
STAT 512: Statistical Inference Autumn 2020

Lecture 6: Estimators
Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 7.2.

In statistics, we often encounter a problem where we observe a sequence of random variables (data)X1, · · · , Xn

that are a random sample from a population and we wish to use them to estimate some characteristics of
the population. A simple probabilistic model is that these X1, · · · , Xn are IID from an unknown PDF p. In
this model, the PDF p describes the population (and the underlying sampling scheme). So if we can infer p,
we can infer the underlying population.

A simple approach to this idea is to assume that p belongs to some parametric family. Namely, p(x) = p(x; θ),
where θ is the underlying parameter. In this case, we say that we are using a parametric model . For instance,
if we use the normal distribution as the parametric model, then θ = (µ, σ2) consists of the mean and variance
parameters.

Often we do not know θ so we have to use the data to estimate it. An estimator is a statistic W (X1, · · · , Xn)
such that we use W (X1, · · · , Xn) to estimate θ1. In this lecture, we will discuss some popular approaches
to finding a good estimator.

6.1 Method of moments estimator

The method of moments is a very simple but useful approach to finding an estimator. The idea is as follows.
For a parametric model p(x; θ), its moments are determined by the underlying parameter θ. For instance,
the first moment is

m1(θ) = E[X] =

∫
xp(x; θ)dx

and the second moment is

m2(θ) = E[X2] =

∫
x2p(x; θ)dx

The moments can be easily estimated using the data:

m̂j(θ) =
1

n

n∑
i=1

Xj
i

for each j = 1, 2, 3, · · · .

Suppose we have k parameters in the model, i.e., θ ∈ Rk, then we can use all the moments upto the k-th
moments, i.e.,

mj(θ) =

∫
xjp(x; θ)dx,

1The concept of estimator can be generalized to other parameter of interest, not necessarily a parameter in a parametric
model. For instance, we may be interested in the median of a distribution but we do not assume the distribution is Gaussian.
Later in Lecture 10 we will discuss this in a greater details.
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for j = 1, 2, 3, · · · , k. And compare them to the data to obtain a unique solution. Namely, we find θ that
solves the following equation

m1(θ) =
1

n

n∑
i=1

Xi

m2(θ) =
1

n

n∑
i=1

X2
i

...
...

mk(θ) =
1

n

n∑
i=1

Xk
i .

The resulting quantity θ̂MoM that solves the above equation is called the method of moment estimator.

Example: Normal distribution. Consider X1, · · · , Xn IID and we use a normal model. In this case, we
have two parameters µ and σ2. It is known that

m1(µ, σ2) = µ, m2(µ, σ2) = µ2 + σ2.

Thus, we immediately have

µ̂ = m̂1(µ̂, σ̂2) =
1

n

n∑
i=1

Xi

and

µ̂2 + σ̂2 = m̂2(µ̂, σ̂2) =
1

n
X2
i ,

which leads to

σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2.

Example: Uniform distribution. Suppose that X1, · · · , Xn ∼ Uni[0, θ]. We want to estimate θ. The
method of moment estimator will lead to

θ̂/2 = m̂1(θ) =
1

n

n∑
i=1

Xi

so θ̂ = 2
n

∑n
i=1Xi.

Example: Exponential distribution. Consider the case where we use the exponential distribution to
model X1, · · · , Xn. Since p(x;λ) = λe−λxI(x ≥ 0), we have

m1(λ) =
1

λ
.

As a result,

1

λ̂
= m̂1(λ̂) =

1

n

n∑
i=1

Xi.
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6.2 Maximum likelihood estimator

Another very popular estimator is the maximum likelihood estimator (MLE). The idea is very simple.
Suppose we observe only one observation X from a PDF/PMF p(x). The parametric model assumes that
such a PDF/PMF can be written as p(x) = p(x; θ), where θ is the parameter of the model (θ is often the
parameter of interest) inside a parameter space Θ (θ ∈ Θ). The idea of MLE is to ask the following question:
given the observation X, which θ is the most likely parameter that generates X? To answer this question,
we can vary θ and examine the value of p(X; θ).

Because we are treating X as fixed and θ being something that we want to optimize, we can view the problem
as finding the best θ such that the likelihood function L(θ|X) = p(X; θ) is maximized. The MLE uses
the θ that maximizes the likelihood value. Namely,

θ̂MLE = argmaxθL(θ|X).

When we have multiple observations X1, · · · , Xn, the likelihood function can be defined in a similar way –
we use the joint PDF/PMF to define the likelihood function. Let p(x1, · · · , xn; θ) be the joinr PDF/PMF.
Then the likelihood function is

Ln(θ) = L(θ|X1, · · · , Xn) = p(X1, · · · , Xn; θ).

Note that when we assume IID observations,

Ln(θ) =

n∏
i=1

L(θ|Xi) =

n∏
i=1

p(Xi; θ).

In many cases, instead of using the likelihood function, we often work with the log-likelihood function

`n(θ) = logLn(θ).

Because taking the logarithmic does not change the maximizer of a function, the maximizer of the log-
likelihood function is the same as the maximizer of the likelihood function. There are both computational
and mathematical advantages of using a log-likelihood function over likelihood function. To see this, we
consider the case of IID sample. Computationally, the likelihood function often has a very small value due to
the product form of PDF/PMFs. So it is very likely that the number if too small, making the computation
very challenging. Mathematically, when we take log of the likelihood function, the product of PDF/PMFs
becomes an additive form

`n(θ) = logLn(θ) =

n∑
i=1

log p(Xi; θ).

Under IID assumption, each log p(Xi; θ) is an IID random variable so the central limit theorem and the law
of large number can be applied to the average, making it possible to analyze it asymptotic behavior.

Since under the IID assumptions, we have many advantages, we will assume IID from now on. Because
MLE finds the maximum of `n(θ), a common trick to find MLE is to study the gradient of the log-likelihood
function, which is also known as the score function:

Sn(θ) =
∂

∂θ
`n(θ) =

n∑
i=1

s(θ|Xi),

where s(θ|Xi) = ∂
∂θ `(θ|Xi) = ∂

∂θ log p(Xi; θ). Under suitable conditions, the MLE satisfies the score equation:

Sn(θ̂MLE) = 0.
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Note that if there are more than one parameter, say θ ∈ Rp, the score equation will be a system of p
equations.

Because the MLE is at the maximal point of the likelihood function, the curvature of the likelihood function
around the maximal will determine its stability. To measure the curvature, we use the Fisher’s information
matrix:

In(θ) = −E
[

∂2

∂θ∂θT
`n(θ)

]
= n · I1(θ) = n · −E

[
∂2

∂θ∂θT
p(X1; θ)

]
.

If the data is generated from a PDF/PMF p(x; θ0) and some regularity conditions are satisfied,

E(Sn(θ0)) = 0, I1(θ0) = E(S1(θ0)ST1 (θ0)).

Moreover, √
n
(
θ̂MLE − θ0

)
D→ N(0, I−1

1 (θ)).

Namely, the MLE is asymptotically normally distributed around the true parameter θ0 and the covariance
is determined by the Fisher’s information matrix. Note that the asymptotic normality also implies that

θ̂MLE − θ0
P→ 0.

Example 1: Binomial Distribution. Assume that we obtain a single observation Y ∼ Bin(n, p), and we
assume that n is known. The goal is to estimate p. The log-likelihood function is

`(p) = Y log p+ (n− Y ) log(1− p) + Cn(Y ),

where Cn(Y ) = log
(
n
Y

)
is independent of p. The score function is

S(p) =
Y

p
− n− Y

1− p

so solving the score equation gives us p̂MLE = Y
n . Moreover, the Fisher’s information is

I(p) = E
{
∂

∂p
S(p)

}
= −E(Y )

p2
− n− E(Y )

(1− p)2
=

n

p(1− p)
.

Example 2: Poisson Distribution. Suppose we observe two integer RVs X1, X2. We assume that they
are indepedently from Poisson distribution with unknown parameter λ. What will be the MLE of λ? In this
case, the joint PDF is

p(x1, x2;λ) =
λx1

x1!
e−λ

λx2

x2!
e−λ.

Thus, the log-likelihood function will be

`(λ|X1, X2) = (X1 +X2) log λ− 2λ− log(X1!)− log(X2!)

so the score function is

S(λ|X1, X2) =
X1 +X2

λ
− 2.

This leads to the MLE:

λ̂ =
1

2
(X1 +X2).

Example 3: Uniform Distribution. Consider X1, · · · , Xn ∼ Unif[0, θ]. What will be the MLE of θ?
Recall that the PDF will be

p(x1, · · · , xn) =

n∏
i=1

1

θ
I(0 ≤ xi ≤ θ).
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So the likelihood function is

L(θ|X1, · · · , Xn) =
1

θn

n∏
i=1

I(0 ≤ Xi ≤ θ).

An interesting fact is that
n∏
i=1

I(0 ≤ Xi ≤ θ) = I(0 ≤ Xmin ≤ Xmax ≤ θ),

where Xmin = min{X1, · · · , Xn} and Xmax = max{X1, · · · , Xn}. So the likelihood function increases when

θ decreases. However, it will drop to 0 immediately when θ < Xmax. Thus, the MLE of θ will be θ̂ = Xmax.

6.3 Bayesian estimator

The Bayesian inference is an alternative statistical paradigm to the Frequentist approach. The Bayesian
approach interprets the probability in a broader sense that include subjective probability, which allows us
to assign probability to almost every quantity in our model (including the parameter of interest and even a
statistical model). The Bayesian inference relies on a simple decision theoretic rule – if we are competing
two or more choices, we always choose the one with higher probability. This simple rule allows us to design
an estimator, construct an interval, and perform hypothesis test.

In the Bayesian analysis, we assign a probability to every parameter in our model. For a parametric model
p(x; θ), the parameter of interest θ is given a prior distribution π(θ) that reflects our belief about the
value of θ. In a sense, the prior distribution quantifies our subjective belief about the parameter θ. The
higher value of π(θ) indicates that we believe that θ is a more likely value of it.

How do we interpret this prior distribution? Here is a decision theoretic way of viewing it. To simplify the
problem we assume that Θ = {0, 1, 2}. Even without any data at hand, we can ask ourselves about our
belief about each parameter value. Some people may think that 1 is the most likely one; some may think
that 2 is the most likely one. To make our belief more precise, we use probability to work on it. Let π(j)
be the number that reflects our belief about θ = j. We interpret the numerical value of π(j) as follows. We
are forced to guess the answer of θ = j versus θ 6= j. If the answer is θ = j and we indeed guess it correctly,
we will be rewarded δ dollar. If the answer is θ 6= j and we get it correct, we will be rewarded 1 dollar. If
we get it wrong, we do not lose anything. Our principle is to maximize our expected reward. Now assume
that the true value of θ has equal probability of being j or not j. Then what should we choose? θ = j or
θ 6= j? Now we think about this problem by varying δ from 0 to infinity. When δ is small, unless we have
very strong belief on θ = j, we will not bid on it. When increasing δ, at certain threshold we will switch our
decision from bidding on θ 6= j to θ = j. Let this threshold be ηj . ηj is a number that reflects our belief
about θ = j and we associate it with our prior

π(j) =
1

1 + ηj
⇔ ηj =

1− π(j)

π(j)
(odds of θ = j).

Here, you see that we only use one simple decision rule – bidding on the one with a higher expected outcome.
This allows us to quantify our belief.

Using the prior distribution, the Bayesian probability model can be written as follows:

X1, · · · , Xn|θ
IID∼ p(x|θ)

θ ∼ π.
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The Bayesian inference focuses on the distribution of θ after observing X1, · · · , Xn:

π(θ|X1, · · · , Xn) =
p(X1, · · · , Xn, θ)

p(X1, · · · , Xn)
∝ p(X1, · · · , Xn|θ)︸ ︷︷ ︸

likelihood

×π(θ)︸︷︷︸
prior

.

This distribution is also known as the posterior distribution.

The posterior distribution informs us about how our prior belief is updated after seeing the data. It is
the central quantity in Bayesian inference – all our decisions will be related to it. In Bayesian’s point of
view, probability models are just mathematical tools for analyzing data. We do not assume that the data is
generated from a probability distribution. We just view the data as generated from p(x; θ). Given that we
do not assume the probability model to be the true model, there is NO true parameter so we cannot talk
about conventional statistical errors. However, Bayesian does have another way to expressing the error in
our inference – the posterior distribution. The posterior distribution reflects our belief about the parameter
after seeing the data, we can use it as a measure of uncertainty about θ. If the posterior distribution is more
spread out, then the uncertainty in our inference is larger. On the other hand, if the posterior distribution
is very concentrated, then there is very little (Bayesian) uncertainty.

There are two common estimator in Bayesian inference: the posterior mean and the maximum a posteriori
estimation (MAP).

Posterior mean. Just like we often use the sample mean as an estimator of the population mean, the mean
of the posterior distribution is a common quantity that was used as an estimator of θ:

θ̂π = E(θ|X1, · · · , Xn) =

∫
θ · π(θ|X1, · · · , Xn)dθ.

It represents the average location of our belief about the parameter after seeing the data.

Maximum a posteriori estimation (MAP). Another common estimator of θ is the MAP; it relies on
the similar principle as the MLE – we choose the one that is the most likely. Here the ‘likely’ is interpreted
as our posterior belief about the parameter of interest θ. Formally, MAP is defined as

θ̂MAP = argmaxθπ(θ|X1, · · · , Xn).

Example: Binomial. Assume that we have an observation Y ∼ Bin(N, θ) where N is known and the
parameter of interest is θ:

P (Y = y|θ) =

(
N

y

)
θy(1− θ)N−y.

We use a Beta distribution with parameters (α, β) as our prior distribution for θ. Namely,

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

where Γ(z) =
∫∞

0
tz−1e−tdt is the Gamma function and α, β > 0. Note that (α, β) are called the hypter-

parameters and are known quantities (because we know our belief about the data). For a Beta distribution
with parameter α, β, the mean is α

α+β .

The posterior distribution is

π(θ|Y ) =

(
N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1∫ (

N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1dθ

∝ θY+α−1(1− θ)N−Y+β−1
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so it is a Beta distribution with parameters (Y + α,N − Y + β). Then the posterior mean and MAP are

θ̂π =
Y + α

N + α+ β
, θ̂MAP =

Y + α− 1

N + α+ β − 2

(these are the mean and the mode of a Beta distribution).

Note that in this problem, the MLE is θ̂MLE = Y
N . Thus, the posterior mean has an interesting decomposi-

tion:

θ̂π =
Y + α

N + α+ β

= θ̂π =
Y

N + α+ β
+

α

N + α+ β

=
Y

N
× N

N + α+ β
+

α

α+ β
× α+ β

N + α+ β

= θ̂MLE ×W + Prior mean× (1−W ),

where W = N
N+α+β is a weight that is tending to 1 when N → ∞. This phenomenon – the posterior

mean can be written as the weighted average of the MLE and the prior mean – occurs in several scenarios.
Moreover, the fact that the weights W → 1 as the sample size N → ∞ means that when we have more
and more data, the prior distribution seems to be irrelevant. Thus, the posterior mean would have a similar
asymptotic property as the sample mean. However, this is not a general phenomenon; often only certain
combination of prior and likelihood models will have this feature.

Example: Normal Bayes estimator. Suppose we model X1, · · · , Xn as IID from a normal distribution
with mean µ and variance σ2. Assume that σ2 is known and the only unknown quantity is µ. We use a
prior distribution of µ such that µ ∼ N(θ, τ2), where θ, τ2 are pre-specified. Now we derive the posterior
distribution of µ given X1, · · · , Xn and all the specified parameters.

We know that

π(µ|X1, · · · , Xn) ∝ exp(− 1

2τ2
(µ− θ)2)

n∏
i=1

exp(− 1

2σ2
(Xi − µ)2).

Thus, the log π(µ|X1, · · · , Xn) will be a quadratic function of µ, which implies that π(µ|X1, · · · , Xn) will
still be a normal distribution. A direct computation shows

log π(µ|X1, · · · , Xn) = C0 −
1

2τ2
(µ− θ)2 −

n∑
i=1

− 1

2σ2
(Xi − µ)2,

which implies

E[µ|X1, · · · , Xn] =
τ2

τ2 + σ2/n
X̄n +

σ2/n

τ2 + σ2/n
θ

Var(µ|X1, · · · , Xn) =
σ2τ2

σ2 + nτ2
.

Again, we see that the posterior mean

µ̂π =
τ2

τ2 + σ2/n
X̄n +

σ2/n

τ2 + σ2/n
θ

= µ̂MLE ×W + θ × (1−W )

= MLE×W + Prior mean× (1−W ),
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where W = Wn = τ2

τ2+σ2/n is a proportion that converging to 1 as n→∞.

Remark.

• Choice of prior and conjugate prior. The choice of prior reflects our belief about the parameter
before seeing any data. Sometimes people want to choose a prior distribution such that the posterior
distribution is in the same family as the prior distribution, just like what we have observed in the above
example. If a prior distribution and a likelihood function leads to a posterior that belongs to the same
family as the prior, we call this prior conjugate prior. There are several conjugate priors know to
date, see https://en.wikipedia.org/wiki/Conjugate_prior for an incomplete list of cases.

Another common choice of prior is called the Jeffreys prior2, which chooses a prior π(θ) ∝
√
det(I1(θ)),

where I1(θ) is the Fisher’s information matrix. One can view the Jeffreys prior as the prior that we do
not have any prior belief about θ; or more formally, an uninformative prior.

• Challenge of computing the posterior. In general, if we do not choose a conjugate prior, the posterior
distribution could be difficult to compute. The challenge often comes from the normalization quantity
p(X1, · · · , Xn) in the denominator of the posterior π(θ|X1, · · · , Xn) (the numerator is just the prior
times the likelihood). In practice we will use Monte Carlo method to compute the posterior – we gen-
erate points from π(θ|X1, · · · , Xn) and as we generate enough points, these points should approximate
the true posterior distribution well. We will talk more about this later in the lecture of MCMC (Monte
Carlo Markov Chain).

• Consistency. In pure Bayesian’s point of view, statistical consistency is not an important property
because probability model is a working model to describe the data and we do not need to assume
that there exists an actual parameter that generates the data. Thus, the posterior distribution is the
quantity that we really need to make our inference. However, sometimes Bayesian estimators, such as

the posterior mean or MAP, does have statistical consistency. Namely, θ̂π
P→ θ0 and θ̂MAP

P→ θ0, where

the data X1, · · · , Xn
IID∼ p(x; θ0). This is often related to the Bernstein-von Mises theorem3. Although

statistical consistency was not an important property in Bayesian paradigm (because Bayesian does
not assume the data is indeed from a probability model; probability models are just a mathematical
model to help us analyze the data), still many researchers would prove consistency when proposing a
Bayesian approach.

6.4 Empirical risk minimization (ERM) and M-estimation

Another popular idea of finding a good estimator is the empirical risk minimziation (ERM). It is widely
used in machine learning and many modern statistical procedure. In fact, the MLE can be viewed as a special
case of ERM.

6.4.1 Motivation: least square estimate

To start with, consider the linear regression problem where we observe (X1, Y1), · · · , (Xn, Yn) and we want
to estimate their linear relationship. Here we assume that each covariate Xi = (Xi,1 = 1, · · · , Xi,p+1) such
that the first covariate is a constant 1 – this will include the intercept as part of the covariate and we have
p covariate. As we have discussed in the previous lecture, a simple way to investigate the linear relationship

2see https://en.wikipedia.org/wiki/Jeffreys_prior for more details.
3https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem

https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Jeffreys_prior
https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem
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is to apply a linear model. Namely, we model that

E[Y |X] = XTβ,

where β ∈ Rp.

The linear model attempts to find β by minimizing the MSE, i.e.,

β∗ = argminβR(β) = argminβE[(Y −XTβ)2].

If we do not know the distribution of X,Y , we cannot compute the above estimator since we are unable to
compute the expectation. However, we can approximate the MSE using the empirical mean square errors,
i.e., we approximate R(β) by

R̂(β) =
1

n

n∑
i=1

(Yi −XT
i β)2.

And the estimator corresponds to the famous least square estimate (LSE):

β̂ = argminβR̂(β) = argminβ
1

n

n∑
i=1

(Yi −XT
i β)2.

Here, we see that our estimator β̂ is the minimizer of an empirical risk R̂n(β). The term ‘empirical’ here
refers to something computable from the data/sample. The ERM is an idea similar to the least square
approach but with a more general risk function.

6.4.2 A general ERM approach

Before we formally introduce the ERM, we first define a few terms. In prediction, a loss function L : Y×Y 7→
R is a function that measures the quality of prediction or estimation. Note that Y is the support of Y . You
can think of the value of L(a, b) as a measure on how much we lost when the true value of b and we make a
prediction or estimate with a.

A popular loss is the square loss, i.e., L(a, b) = (a − b)2 but it can be more general. For instance, we can
consider the absolute loss, L(a, b) = |a− b| when both a, b are a single number.

The risk is the expected loss. In the case of mean square prediction, the loss function L(a, b) = (a− b)2 and
our prediction is fβ(X) = XTβ. So the loss is L(Y, fβ(X)) = (Y − fβ(X))2 = (Y −XTβ)2 and the risk is
R = E[L(Y, fβ(X))] = E[(Y −XTβ)2]. Since the risk will change when we vary β, so we can write the risk
as a risk function R = R(β) = E[(Y −XTβ)2].

In general, with any loss function L, we can always write the risk function as

R(β) = E[L(Y, fβ(X))].

As we have discussed, we may not be able to compute the risk function because we do not know the joint
distribution of (X,Y ). So instead, we attempt to approximate it with something computable from teh data.
The empirical risk is the estimated/sample/computable version of the risk function:

R̂(β) =
1

n

n∑
i=1

L(Yi, fβ(Xi)).

With a data at hand, we can compute the value of the empirical risk easily.
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The ERM attempts to construct an estimator β̂ by minimizing R̂(β), namely,

β̂ = argminβR̂(β).

Any estimator that can be written as the above expression is called an ERM estimator. As we have seen
previously, the least square estimate is an ERM estimator.

Example: least absolute deviation. Consider the loss function L(a, b) = |a − b|. Then the regression
estimator

β̂LAD = argminβR̂(β) = argminβ
1

n

n∑
i=1

|Yi −XT
i β|

is called the least absolute deviation (LAD) estimator. It is more robust against outliers in the data compared
to the LSE due to use of L1 norm (absolute value) as the loss function. Note: the LSE is approximating the
conditional mean of Y given X by a linear function; the LAD will be approximating the conditional median
of Y given X by a linear function.

6.4.3 M-estimation

The ERM is actually a special case of a more general procedure called M-estimation. The M-estimation
finds an estimator by maximizing an empirical objective function, i.e.,

θ̂ = argmaxθ
1

n

n∑
i=1

ω(θ;Xi)

for some function ω. If we define the negative risk as the objective function, then it is easy to see that the
ERM is M-estimation.

The M-estimation generalizes the concept of optimization to a more general scenario. In fact, you can easily
see that if we choose the objective function to be the log-likelihood function

L(θ) =
1

n

n∑
i=1

`(θ|Xi) =
1

n

n∑
i=1

log p(Xi; θ),

then the M-estimator is the MLE.
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