Lecture 2: Transforming continuous random variables

Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 2.1.
In the previous lecture, we have seen a couple of distributions that have nice properties. When working with data, we may perform some transformation of random variables. Suppose we know the distribution of a random variable before the transformation, does this give us any hint on the distribution of the transformed variable?

2.1 One function of one random variable

Let X be a continuous random variable whose $\operatorname{PDF} p_{X}(x)$ is known. Consider a given function f and another random variable $Y=f(X)$. Since the input X is random, the output Y is often random as well. What will the distribution of Y be?

When f is differentiable, we have the following useful theorem.

Theorem 2.1 In the above setting and assume that $X \in[a, b]$ and $f^{\prime}(x)>0$ (strictly increasing) over $[a, b]$, then the PDF of Y

$$
p_{Y}(y)= \begin{cases}\frac{p_{X}\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}, & f(a) \leq y \leq f(b) \\ 0, & \text { otherwise } .\end{cases}
$$

Proof:

To start with, we consider the CDF of Y :

$$
\begin{aligned}
P(Y \leq y) & =P(f(X) \leq y) \\
& =P\left(X \leq f^{-1}(y)\right)
\end{aligned}
$$

The PDF will be the derivative of the CDF, leading to

$$
\begin{aligned}
p_{Y}(y) & =\frac{d}{d y} P(Y \leq y) \\
& =\frac{d}{d y} P\left(X \leq f^{-1}(y)\right) \\
& =p_{X}\left(f^{-1}(y)\right) \frac{d}{d y} f^{-1}(y) \\
& =\frac{p_{X}\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}
\end{aligned}
$$

which completes the proof.

Example. Suppose $f(x)=x^{2}$ and $X \sim$ Uniform[0,1]. And we are interested in the PDF of $Y=f(X)=X^{2}$. Because $f^{\prime}(x)=2 x$ and $X \geq 0$ so $f^{-1}(y)=\sqrt{y}$, we have

$$
p_{Y}(y)=\frac{1}{2 \sqrt{y}} I(0 \leq y \leq 1)
$$

Example. Assume $X \sim$ Uniform[0,1] and consider $f(x)=-2 \log X$ and let $Y=-2 \log X$. In this case, $f^{\prime}(x)=-\frac{2}{X}$ and $f^{-1}(y)=e^{-\frac{1}{2} y}$. However, $f^{\prime}(x)$ is negative so we cannot directly apply Theorem 2.1. A simple modification shows that the same formula holds as long as we replace $f^{\prime}\left(f^{-1}(y)\right)$ by $\left|f^{\prime}\left(f^{-1}(y)\right)\right|$ (think about why).
Then the PDF of Y will be

$$
p_{Y}(y)=\frac{1}{2} e^{-\frac{1}{2} y} I(0 \leq y)
$$

which is the Exponential distribution with parameter $\lambda=\frac{1}{2}$.
Example. Suppose that Y is a continuous random variable with $\operatorname{CDF} F_{Y}$ and X is a uniform random variable within $[0,1]$. Then you can show that $Z=F_{Y}^{-1}(X)$ has a $\operatorname{CDF} F_{Z}(z)=F_{Y}(z)$.

Example. Consider $X \sim N(0,1)$ and $Y=X^{2}$. What is the distribution of Y ? Note that the underlying transformation $f(x)=x^{2}$ is not always increasing or decreasing since $x \in \mathbb{R}$. In this case, a general strategy is to work out the CDF:

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P\left(X^{2} \leq y\right) \\
& =P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
p_{Y}(y) & =\frac{d}{d y}\left[F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})\right] \\
& =\frac{1}{2 \sqrt{y}}\left(p_{X}(\sqrt{y})+p_{X}(-\sqrt{y})\right)
\end{aligned}
$$

In this case, because $X \sim N(0,1)$, it is symmetric so we further have

$$
p_{Y}(y)=\frac{1}{\sqrt{y}} p_{X}(\sqrt{y})
$$

Putting $p_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ into the above equation, we obtain

$$
p_{Y}(y)=\frac{1}{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-y / 2}=\frac{1}{\sqrt{2 \pi}} y^{-\frac{1}{2}} e^{-\frac{1}{2} y}
$$

which is Gamma $\left(\frac{1}{2}, \frac{1}{2}\right)$. Note: Gamma $\left(\frac{1}{2}, \frac{1}{2}\right)$ is the same as χ_{1}^{2}, the chi-squared distribution with degree of freedom 1.

2.2 One function of two or more random variables

In practice, we may encounter problems involving a function of two or more random variables. Namely, we have X, Y two random variables whose joint distribution $p(x, y)$ is known and we are interested in the
distribution of another random variable $U=f(X, Y)$ for some given function f. In this case, a general strategy is to investigate the underlying CDF and take the derivative to obtain the corresponding PDF. Here we will illustrate the idea via a few examples.

Example. Consider (X, Y) to be a uniform distribution over $[0,1] \times[0,1]$. Note that in this case, they are from two independent uniform distributions.

- Case 1: $U=X+Y$. Note that the event $\{U=X+Y \leq u\}$ will be the region of $[0,1] \times[0,1]$ intersecting with $x+y \leq u$. So it will be 0 when $u \leq 0$ and 1 when $u \geq 2$. When $u \in[0,2]$, we can easily work it out using the area of a triangle, which leads to

$$
\begin{aligned}
F_{U}(u) & =P(U \leq u) \\
& = \begin{cases}0, & u<0 \\
u^{2} / 2, & 0 \leq u \leq 1 \\
1-(2-u)^{2} / 2, & 1 \leq u \leq 2 \\
1, & u>2\end{cases}
\end{aligned}
$$

The PDF $p_{U}(u)$ will be

$$
p_{U}(u)= \begin{cases}0, & u<0 \\ u, & 0 \leq u \leq 1 \\ 2-u, & 1 \leq u \leq 2 \\ 0, & u>2\end{cases}
$$

- Case 2: $U=\max \{X, Y\}$. A common trick to compute the distribution of a maximum of two or more independent random variables is based on the following insight:

$$
\{\max \{X, Y\} \leq u\} \equiv\{X \leq u, Y \leq u\}
$$

Therefore,

$$
F_{U}(u)=P(U \leq u)=P(\max \{X, Y\} \leq u)=P(X \leq u, Y \leq u)=P(X \leq u) P(U \leq u)
$$

which implies $F_{U}(u)=u^{2}$ and $p_{U}(u)=2 u$ when $u \in[0,1]$.

- Case 3: $U=\min \{X, Y\}$. The case of minimum is similar to the case of maximal but we will consider a reverse event:

$$
\{\min \{X, Y\}>u\} \equiv\{X>u, Y>u\}
$$

Therefore.

$$
1-F_{U}(u)=P(U>u)=P(\min \{X, Y\}>u)=P(X>u, Y>u)=P(X>u) P(U>u)=(1-u)^{2}
$$

Thus, $F_{U}(u)=1-(1-u)^{2}$ so $p_{U}(u)=2-2 u$ for $u \in[0,1]$.
Example (minimum of many uniforms). Now consider X_{1}, \cdots, X_{n} that are IID from a uniform distribution over $[0,1]$. Define $U=n \min \left\{X_{1}, \cdots, X_{n}\right\}$. What will the distribution of U be when n is large? Using the trick that we have discussed,

$$
\left\{\min \left\{X_{1}, \cdots, X_{n}\right\}>u\right\} \equiv\left\{X_{1}>u, \cdots, X_{n}>u\right\}
$$

so

$$
1-F_{U}(u)=P\left(\min \left\{X_{1}, \cdots, X_{n}\right\}>\frac{u}{n}\right)=\prod_{i=1}^{n} P\left(X_{i}>\frac{u}{n}\right)=\left(1-\frac{u}{n}\right)^{n} \rightarrow e^{-u}
$$

As a result, $F_{U}(u) \rightarrow 1-e^{-u}$ and $p_{U}(u) \rightarrow e^{-u}$ so when n is large, U behaves like from an Exponential distribution.

Example (exponential distributions). Consider X, Y are IID from exponential distribution with parameter 1.

- Sum of two exponentials. What is the distribution of $U=X+Y$? A simple trick is to fixed one variable at a time and make good use of integration. Specifically, for a given $u>0$,

$$
\begin{aligned}
F_{U}(u) & =P(U \leq u) \\
& =P(X+Y \leq u) \\
& =\int_{x+y \leq u} e^{-x-y} d x d y \\
& =\int_{x=0}^{u} \int_{y=0}^{u-x} e^{-x-y} d y d x \\
& =\int_{x=0}^{u} e^{-x}\left(1-e^{x-u}\right) d x \\
& =1-e^{-u}-u e^{-u}
\end{aligned}
$$

Thus, $p_{U}(u)=u e^{-u}$.

- Minimum of two exponentials. Now we consider $V=\min \{X, Y\}$. Using the same trick as the minimum of many uniforms, i.e.,

$$
\{\min \{X, Y\}>v\} \equiv\{X>v, Y>v\}
$$

so

$$
1-F_{V}(v)=P(X>v) P(Y>v)=e^{-2 v}
$$

which implies that $V \sim \operatorname{Exp}(2)$. In fact, you can easily generalize it to showing that if $X_{1}, \cdots, X_{n} \sim$ $\operatorname{Exp}(\lambda)$, then $\min \left\{X_{1}, \cdots, X_{n}\right\} \sim \operatorname{Exp}(n \lambda)$.

- Difference. Consider

$$
Z=\max \{X, Y\}-\min \{X, Y\}=|X-Y|
$$

What will the distribution of Z be?
Using a direct computation, we see that

$$
\begin{aligned}
F_{Z}(z) & =P(Z \leq z) \\
& =P(|X-Y| \leq z) \\
& =P(-z \leq X-Y \leq z) \\
& =P(X-Y \leq z)-P(X-Y<-z) \\
& =P(X \leq Y+z)-1+P(X-Y \geq-z) \\
& =-1+P(X \leq Y+z)+P(Y \leq X+z) \\
& =-1+2 P(X \leq Y+z) \quad X, Y \text { are symmetriic. }
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
P(X \leq Y+z) & =\int_{y=0}^{\infty} \int_{x=0}^{y+z} e^{-x} d x e^{-y} d y \\
& =\int_{y=0}^{\infty}\left(1-e^{-y-z}\right) e^{-y} d y \\
& =1-e^{-z} \int_{0}^{\infty} e^{-2 y} d y \\
& =1-\frac{1}{2} e^{-z}
\end{aligned}
$$

As a result,

$$
F_{Z}(z)=-1+2 P(X \leq Y+z)=1-e^{-z}
$$

which is the CDF of $\operatorname{Exp}(1)$! This is another memoryless property.

- Ratio. Finally, we consider $W=\frac{X}{X+Y}$ and studies its distribution. Clearly, $0 \leq w \leq 1$ so we will focus on the range $[0,1]$.

$$
\begin{aligned}
F_{W}(w) & =P\left(\frac{X}{X+Y} \leq w\right) \\
& =P(X \leq w(X+Y)) \\
& =P((1-w) X \leq w Y) \\
& =P\left(X \leq \frac{w}{1-w} Y\right) \\
& =\int_{y=0}^{\infty} \int_{x=0}^{\frac{w}{1-w} y} e^{-x} d x e^{-y} d y \\
& =\int_{y=0}^{\infty}\left(1-e^{\frac{-w}{1-w} y}\right) e^{-y} d y \\
& =1-\int_{0}^{\infty} e^{-\frac{1}{1-w} y} d y \\
& =1-1+w=w
\end{aligned}
$$

Thus $W \sim \operatorname{Unif}[0,1]$.

Useful properties about normal (please verify them).

- Let $X \sim N\left(\mu_{1}, \sigma^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ be independent. Then

$$
X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Also, for any real number a,

$$
a X \sim N\left(a \mu_{1}, a^{2} \sigma_{1}^{2}\right)
$$

- Let X_{1}, \cdots, X_{n} be IID normal random variables from $N\left(\mu, \sigma^{2}\right)$. Then the sample mean

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2} / n\right)
$$

- Let X_{1}, \cdots, X_{n} be IID normal random variables from $N(0,1)$. Then $Z_{1}=X_{1}^{2}$ follows the χ^{2} distribution with a degree of freedom 1. And $Z_{n}=\sum_{i=1}^{n} X_{i}^{2}$ follows the χ^{2} distribution with a degree of freedom n.

