
STAT 512: Statistical Inference Autumn 2020

Lecture 2: Transforming continuous random variables
Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 2.1.

In the previous lecture, we have seen a couple of distributions that have nice properties. When working with
data, we may perform some transformation of random variables. Suppose we know the distribution of a
random variable before the transformation, does this give us any hint on the distribution of the transformed
variable?

2.1 One function of one random variable

Let X be a continuous random variable whose PDF pX(x) is known. Consider a given function f and another
random variable Y = f(X). Since the input X is random, the output Y is often random as well. What will
the distribution of Y be?

When f is differentiable, we have the following useful theorem.

Theorem 2.1 In the above setting and assume that X ∈ [a, b] and f ′(x) > 0 (strictly increasing) over [a, b],
then the PDF of Y

pY (y) =

{
pX(f−1(y))
f ′(f−1(y)) , f(a) ≤ y ≤ f(b)

0, otherwise.

Proof:

To start with, we consider the CDF of Y :

P (Y ≤ y) = P (f(X) ≤ y)

= P (X ≤ f−1(y)).

The PDF will be the derivative of the CDF, leading to

pY (y) =
d

dy
P (Y ≤ y)

=
d

dy
P (X ≤ f−1(y))

= pX(f−1(y))
d

dy
f−1(y)

=
pX(f−1(y))

f ′(f−1(y))
,

which completes the proof.

2-1



2-2 Lecture 2: Transforming continuous random variables

Example. Suppose f(x) = x2 and X ∼ Uniform[0, 1]. And we are interested in the PDF of Y = f(X) = X2.
Because f ′(x) = 2x and X ≥ 0 so f−1(y) =

√
y, we have

pY (y) =
1

2
√
y
I(0 ≤ y ≤ 1).

Example. Assume X ∼ Uniform[0, 1] and consider f(x) = −2 logX and let Y = −2 logX. In this case,

f ′(x) = − 2
X and f−1(y) = e−

1
2y. However, f ′(x) is negative so we cannot directly apply Theorem 2.1.

A simple modification shows that the same formula holds as long as we replace f ′(f−1(y)) by |f ′(f−1(y))|
(think about why).

Then the PDF of Y will be

pY (y) =
1

2
e−

1
2yI(0 ≤ y)

which is the Exponential distribution with parameter λ = 1
2 .

Example. Suppose that Y is a continuous random variable with CDF FY and X is a uniform random
variable within [0, 1]. Then you can show that Z = F−1Y (X) has a CDF FZ(z) = FY (z).

Example. Consider X ∼ N(0, 1) and Y = X2. What is the distribution of Y ? Note that the underlying
transformation f(x) = x2 is not always increasing or decreasing since x ∈ R. In this case, a general strategy
is to work out the CDF:

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y).

Thus,

pY (y) =
d

dy
[FX(

√
y)− FX(−√y)]

=
1

2
√
y

(pX(
√
y) + pX(−√y)).

In this case, because X ∼ N(0, 1), it is symmetric so we further have

pY (y) =
1
√
y
pX(
√
y).

Putting pX(x) = 1√
2π
e−x

2/2 into the above equation, we obtain

pY (y) =
1
√
y

1√
2π
e−y/2 =

1√
2π
y−

1
2 e−

1
2y,

which is Gamma ( 1
2 ,

1
2 ). Note: Gamma (1

2 ,
1
2 ) is the same as χ2

1, the chi-squared distribution with degree of
freedom 1.

2.2 One function of two or more random variables

In practice, we may encounter problems involving a function of two or more random variables. Namely,
we have X,Y two random variables whose joint distribution p(x, y) is known and we are interested in the
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distribution of another random variable U = f(X,Y ) for some given function f . In this case, a general
strategy is to investigate the underlying CDF and take the derivative to obtain the corresponding PDF.
Here we will illustrate the idea via a few examples.

Example. Consider (X,Y ) to be a uniform distribution over [0, 1]× [0, 1]. Note that in this case, they are
from two independent uniform distributions.

• Case 1: U = X + Y . Note that the event {U = X + Y ≤ u} will be the region of [0, 1] × [0, 1]
intersecting with x + y ≤ u. So it will be 0 when u ≤ 0 and 1 when u ≥ 2. When u ∈ [0, 2], we can
easily work it out using the area of a triangle, which leads to

FU (u) = P (U ≤ u)

=


0, u < 0

u2/2, 0 ≤ u ≤ 1

1− (2− u)2/2, 1 ≤ u ≤ 2

1, u > 2

.

The PDF pU (u) will be

pU (u) =


0, u < 0

u, 0 ≤ u ≤ 1

2− u, 1 ≤ u ≤ 2

0, u > 2

.

• Case 2: U = max{X,Y }. A common trick to compute the distribution of a maximum of two or more
independent random variables is based on the following insight:

{max{X,Y } ≤ u} ≡ {X ≤ u, Y ≤ u}.

Therefore,

FU (u) = P (U ≤ u) = P (max{X,Y } ≤ u) = P (X ≤ u, Y ≤ u) = P (X ≤ u)P (U ≤ u),

which implies FU (u) = u2 and pU (u) = 2u when u ∈ [0, 1].

• Case 3: U = min{X,Y }. The case of minimum is similar to the case of maximal but we will consider
a reverse event:

{min{X,Y } > u} ≡ {X > u, Y > u}.
Therefore.

1− FU (u) = P (U > u) = P (min{X,Y } > u) = P (X > u, Y > u) = P (X > u)P (U > u) = (1− u)2,

Thus, FU (u) = 1− (1− u)2 so pU (u) = 2− 2u for u ∈ [0, 1].

Example (minimum of many uniforms). Now consider X1, · · · , Xn that are IID from a uniform dis-
tribution over [0, 1]. Define U = nmin{X1, · · · , Xn}. What will the distribution of U be when n is large?
Using the trick that we have discussed,

{min{X1, · · · , Xn} > u} ≡ {X1 > u, · · · , Xn > u},

so

1− FU (u) = P
(

min{X1, · · · , Xn} >
u

n

)
=

n∏
i=1

P
(
Xi >

u

n

)
=
(

1− u

n

)n
→ e−u.
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As a result, FU (u) → 1 − e−u and pU (u) → e−u so when n is large, U behaves like from an Exponential
distribution.

Example (exponential distributions). Consider X,Y are IID from exponential distribution with pa-
rameter 1.

• Sum of two exponentials. What is the distribution of U = X + Y ? A simple trick is to fixed one
variable at a time and make good use of integration. Specifically, for a given u > 0,

FU (u) = P (U ≤ u)

= P (X + Y ≤ u)

=

∫
x+y≤u

e−x−ydxdy

=

∫ u

x=0

∫ u−x

y=0

e−x−ydydx

=

∫ u

x=0

e−x(1− ex−u)dx

= 1− e−u − ue−u.

Thus, pU (u) = ue−u.

• Minimum of two exponentials. Now we consider V = min{X,Y }. Using the same trick as the
minimum of many uniforms, i.e.,

{min{X,Y } > v} ≡ {X > v, Y > v}

so

1− FV (v) = P (X > v)P (Y > v) = e−2v,

which implies that V ∼ Exp(2). In fact, you can easily generalize it to showing that if X1, · · · , Xn ∼
Exp(λ), then min{X1, · · · , Xn} ∼ Exp(nλ).

• Difference. Consider

Z = max{X,Y } −min{X,Y } = |X − Y |.

What will the distribution of Z be?

Using a direct computation, we see that

FZ(z) = P (Z ≤ z)
= P (|X − Y | ≤ z)
= P (−z ≤ X − Y ≤ z)
= P (X − Y ≤ z)− P (X − Y < −z)
= P (X ≤ Y + z)− 1 + P (X − Y ≥ −z)
= −1 + P (X ≤ Y + z) + P (Y ≤ X + z)

= −1 + 2P (X ≤ Y + z) X,Y are symmetriic.
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Moreover,

P (X ≤ Y + z) =

∫ ∞
y=0

∫ y+z

x=0

e−xdxe−ydy

=

∫ ∞
y=0

(1− e−y−z)e−ydy

= 1− e−z
∫ ∞
0

e−2ydy

= 1− 1

2
e−z.

As a result,
FZ(z) = −1 + 2P (X ≤ Y + z) = 1− e−z,

which is the CDF of Exp(1)! This is another memoryless property.

• Ratio. Finally, we consider W = X
X+Y and studies its distribution. Clearly, 0 ≤ w ≤ 1 so we will

focus on the range [0, 1].

FW (w) = P

(
X

X + Y
≤ w

)
= P (X ≤ w(X + Y ))

= P ((1− w)X ≤ wY )

= P

(
X ≤ w

1− w
Y

)
=

∫ ∞
y=0

∫ w
1−w y

x=0

e−xdxe−ydy

=

∫ ∞
y=0

(1− e
−w
1−w y)e−ydy

= 1−
∫ ∞
0

e−
1

1−w ydy

= 1− 1 + w = w.

Thus W ∼ Unif[0, 1].

Useful properties about normal (please verify them).

• Let X ∼ N(µ1, σ
2) and Y ∼ N(µ2, σ

2
2) be independent. Then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2)

Also, for any real number a,
aX ∼ N(aµ1, a

2σ2
1).

• Let X1, · · · , Xn be IID normal random variables from N(µ, σ2). Then the sample mean

X̄n =
1

n

n∑
i=1

Xi ∼ N(µ, σ2/n).

• Let X1, · · · , Xn be IID normal random variables from N(0, 1). Then Z1 = X2
1 follows the χ2 distri-

bution with a degree of freedom 1. And Zn =
∑n
i=1X

2
i follows the χ2 distribution with a degree of

freedom n.
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