STAT 512: Statistical Inference

Lecture 2: Transforming continuous random variables

Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 2.1.

In the previous lecture, we have seen a couple of distributions that have nice properties. When working with data, we may perform some transformation of random variables. Suppose we know the distribution of a random variable before the transformation, does this give us any hint on the distribution of the transformed variable?

2.1 One function of one random variable

Let X be a continuous random variable whose PDF $p_X(x)$ is known. Consider a given function f and another random variable Y = f(X). Since the input X is random, the output Y is often random as well. What will the distribution of Y be?

When f is differentiable, we have the following useful theorem.

Theorem 2.1 In the above setting and assume that $X \in [a, b]$ and f'(x) > 0 (strictly increasing) over [a, b], then the PDF of Y

$$p_Y(y) = \begin{cases} \frac{p_X(f^{-1}(y))}{f'(f^{-1}(y))}, & f(a) \le y \le f(b) \\ 0, & otherwise. \end{cases}$$

Proof:

To start with, we consider the CDF of Y:

$$P(Y \le y) = P(f(X) \le y)$$
$$= P(X \le f^{-1}(y)).$$

The PDF will be the derivative of the CDF, leading to

$$p_Y(y) = \frac{d}{dy} P(Y \le y)$$
$$= \frac{d}{dy} P(X \le f^{-1}(y))$$
$$= p_X(f^{-1}(y)) \frac{d}{dy} f^{-1}(y)$$
$$= \frac{p_X(f^{-1}(y))}{f'(f^{-1}(y))},$$

which completes the proof.

Autumn 2020

Example. Suppose $f(x) = x^2$ and $X \sim \text{Uniform}[0, 1]$. And we are interested in the PDF of $Y = f(X) = X^2$. Because f'(x) = 2x and $X \ge 0$ so $f^{-1}(y) = \sqrt{y}$, we have

$$p_Y(y) = \frac{1}{2\sqrt{y}}I(0 \le y \le 1).$$

Example. Assume $X \sim \text{Uniform}[0,1]$ and consider $f(x) = -2 \log X$ and let $Y = -2 \log X$. In this case, $f'(x) = -\frac{2}{X}$ and $f^{-1}(y) = e^{-\frac{1}{2}y}$. However, f'(x) is negative so we cannot directly apply Theorem 2.1. A simple modification shows that the same formula holds as long as we replace $f'(f^{-1}(y))$ by $|f'(f^{-1}(y))|$ (think about why).

Then the PDF of Y will be

$$p_Y(y) = \frac{1}{2}e^{-\frac{1}{2}y}I(0 \le y)$$

which is the Exponential distribution with parameter $\lambda = \frac{1}{2}$.

Example. Suppose that Y is a continuous random variable with CDF F_Y and X is a uniform random variable within [0, 1]. Then you can show that $Z = F_Y^{-1}(X)$ has a CDF $F_Z(z) = F_Y(z)$.

Example. Consider $X \sim N(0, 1)$ and $Y = X^2$. What is the distribution of Y? Note that the underlying transformation $f(x) = x^2$ is not always increasing or decreasing since $x \in \mathbb{R}$. In this case, a general strategy is to work out the CDF:

$$F_Y(y) = P(Y \le y)$$

= $P(X^2 \le y)$
= $P(-\sqrt{y} \le X \le \sqrt{y})$
= $F_X(\sqrt{y}) - F_X(-\sqrt{y}).$

Thus,

$$p_Y(y) = \frac{d}{dy} [F_X(\sqrt{y}) - F_X(-\sqrt{y})]$$
$$= \frac{1}{2\sqrt{y}} (p_X(\sqrt{y}) + p_X(-\sqrt{y}))$$

In this case, because $X \sim N(0, 1)$, it is symmetric so we further have

$$p_Y(y) = \frac{1}{\sqrt{y}} p_X(\sqrt{y}).$$

Putting $p_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ into the above equation, we obtain

$$p_Y(y) = \frac{1}{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-y/2} = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{1}{2}y},$$

which is Gamma $(\frac{1}{2}, \frac{1}{2})$. Note: Gamma $(\frac{1}{2}, \frac{1}{2})$ is the same as χ_1^2 , the chi-squared distribution with degree of freedom 1.

2.2 One function of two or more random variables

In practice, we may encounter problems involving a function of two or more random variables. Namely, we have X, Y two random variables whose joint distribution p(x, y) is known and we are interested in the

distribution of another random variable U = f(X, Y) for some given function f. In this case, a general strategy is to investigate the underlying CDF and take the derivative to obtain the corresponding PDF. Here we will illustrate the idea via a few examples.

Example. Consider (X, Y) to be a uniform distribution over $[0, 1] \times [0, 1]$. Note that in this case, they are from two independent uniform distributions.

• Case 1: U = X + Y. Note that the event $\{U = X + Y \le u\}$ will be the region of $[0,1] \times [0,1]$ intersecting with $x + y \le u$. So it will be 0 when $u \le 0$ and 1 when $u \ge 2$. When $u \in [0,2]$, we can easily work it out using the area of a triangle, which leads to

$$F_U(u) = P(U \le u)$$

$$= \begin{cases} 0, & u < 0\\ u^2/2, & 0 \le u \le 1\\ 1 - (2-u)^2/2, & 1 \le u \le 2\\ 1, & u > 2 \end{cases}.$$

The PDF $p_U(u)$ will be

$$p_U(u) = \begin{cases} 0, & u < 0\\ u, & 0 \le u \le 1\\ 2 - u, & 1 \le u \le 2\\ 0, & u > 2 \end{cases}.$$

• Case 2: $U = \max\{X, Y\}$. A common trick to compute the distribution of a maximum of two or more independent random variables is based on the following insight:

$$\{\max\{X,Y\} \le u\} \equiv \{X \le u, Y \le u\}.$$

Therefore,

$$F_U(u) = P(U \le u) = P(\max\{X, Y\} \le u) = P(X \le u, Y \le u) = P(X \le u)P(U \le u),$$

which implies $F_U(u) = u^2$ and $p_U(u) = 2u$ when $u \in [0, 1]$.

• Case 3: $U = \min\{X, Y\}$. The case of minimum is similar to the case of maximal but we will consider a reverse event:

$$\{\min\{X, Y\} > u\} \equiv \{X > u, Y > u\}$$

Therefore.

$$1 - F_U(u) = P(U > u) = P(\min\{X, Y\} > u) = P(X > u, Y > u) = P(X > u)P(U > u) = (1 - u)^2,$$

Thus, $F_U(u) = 1 - (1 - u)^2$ so $p_U(u) = 2 - 2u$ for $u \in [0, 1]$.

Example (minimum of many uniforms). Now consider X_1, \dots, X_n that are IID from a uniform distribution over [0,1]. Define $U = n \min\{X_1, \dots, X_n\}$. What will the distribution of U be when n is large? Using the trick that we have discussed,

$$\{\min\{X_1, \cdots, X_n\} > u\} \equiv \{X_1 > u, \cdots, X_n > u\},\$$

 \mathbf{SO}

$$1 - F_U(u) = P\left(\min\{X_1, \cdots, X_n\} > \frac{u}{n}\right) = \prod_{i=1}^n P\left(X_i > \frac{u}{n}\right) = \left(1 - \frac{u}{n}\right)^n \to e^{-u}.$$

As a result, $F_U(u) \to 1 - e^{-u}$ and $p_U(u) \to e^{-u}$ so when n is large, U behaves like from an Exponential distribution.

Example (exponential distributions). Consider X, Y are IID from exponential distribution with parameter 1.

• Sum of two exponentials. What is the distribution of U = X + Y? A simple trick is to fixed one variable at a time and make good use of integration. Specifically, for a given u > 0,

$$F_U(u) = P(U \le u)$$

= $P(X + Y \le u)$
= $\int_{x+y \le u} e^{-x-y} dx dy$
= $\int_{x=0}^u \int_{y=0}^{u-x} e^{-x-y} dy dx$
= $\int_{x=0}^u e^{-x} (1 - e^{x-u}) dx$
= $1 - e^{-u} - u e^{-u}$.

Thus, $p_U(u) = ue^{-u}$.

• Minimum of two exponentials. Now we consider $V = \min\{X, Y\}$. Using the same trick as the minimum of many uniforms, i.e.,

$$\{\min\{X, Y\} > v\} \equiv \{X > v, Y > v\}$$

 \mathbf{SO}

$$1 - F_V(v) = P(X > v)P(Y > v) = e^{-2v},$$

which implies that $V \sim \mathsf{Exp}(2)$. In fact, you can easily generalize it to showing that if $X_1, \dots, X_n \sim \mathsf{Exp}(\lambda)$, then $\min\{X_1, \dots, X_n\} \sim \mathsf{Exp}(n\lambda)$.

• Difference. Consider

$$Z = \max\{X, Y\} - \min\{X, Y\} = |X - Y|.$$

What will the distribution of Z be?

Using a direct computation, we see that

$$F_{Z}(z) = P(Z \le z)$$

= $P(|X - Y| \le z)$
= $P(-z \le X - Y \le z)$
= $P(X - Y \le z) - P(X - Y < -z)$
= $P(X \le Y + z) - 1 + P(X - Y \ge -z)$
= $-1 + P(X \le Y + z) + P(Y \le X + z)$
= $-1 + 2P(X \le Y + z)$ X, Y are symmetric.

Moreover,

$$\begin{split} P(X \le Y + z) &= \int_{y=0}^{\infty} \int_{x=0}^{y+z} e^{-x} dx e^{-y} dy \\ &= \int_{y=0}^{\infty} (1 - e^{-y-z}) e^{-y} dy \\ &= 1 - e^{-z} \int_{0}^{\infty} e^{-2y} dy \\ &= 1 - \frac{1}{2} e^{-z}. \end{split}$$

As a result,

$$F_Z(z) = -1 + 2P(X \le Y + z) = 1 - e^{-z}$$

which is the CDF of Exp(1)! This is another *memoryless property*.

• Ratio. Finally, we consider $W = \frac{X}{X+Y}$ and studies its distribution. Clearly, $0 \le w \le 1$ so we will focus on the range [0, 1].

$$F_W(w) = P\left(\frac{X}{X+Y} \le w\right)$$

= $P(X \le w(X+Y))$
= $P((1-w)X \le wY)$
= $P\left(X \le \frac{w}{1-w}Y\right)$
= $\int_{y=0}^{\infty} \int_{x=0}^{\frac{w}{1-w}y} e^{-x} dx e^{-y} dy$
= $\int_{y=0}^{\infty} (1-e^{\frac{-w}{1-w}y})e^{-y} dy$
= $1-\int_0^{\infty} e^{-\frac{1}{1-w}y} dy$
= $1-1+w=w.$

Thus $W \sim \mathsf{Unif}[0, 1]$.

Useful properties about normal (please verify them).

• Let $X \sim N(\mu_1, \sigma^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ be independent. Then

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Also, for any real number a,

$$aX \sim N(a\mu_1, a^2\sigma_1^2).$$

• Let X_1, \dots, X_n be IID normal random variables from $N(\mu, \sigma^2)$. Then the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \sigma^2/n).$$

• Let X_1, \dots, X_n be IID normal random variables from N(0, 1). Then $Z_1 = X_1^2$ follows the χ^2 distribution with a degree of freedom 1. And $Z_n = \sum_{i=1}^n X_i^2$ follows the χ^2 distribution with a degree of freedom n.