
STAT 512: Statistical Inference Autumn 2020

Lecture 3: Expectation and basic asymptotic theories
Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 2 and 3.

3.1 Expectation

For a function g(x), the expectation of g(X) is

E(g(X)) =

∫
g(x)dF (x) =

{∫∞
−∞ g(x)p(x)dx, if X is continuous∑
x g(x)p(x), if X is discrete

.

In the simplest case g(x) = x,

E(X) =

∫
xdF (x) =

{∫∞
−∞ xp(x)dx, if X is continuous∑
x xp(x), if X is discrete

.

is known as the the mean (expectation) of a R.V. X. Let µ = E(X), the variance of X is Var(X) =
E((X − µ)2). The mean is a common measure of the center of a distribution and the variance is a common
measure of the spread of a distribution.

The m-th moment of a random variable X is

E(Xm).

Let µ = E(X) be the mean/first moment of X, the m-th centered moment of X is

E((X − µ)m).

Thus, the variance is the second centered moment.

Example.

• X ∼ Binomial(n, p). Then E(X) = np and Var(X) = np(1− p).

• X ∼ Geometric(p). Then E(X) = 1/p and Var(X) = (1− p)2/p.

• X ∼ Poisson(λ). Then E(X) = λ and Var(X) = λ.

• X ∼ Normal(µ, σ2). Then E(X) = µ and Var(X) = σ2.

• X ∼ Exponential(λ). Then E(X) = 1/λ and Var(X) = 1/λ2.

• X ∼ Gamma(α, λ). Then E(X) = α/λ and Var(X) = α/λ2.

• X ∼ Beta(α, β). Then E(X) = α
α+β and Var(X) = αβ

(α+β)2(α+β+1) .

• X ∼ Uniform(a, b). Then E(X) = (a+ b)/2 and Var(X) = (b− a)2/12.
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Expectation are decomposable:

E

 k∑
j=1

cjgj(X)

 =

k∑
j=1

cj · E(gj(Xi)).

Note that the above equality holds even if Xi’s are dependent.

When a set of random variables X1, · · · , Xn are independent, then

E (X1 ·X2 · · ·Xn) = E(X1) · E(X2) · · ·E(Xn).

In fact, you can also prove that

E (g1(X1) · g2(X2) · · · gn(Xn)) = E(g1(X1)) · E(g2(X2)) · · ·E(g3(Xn)).

For two random variables X and Y with their mean being µX and µY and variance being σ2
X and σ2

Y . The
covariance

Cov(X,Y ) = E((X − µx)(Y − µy)) = E(XY )− µxµy
and the (Pearson’s) correlation

ρ(X,Y ) =
Cov(X,Y )

σxσy
.

When two R.V. are not independent, we have

Var(X ± Y ) = Var(X) + Var(Y )± 2Cov(X,Y ).

The independence implies the covariance (and correlation) is 0, i.e.,

X ⊥ Y ⇒ Cov(X,Y ) = 0.

As a result, if X ⊥ Y ,
Var(X + Y ) = Var(X) + Var(Y ).

A more general result is that for independent random variables X1, · · · , Xn, we have

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
i · Var(Xi).

Example (Binomial). Here we illustrate how the above properties can be useful in computing the variance
of some distributions. Consider X ∼ Binomial(n, p). By the definition of a Binomial distribution, we can
rewrite X = Y1 + Y2 + · · ·+ Yn, where each Yi is an independent Bernoulli random variable with parameter
p. Thus,

Var(X) = Var(Y1 + Y2 + · · ·+ Yn) =

n∑
i=1

Var(Yi) = np(1− p).

3.2 Moment generating function (MGF)

Moment generating function (MGF) is a powerful function that describes the underlying features of a random
variable. The MGF of a RV X is

MX(t) = E(etX).
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Note that MX may not exist. When MX exists in a neighborhood of 0, using the fact that

etX = 1 + tX +
(tX)2

2!
+

(tX)3

3!
+ · · · ,

we have

MX(t) = 1 + tµ1 +
t2µ2

2!
+
t3µ3

3!
+ · · · ,

where µj = E(Xj) is the j-th moment of X. Therefore,

E(Xj) = M (j)(0) =
djMX(t)

dtj

∣∣∣∣
t=0

Here you see how the moments of X is generated by the function MX .

For two random variables X,Y , if their MGFs are the same, then the two random variables have the same
CDF. Thus, MGFs can be used as a tool to determine if two random variables have the identical CDF. Note
that the MGF is related to the Laplace transform (actually, they are the same) and this may give you more
intuition why it is so powerful.

The MGF has some interesting properties:

• Location-scale. MaX+b(t) = E(e(aX+b)t) = ebtE(eatX) = ebtMX(at).

• Multiplicity. MX+Y (t) = E(e(X+Y )t) = E(eXteY t). Thus,

X ⊥ Y ⇒MX+Y (t) = E(eXteY t) = E(eXt)E(eY t) = MX(t)MY (t).

Example (Bernoulli and Binomial). Let X ∼ Ber(p). Its MGF is MX(t) = E(etX) = pet + (1− p). Let
Y ∼ Bin(n, p). Using the fact that we can express it as Y = X1 + · · · + Xn, where each Xi is independent
Bernoulli R.V. with parameter p. Its MGF is

MY (t) =

n∏
i=1

MZi(t) = (pet + (1− p))n.

Example (Poisson). Let X ∼ Poisson(λ). Then its MGF is

MX(t) = E(etX) =
∑
x=0

etx
λxe−λ

x!
= e−λ

∑
x

[λet]x

x!︸ ︷︷ ︸
=eλet

= eλ(et−1).

Example (Exponential). Let X ∼ Exp(λ). Then its MGF is

MX(t) = E(etX) =

∫
etxλe−λxdx =

λ

λ− t

for t < λ.

Example (Normal). Let X ∼ N(µ, σ2). Then you can show that (exercise)

MX(t) = eµt+
1
2σ

2t2 .

You can use the fact that the MGF uniquely determines a distribution to show that any addition of normals
is still normal.
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Remark (characteristic function). A more general function than MGF is the characteristic function.
Let i be the imagination number. The characteristic function of a RV X is

φX(t) = E(eitX).

When X is absolutely continuous, the characteristic function is the Fourier transform of the PDF. The
characteristic function always exists and when two RVs have the same characteristic function, the two RVs
have identical distribution.

3.2.1 Multivariate MGF

The MGF can be defined for a random vector. Consider X = (X1, · · · , Xd) ∈ Rd be a random vector. Then
its MGF will be a function of d augments

MX(t) = E(et
TX),

where t = (t1, · · · , td) ∈ Rd.

Example. Let X be a multivariate normal MVN(µ,Σ), where µ ∈ Rd is the mean vector and Σ ∈ Rd×d
is the covariance matrix. Namely, each component Xi ∼ N(µi,Σii) and the covariance Cov(Xi, Xj) = Σij .
Then its MGF will be

MX(t) = et
Tµ+ 1

2 t
TΣt.

Using this, you can show that a linear tranformation

Z = b+AX ∼MVN(b+Aµ,AΣAT ).

Example (Normal plus Normal). Here we show that the MGF provide a simple way to see that the
addition of two normal random variable still leads to normal random variable. Let X,Y be two normal
random variable such that their joint distribution is MVN with mean (µ1, µ2) and covariance matrix Σ.
Consider Z = X + Y . To see why Z is still normal, consider its MGF:

MZ(t) = E(etZ) = E(etX+tY ) = MX,Y (t, t),

which is the MGF of the normal vector (X,Y ) with the augment (t, t). Thus,

MZ(t) = MX,Y (t, t) = et(µ1+µ2)+ 1
2 t

2(Σ11+Σ22+2Σ12),

which is the MGF of a normal random variable with mean µ1 + µ2 and variance Σ11 + Σ22 + 2Σ12 =
Var(X) + Var(Y ) + 2Cov(X,Y ).

3.3 Convergence Theory

Let F1, · · · , Fn, · · · be the corresponding CDFs of Z1, · · · , Zn, · · · . For a random variable Z with CDF F ,
we say that Zn converges in distribution (a.k.a. converge weakly or converge in law) to Z if for every x,

lim
n→∞

Fn(x) = F (x).

In this case, we write

Zn
D→ Z, or Zn

d→ Z.
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Namely, the CDF’s of the sequence of random variables converge to a the CDF of a fixed random variable.

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges in probability to another random
variable Z if for any ε > 0,

lim
n→∞

P (|Zn − Z| > ε) = 0

and we will write

Zn
P→ Z

Remark (convergence almost surely). For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn
converges almost surely to a random variable Z if

P ( lim
n→∞

Zn = Z) = 1

or equivalently,

P ({ω : lim
n→∞

Zn(ω) = Z(ω)}) = 1.

We use the notation

Zn
a.s.→ Z

to denote convergence almost surely. Note that almost surely convergence implies convergence in probability.
Convergence in probability implies convergence in distribution.

Examples.

• Let {X1, X2, · · · , } be a sequence of random variables such that Xn ∼ N
(
0, 1 + 1

n

)
. Then Xn converges

in distribution to N(0, 1).

• Let {X1, X2, · · · } be a sequence of random variables such that Xi ∼ N(0, 1/n). Then Xn
P→ 0, i.e., it

converges in probability to 0. Also, the random variable
√
nXn

D→ N(0, 1).

• Let {X1, X2, · · · } be a sequence of random variables such that

P (Xn = 0) = 1− 1

n
, P (Xn = 1) =

1

n
.

Then Xn
P→ 0.

Sometimes, one may be thinking that the convergence in probability/distribution may imply convergence in
expectation. But this is not true! Here is an example that it converges in probability to 0 but its expectation
diverges.

Example (diverging expectation but convergence in probability). Consider a sequence of RVs
X1, X2, · · · , such that

P (Xn = 0) = 1− 1

n
, P (Xn = n2) =

1

n
.

Then you can easily verify that Xn
P→ 0. However, if you compute the expectation,

E(Xn) = n→∞.

So the expectation is in fact diverging. Later we will see that converge in expectation does imply convergence
in probability (Markov’s inequality).
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3.3.1 Weak Law of Large Numbers

We write X1, · · · , Xn ∼ F when X1, · · · , Xn are IID (independently, identically distributed) from a CDF F .
In this case, X1, · · · , Xn is called a random sample.

Theorem 3.1 (Markov’s inequality) Let X be a non-negative RV. Then for any ε > 0,

P (X ≥ ε) ≤ E(X)

ε
.

A feature of the Markov inequality is that it implies that converges in expectation ⇒ convergence in proba-
bility. Also, the Markov’s inequality implies the following useful result, known as the Chebyshev’s inequality.

Theorem 3.2 (Chebyshev’s inequality) Let X be a RV with finite variance. Then for any ε > 0,

P (|X − E(X)| ≥ ε) ≤ Var(X)

ε2
.

The proof of the Chebyshev’s inequality is a direct application of the Markov’s inequality. The Chebyshev’s
inequality shows that for a sequence of random variables with equal mean but a vanishing variance, this
sequence converges in probability to the mean. When applying to the sample mean, it becomes the famous
(weak) law of large numbers.

Theorem 3.3 (Weak Law of Large Numbers) Let X1, · · · , Xn ∼ F and µ = E(X1). If E|X1| <∞ and
Var(X1) = σ2 <∞, the sample average

X̄n =
1

n

n∑
i=1

Xi

converges in probability to µ. i.e.,

X̄n
P→ µ.

Proof: Using the property of sample mean, one can easily show that

Var(X̄n) =
σ2

n
.

Thus, by the Chebyshev’s inequality

P (|X̄n − µ| > t) ≤ σ2

nt2
→ 0,

which completes the proof.

The above theorem is also known as Weak Law of Large Numbers. In fact, we do not need to assume the
existence of variance–this condition can be relaxed (but the proof will become much more complicated).
Note that there is something called the strong law of large number, which states the convergence in terms
of ‘almost surely convergence’.
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3.3.2 Central Limit Theorem

Theorem 3.4 (Central Limit Theorem) Let X1, · · · , Xn be IID random variables with µ = E(X1) and
σ2 = Var(X1) <∞. Let X̄n be the sample average. Then

√
n

(
X̄n − µ
σ

)
D→ N(0, 1).

Note that N(0, 1) is also called standard normal random variable.

Proof: Let Z =
√
n(X̄n − µ). Proving the problem is equivalent to showing that Z → N(0, σ2).

Note that we can rewrite Z as

Z =
√
n(X̄n − µ) =

1√
n

n∑
i=1

(Xi − µ) =
1√
n

n∑
i=1

Yi,

where each Yi has mean 0 and variance σ2 and are IID. Thus, the MGF of Z is

MZ(t) = E(etZ) = E
(
e

t√
n

∑n
i=1 Yi

)
= E

(
e

t√
n
Y1

)n
= MY1

(t/
√
n)n. (3.1)

Note that we use the fact that Y1, · · · , Yn are IID in the last equality.

Now we analyze MY1
(t/
√
n):

MY1
(t/
√
n) = E(etY/

√
n) = 1 +

t√
n
E(Y )︸ ︷︷ ︸

=0

+
t2

2n
E(Y 2)︸ ︷︷ ︸

=σ2

+ smaller order term.

The remaining terms are smaller order because we are under n → ∞. Denoting the smaller order term as
o(1), using the above expansion, we can see that

MY1
(t/
√
n)n =

(
1 +

t2σ2

2n+ o(1)

)n
→ e

1
2 t

2σ2

.

Thus, Equation (3.1) will be approaching

MZ(t) = MY1
(t/
√
n)n =

(
1 +

t2σ2

2n+ o(1)

)n
→ e

1
2 t

2σ2

,

which is the MGF of a normal random variable with mean 0 and variance σ2. So we have proved the desired
result.

Note that there are other versions of central limit theorem that allows dependent RVs or infinite variance
using the idea of ‘triangular array’ (also known as the Lindeberg-Feller Theorem). However, the details are
beyond the scope of this course so we will not pursue it here.

3.3.3 Other useful theorems

Continuous mapping theorem: Let g be a continuous function.
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• If a sequence of random variables Xn
D→ X, then g(Xn)

D→ g(X).

• If a sequence of random variables Xn
p→ X, then g(Xn)

p→ g(X).

Slutsky’s theorem: Let {Xn : n = 1, 2, · · · } and {Yn : n = 1, 2, · · · } be two sequences of RVs such that

Xn
D→ X and Yn

p→ c, where X is a RV c is a constant. Then

Xn + Yn
D→ X + c

XnYn
D→ cX

Xn/Yn
D→ X/c (if c 6= 0).

We will these two theorems very frequently when we are talking about the maximum likelihood estimator.

Why do we need these notions of convergences? The convergence in probability is related to the concept
of statistical consistency. An estimator is statistically consistent if it converges in probability toward its
target population quantity. The convergence in distribution is often used to construct a confidence interval
or perform a hypothesis test.

3.4 Concentration inequality

In addition to the above two theorems, we often use the concentration inequality to obtain convergence in
probability. Let {Xn : n = 1, 2, · · · } be a sequence of RVs. For a given ε > 0, the concentration inequality
aims at finding the function φn(ε) such that

P (|Xn − E(Xn)| > ε) ≤ φn(ε)

and φn(ε) → 0. This automatically gives us convergence in probability. Moreover, the convergence rate of
φn(ε) with respect to n is a central quantity that describes how fast Xn converges toward its mean.

Example: concentration of a Gaussian mean. The Markov’s inequality implies a useful bound on
describing how fast the sample mean of a Gaussian converges to the population mean. For simplicity, we
consider a sequence of mean 0 Gaussians: X1, · · · , Xn ∼ N(0, σ2). Let X̄n = 1

n

∑n
i=1Xi be the sample

mean. It is known that X̄n ∼ N(0, σ2/n). Then

P (X̄n > ε) = P (eX̄n > eε)

= P (esX̄n > esε)

≤ E(esX̄n)

esε
by Markov’s inequality

≤ e 1
2nσ

2s2−sε by the MGF of Gaussian

for any positive number s. In the exponent, it is a quadratic function of s and the maximal occurs at s = nε
σ2 ,

leading to

P (X̄n > ε) ≤ e−
nε2

2σ2 .

The same bound holds for the other direction P (X̄n < −ε) ≤ e−
nε2

2σ2 . So we conclude

P (|X̄n| > ε) ≤ 2e−
nε2

2σ2
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or more generally,

P (|X̄n − E(X1)| > ε) ≤ 2e−
nε2

2σ2 .

A bound like the above is often referred to as a concentration inequality.

Example (concentration of a maximum). Let X1, · · · , Xn be IID standard normal random variables
N(0, σ2). Define Zn = max{|X1|, · · · , |Xn|} be the maximal number among them. Intuitively, we know that
when n→∞, Zn should be diverging since we are taking the maximum of more and more values. But it is
possible to find an increasing sequence γn → ∞ such that Zn/γn will not diverge (in probability). How do
we find such γn? A simple approach is based on the concentration inequality. Using the result from previous
example, we know that for a single random variable Xi (replace the sample mean by the mean of a single
RV), we have

P (|Xi| > ε) ≤ 2e−
ε2

2σ2 .

With this, we can bound

P (Zn > ε) = P (max{|X1|, · · · , |Xn|} > ε)

≤
n∑
i=1

P (|Xi| > ε) (maximum is over ε⇒ one of them must hold)

≤ 2ne−
ε2

2σ2 .

Thus, as long as we can choose a sequence ε = εn such that

2ne−
ε2n
2σ2 → δ

for some constant 0 < δ < 1, we can bound how fast Zn diverge. Solving this gives us a single rule
εn = σ

√
2 log(2n)− 2 log(δ). This leads to the choice of γn = σ

√
2 log n, which gives a characterization on

how fast Zn diverges.

3.4.1 Concentration of mean

Let X1, · · · , Xn ∼ F be a random sample such that σ2 = Var(X1). Using the Chebyshev’s inequality, we
know that the sample average X̄n has a concentration inequality:

P (|X̄n − E(X̄n)| ≥ ε) ≤ σ2

nε2
.

However, when the RVs are bounded, there is a stronger notion of convergence, as described in the following
theorem.

Theorem 3.5 (Hoeffding’s inequality) Let X1, · · · , Xn be IID RVs such that 0 ≤ X1 ≤ 1 and let X̄n be
the sample average. Then for any ε > 0,

P (|X̄n − E(X̄n)| ≥ ε) ≤ 2e−2nε2 .

Before proving the Hoeffding’s inequality, we first introduce the following lemma:

Lemma 3.6 Let X be a random variable with E(X) = 0 and a ≤ X ≤ b. Then

E(etX) ≤ et
2(b−a)2/8

for any positive number t.
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Proof: We will use the fact that x 7→ etx is a convex function for all positive t. Recall that a function g(x)
is a convex function if for any two point a < b and α ∈ [0, 1],

g(αa+ (1− α)b) ≤ αg(a) + (1− α)g(b).

Because X ∈ [a, b], we define αX to
X = αXb+ (1− αX)a.

This implies

αX =
X − a
b− a

Using the fact that x 7→ etx is convex,

etX ≤ αXetb + (1− αX)eta =
X − a
b− a

etb +
b−X
b− a

eta.

Now taking the expectation in both sides,

E(etX) ≤ E(X)− a
b− a

etb +
b− E(X)

b− a
eta =

b

b− a
eta − a

b− a
etb = eg(s), (3.2)

where s = t(b− a) and g(s) = −γs+ log(1− γ + γes) and γ = −a/(b− a). Note that g(0) = g′(0) = 0 and
g′′(s) ≤ 1/4 for all positive s. Using Taylor’s theorem,

g(s) = g(0) + sg′(0) +
1

2
s2g′′(s∗)

for some s∗ ∈ [0, s]. Thus, we conclude g(s) ≤ 1
2 × s

2 × 1
4 = 1

8s
2.

Then equation (3.2) implies

E(etX) ≤ eg(s) ≤ e s
2

8 = e
t2(b−a)2

8 .

Now we formally prove the Hoeffding’s inequality.

Proof:

We first prove that P
(
X̄n − µ ≥ ε

)
≤ e−2nε2/(b−a)2 .

Let Yi = Xi − µ. Because the exponential function is monotonic, for any positive r,

P
(
X̄n − µ ≥ ε

)
= P

(
Ȳn ≥ ε

)
= P

(
n∑
i=1

Yi ≥ nε

)
= P

(
e
∑n
i=1 Yi ≥ enε

)
= P

(
et

∑n
i=1 Yi ≥ etnε

)
≤ E(et

∑n
i=1 Yi)

etnε
by Markov’s inequality

= e−tnεE(etY1 · etY2 · · · etYn)

= e−tnεE(etY1) · E(etY2) · · ·E(etYn)

= e−tnεE(etY1)n

≤ e−tnεent
2(b−a)2/8 by Lemma 3.6.
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Because the above inequality holds for all positive t, we can choose t to optimize the bound. To get the
bound as sharp as possible, we would like to make it as small as possible. Thus, we need to find t such that

−tnε+ nt2(b− a)2/8

is minimized. Taking derivatives with respect to t and set it to be 0, we obtain

t∗ =
4ε

(b− a)2

and

−t∗nε+ nt2∗(b− a)2/8 = −2nε2/(b− a)2.

Thus, the inequality becomes

P
(
X̄n − µ ≥ ε

)
≤ e−t∗nεent

2
∗(b−a)2/8 = e−2nε2/(b−a)2 .

The same proof also applies to the case P
(
X̄n − µ ≤ ε

)
and we will obtain the same bound. Therefore, we

conclude that

P
(
|X̄n − µ| ≥ ε

)
≤ 2e−2nε2/(b−a)2 .

Hoeffding’s inequality gives a concentration of the order of exponential (actually it is often called a Gaussian
rate) so the convergence rate is much faster than the one given by the Chebyshev’s inequality. Obtaining
such an exponential rate is useful for analyzing the property of an estimator. Many modern statistical topics,
such as high-dimensional problem, nonparametric inference, semi-parametric inference, and empirical risk
minimization all rely on a convergence rate of this form.

Note that the exponential rate may also be used to obtain an almost sure convergence via the Borel-Cantelli
Lemma.

Example: consistency of estimating a high-dimensional proportion. To see how the Hoeffding’s
inequality is useful, we consider the problem of estimating the proportion of several binary variables. Suppose
that we observe IID observations

X1, · · · , Xn ∈ {0, 1}d.

Xij = 1 can be interpreted as the i-th individual response ‘Yes’ in j-th question. We are interested in
estimating the proportion vector π ∈ [0, 1]d such that πj = P (Xij = 1) is the proportion of ‘Yes’ response in
j-th question in the population. A simple estimator is the sample proportion π̂ = (π̂1, · · · , π̂d)T such that

π̂j =
1

n

n∑
i=1

Xij .

When d is much smaller than n, it is easy to see that this is a good estimator. However, if d = dn →∞ with
n → ∞, will π̂ still be a good estimator of π? To define a good estimator, we mean that every proportion
can be estimated accurately. A simple way to quantify this is the vector max norm:

‖π̂ − π‖max = max
j=1,··· ,d

|π̂j − πj |.

We consider the problem of estimating πj first. It is easy to see that by the Hoeffding’s inequality,

P (|π̂j − πj | > ε) ≤ 2e−2nε2 .
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Thus,

P (‖π̂ − π‖max > ε) = P

(
max

j=1,··· ,d
|π̂j − πj | > ε

)
≤

d∑
j=1

P (|π̂j − πj | > ε)

≤ 2de−2nε2 .

(3.3)

Thus, as long as 2de−2nε2 → 0 for any fixed ε, we have the statistical consistency. This implies that we need

log d

n
→ 0,

which allows the number of questions/variables to increase a lot faster than the sample size n!
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