	3	50

7.1 Properties of multinomial distribution

The PMF of a multinomial distribution has a simple closed-form. If $X \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)$, then

$$
p(X=x)=p\left(X_{1}=x_{1}, \cdots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
$$

The multinomial coefficient $\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!}=\binom{n}{x_{1}, \cdots, x_{n}}$ is the number of possible ways to put n balls into k boxes. The famous multinomial expansion is

$$
\left(a_{1}+a_{2}+\cdots+a_{k}\right)^{n}=\sum_{x_{i} \geq 0, \sum_{i} x_{i}=n} \frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{k}^{x_{k}}
$$

This implies that $\sum_{x_{i} \geq 0, \sum_{i} x_{i}=n} p(X=x)=1$.

By the construction of a multinomial $M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)$, one can easily see that if $X \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)$, then

$$
X=\sum_{i=1}^{n} Y_{i}
$$

where $Y_{1}, \cdots, Y_{n} \in\{0,1\}^{k}$ are IID multinomial random variables from $M_{k}\left(1 ; p_{1}, \cdots, p_{k}\right)$.
Thus, the moment generating function of X is

$$
M_{X}(s)=\mathbb{E}\left[e^{s^{T} X}\right]=\mathbb{E}\left[e^{s^{T} Y_{1}}\right]^{n}=\left(\sum_{j=1}^{k} p_{j} e^{s_{j}}\right)^{n}
$$

The multinomial distribution has a nice additive property. Suppose $X \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)$ and $V \sim$ $M_{k}\left(m ; p_{1}, \cdots, p_{k}\right)$ and they are independent. It is easy to see that

$$
X+V \sim M_{k}\left(n+m ; p_{1}, \cdots, p_{k}\right)
$$

Suppose we focus on one particular category j, then you can easily show that

$$
X_{j} \sim \operatorname{Bin}\left(n, p_{j}\right)
$$

Note that X_{1}, \cdots, X_{k} are not independent due to the constraint that $X_{1}+X_{2}+\cdots+X_{k}=n$. Also, for any X_{i} and X_{j}, you can easily show that

$$
X_{i}+X_{j} \sim \operatorname{Bin}\left(n, p_{i}+p_{j}\right)
$$

An intuitive way to think of this is that the number $X_{i}+X_{j}$ is the number of observations in either category i or categoery j. So we are essentially pulling two categories together.

7.2 Conditional distribution of multinomials

The multinomial distribution has many interesting properties when conditioned on some other quantities. Here we illustrate the idea using a four category multinomial distribution but the idea can be generalized to other more sophisticated scenarios.

Let $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \sim M_{4}\left(n ; p_{1}, p_{2}, p_{3}, p_{4}\right)$. Suppose we combine the last two categories into a new category. Let $W=\left(W_{1}, W_{2}, W_{3}\right)$ be the resulting random vector. By construction, $W_{3}=X_{3}+X_{4}$ and $W_{1}=X_{1}, W_{2}=X_{2}$. Also, it is easy to see that

$$
W \sim M_{3}\left(n, q_{1}, q_{2}, q_{3}\right), \quad q_{1}=p_{1}, q_{2}=p_{2}, q_{3}=p_{3}+p_{4}
$$

So pulling two or more categories together will result in a new multinomial distribution.
Let $Y=\left(Y_{1}, Y_{2}\right)$ such that $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{3}+X_{4}$. We know that $Y \sim M_{2}\left(n ; p_{1}+p_{2}, p_{3}+p_{4}\right)$. What will the conditional distribution of $X \mid Y$ be?

$$
\begin{aligned}
p(X=x \mid Y=y) & =\frac{p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{p\left(y_{1}, y_{2}\right)} I\left(y_{1}=x_{1}+x_{2}, y_{2}=x_{3}+x_{4}\right) \\
& =\frac{\frac{n!}{x_{1}!x_{2}!x_{3}!x_{4}!} p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} p_{4}^{x_{4}}}{\frac{n!}{y_{1}!y_{2}!}\left(p_{1}+p_{2}\right)^{y_{1}}\left(p_{3}+p_{4}\right)^{y_{2}}} I\left(y_{1}=x_{1}+x_{2}, y_{2}=x_{3}+x_{4}\right) \\
& =\frac{\left(x_{1}+x_{2}\right)!}{x_{1}!x_{2}!}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)^{x_{1}}\left(\frac{p_{2}}{p_{1}+p_{2}}\right)^{x_{2}} \times \frac{\left(x_{3}+x_{4}\right)!}{x_{3}!x_{4}!}\left(\frac{p_{3}}{p_{3}+p_{4}}\right)^{x_{3}}\left(\frac{p_{4}}{p_{3}+p_{4}}\right)^{x_{4}} \\
& =p\left(x_{1}, x_{2} \mid y_{1}\right) p\left(x_{3}, x_{4} \mid y_{2}\right)
\end{aligned}
$$

so we conclude that (1)

$$
\left(X_{1}, X_{2}\right) \perp\left(X_{3}, X_{4}\right) \mid Y
$$

i.e., they are conditionally independent, and (2)
$X_{1}, X_{2}\left|X_{1}+X_{2} \sim M_{2}\left(X_{1}+X_{2} ; \frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right), \quad X_{3}, X_{4}\right| X_{3}+X_{4} \sim M_{2}\left(X_{3}+X_{4} ; \frac{p_{3}}{p_{3}+p_{4}}, \frac{p_{4}}{p_{3}+p_{4}}\right)$.

Because $X_{1}+X_{2}=n-X_{3}-X_{4}$, the above result also implies that

$$
X_{1}, X_{2}\left|X_{3}, X_{4} \stackrel{d}{=} X_{1}, X_{2}\right| n-X_{3}-X_{4} \sim M_{2}\left(n-X_{3}-X_{4} ; \frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)
$$

where $X \stackrel{d}{=} Y$ means that the two random variables have the same distribution. Thus, one can see that $\left(X_{1}, X_{2}\right)$ and $\left(X_{3}, X_{4}\right)$ are negatively correlated.

General case. Suppose that we can partition X_{1}, \cdots, X_{k} into r blocks

$$
\underbrace{\left(X_{1}, \cdots, X_{k_{1}}\right)}_{B_{1}}, \underbrace{\left(X_{k_{1}+1}, \cdots, X_{k_{2}}\right)}_{B_{2}}, \cdots, \underbrace{\left(X_{k_{r-1}+1}, \cdots X_{k_{r}}\right)}_{B_{r}} .
$$

Then we have B_{1}, \cdots, B_{r} are conditionally independent given S_{1}, \cdots, S_{r}, where $S_{1}=\sum_{i=1}^{k_{1}} X_{i}=\sum_{j} B_{i, j}$ and $S_{r}=\sum_{i=k_{r-1}}^{k_{r}} X_{i}=\sum_{j} B_{r, j}$ are the block-specific sum.

Also,

$$
B_{j} \left\lvert\, S_{j} \sim M_{k_{j}-k_{j-1}}\left(S_{j} ; \frac{p_{k_{j-1}+1}}{\sum_{\ell=k_{j-1}+1}^{k_{j}} p_{\ell}}, \cdots, \frac{p_{k_{j}}}{\sum_{\ell=k_{j-1}+1}^{k_{j}} p_{\ell}}\right)\right.
$$

Now we turn to a special case, consider $X \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)$. We focus on only two variables X_{i} and X_{j} $(i \neq j)$. What will the conditional distribution of $X_{i} \mid X_{j}$ be?

Using the above formula, we choose $r=2$ and the first block contains everything except X_{j} and the second block only contains X_{j}. This implies that $S_{1}=n-S_{2}=n-X_{j}$. Thus,

$$
\left(X_{1}, \cdots, X_{j-1}, X_{j+1}, \cdots, X_{k}\right)\left|X_{j} \stackrel{d}{=}\left(X_{1}, \cdots, X_{j-1}, X_{j+1}, \cdots, X_{k}\right)\right| n-X_{j} \sim M_{k-1}\left(n-X_{j} ; \frac{p_{1}}{1-p_{j}}, \cdots, \frac{p_{k}}{1-p_{j}}\right)
$$

So the marginal distribution

$$
X_{i} \left\lvert\, X_{j} \sim \operatorname{Bin}\left(n-X_{j}, \frac{p_{i}}{1-p_{j}}\right)\right.
$$

As a result, we see that X_{i} and X_{j} are negatively correlated. Also,

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =\mathbb{E}[\underbrace{\operatorname{Cov}\left(X_{i}, X_{j} \mid X_{j}\right)}_{=0}]+\operatorname{Cov}(\mathbb{E}\left[X_{i} \mid X_{j}\right], \underbrace{\mathbb{E}\left[X_{j} \mid X_{j}\right]}_{=X_{j}}) \\
& =\operatorname{Cov}\left(\mathbb{E}\left[X_{i} \mid X_{j}\right], X_{j}\right) \\
& =\operatorname{Cov}\left(\left(n-X_{j}\right) \frac{p_{i}}{1-p_{j}}, X_{j}\right) \\
& =-\frac{p_{i}}{1-p_{j}} \operatorname{Var}\left(X_{j}\right) \\
& =-n p_{i} p_{j} .
\end{aligned}
$$

7.3 Estimating the parameter of multinomials

In reality, we observe a random vector X from a multinomial distribution. We often know the total number of individuals n but the parameters p_{1}, \cdots, p_{k} are often unknown that have to be estimated. Here we will explain how to use the MLE to estimate the parameter.
In a multinomial distribution, the parameter space is $\Theta=\left\{\left(p_{1}, \cdots, p_{k}\right): 0 \leq p_{j}, \sum_{j=1}^{k} p_{j}=1\right\}$. We observe the random vector $X=\left(X_{1}, \cdots, X_{k}\right) \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)$. In this case, the likelihood function is

$$
L_{n}\left(p_{1}, \cdots, p_{k} \mid X\right)=\frac{n!}{X_{1}!\cdots X_{k}!} p_{1}^{X_{1}} \cdots p_{k}^{X_{k}}
$$

and the log-likelihood function is

$$
\ell_{n}\left(p_{1}, \cdots, p_{k} \mid X\right)=\sum_{j=1}^{k} X_{j} \log p_{j}+C_{n}
$$

where C_{n} a constant is independent of p. Note that naively computing the score function and set it to be 0 will not grant us a solution (think about why) because we do not use the constraint of the parameter space - the parameters are summed to 1 . To use this constraint in our analysis, we consider adding the Lagrange multipliers and optimize it:

$$
F(p, \lambda)=\sum_{j=1}^{k} X_{j} \log p_{j}+\lambda\left(1-\sum_{j=1}^{k} p_{j}\right)
$$

Differentiating this function with respect to p_{1}, \cdots, p_{k}, and λ and set it to be 0 gives

$$
\frac{\partial F}{\partial p_{j}}=\frac{X_{j}}{p_{j}}-\lambda \Rightarrow X_{j}=\hat{\lambda} \cdot \hat{p}_{M L E, j}
$$

and $1-\sum_{j=1}^{k} \hat{p}_{M L E, j}=0$. Thus, $n=\sum_{j=1}^{k} X_{j}=\hat{\lambda} \sum_{j=1}^{k} p_{j}=\hat{\lambda}$ so $\hat{p}_{M L E, j}=\frac{X_{j}}{n}$, which is just the proportion of category j.

7.4 Dirichlet distribution

The Dirichlet distribution is a distribution of continuous random variables relevant to the Multinomial distribution. Sampling from a Dirichlet distribution leads to a random vector with length k and each element of this vector is non-negative and summation of elements is 1 , meaning that it generates a random probability vector.
The Dirichlet distribution is a multivariate distribution over the simplex $\sum_{i=1}^{k} x_{i}=1$ and $x_{i} \geq 0$. Its probability density function is

$$
p\left(x_{1}, \cdots, x_{k} ; \alpha_{1}, \cdots, \alpha_{k}\right)=\frac{1}{B(\alpha)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}
$$

where $B(\alpha)=\frac{\prod_{i=1}^{k} \Gamma(\alpha)}{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}$ with $\Gamma(a)$ being the Gamma function and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{K}\right)$ are the parameters of this distribution.

You can view it as a generalization of the Beta distribution. For $Z=\left(Z_{1}, \cdots, Z_{k}\right) \sim \operatorname{Dirch}\left(\alpha_{1}, \cdots, \alpha_{k}\right)$, $\mathbb{E}\left(Z_{i}\right)=\frac{\alpha_{i}}{\sum_{j=1}^{k} \alpha_{j}}$ and the mode of Z_{i} is $\frac{\alpha_{i}-1}{\sum_{j=1}^{k} \alpha_{j}-k}$ so each parameter α_{i} determines the relative importance
of category (state) i. Because it is a distribution putting probability over K categories, Dirchlet distribution is very popular in social sciences and linguistics analysis.

The Dirchlet distribution is often used as a prior distribution for the multinomial parameter p_{1}, \cdots, p_{k} in Bayesian inference. The fact that it generates a probability vector makes it an excellent candidate for this job.

Let $p=\left(p_{1}, \cdots, p_{k}\right)$. Assume that

$$
X\left|p=\left(X_{1}, \cdots, X_{k}\right)\right| p \sim M_{k}\left(n ; p_{1}, \cdots, p_{k}\right)
$$

and we place a prior

$$
p \sim \operatorname{Dirch}\left(\alpha_{1}, \cdots, \alpha_{k}\right)
$$

The two distributional assumptions imply that the posterior distribution of p will be

$$
\begin{aligned}
\pi(p \mid X) & \propto \frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \times \frac{1}{B(\alpha)} p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1} \\
& \propto p_{1}^{x_{1}+\alpha_{1}-1} \cdots p_{k}^{x_{k}+\alpha_{k}-1} \\
& \sim \operatorname{Dirch}\left(x_{1}+\alpha_{1}, \cdots, x_{k}+\alpha_{k}\right)
\end{aligned}
$$

If we use the posterior mean as our estimate, then

$$
\hat{p}_{\pi, i}=\frac{x_{i}+\alpha_{i}}{\sum_{j=1}^{k} x_{j}+\alpha_{j}}
$$

which is the MLE when we observe the counts $x^{\prime}=\left(x_{1}^{\prime}, \cdots, x_{k}^{\prime}\right)$ such that $x_{j}^{\prime}=x_{j}+\alpha_{j}$ (but note that α_{j} does not have to be an integer). So the prior parameter α_{j} can be viewed as a pseudo count of the category j before collecting the data.

