STAT 512: Statistical Inference Autumn 2020

Lecture 2: Transforming continuous random variables
Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 2.1.

In the previous lecture, we have seen a couple of distributions that have nice properties. When working with
data, we may perform some transformation of random variables. Suppose we know the distribution of a
random variable before the transformation, does this give us any hint on the distribution of the transformed
variable?

2.1 One function of one random variable

Let X be a continuous random variable whose PDF px () is known. Consider a given function f and another
random variable Y = f(X). Since the input X is random, the output Y is often random as well. What will
the distribution of Y be?

When f is differentiable, we have the following useful theorem.

Theorem 2.1 In the above setting and assume that X € [a,b] and f'(x) > 0 (strictly increasing) over [a, b],
then the PDF of Y

px(f1(¥)
py(y) = FUTW)” fla) <y < f(b)
0, otherwise.

Proof:
To start with, we consider the CDF of Y:

PY <y)=P(f(X) <y)

=P(X < f7Hy)).

The PDF will be the derivative of the CDF, leading to

which completes the proof.
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Example. Suppose f(z) = 22 and X ~ Uniform[0,1]. And we are interested in the PDF of Y = f(X) = X?2.
Because f'(z) =2z and X > 0so f~!(y) = \/y, we have
1

py(y) = ﬁf(o <y<1).

Example. Assume X ~ Uniform[0,1] and consider f(z) = —2log X and let Y = —2log X. In this case,
fl(x) = —% and f(y) = e~2Y. However, f/(x) is negative so we cannot directly apply Theorem 2.1.
A simple modlﬁcatlon shows that the same formula holds as long as we replace f'(f~1(y)) by |f'(f~1(y))|
(think about why).

Then the PDF of Y will be
1

py (y) = 56‘%‘”1(0 <vy)

which is the Exponential distribution with parameter A = %

Example. Suppose that Y is a continuous random variable with CDF Fy and X is a uniform random
variable within [0, 1]. Then you can show that Z = Fy,'(X) has a CDF Fz(2) = Fy(2).

Example. Consider X ~ N(0,1) and Y = X2. What is the distribution of Y? Note that the underlying
transformation f(z) = 2 is not always increasing or decreasing since z € R. In this case, a general strategy
is to work out the CDF:

Thus

)

= @[Fx(ﬂ) — Fx(=vy)]
> (x (V) + px(=v))-

In this case, because X ~ N(0,1), it is symmetric so we further have

py(y) = \}gpxwm.

L_c—"/2 into the above equation, we obtain

Putting px (z) = 7=

1 —y/ _i
py(y) = 776 2—my

which is Gamma (3, ). Note: Gamma (3, 1) is the same as x?, the chi-squared distribution with degree of
freedom 1.

1 1
—2p 2Y
2 29,

2.2 One function of two or more random variables

In practice, we may encounter problems involving a function of two or more random variables. Namely,
we have XY two random variables whose joint distribution p(x,y) is known and we are interested in the
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distribution of another random variable U = f(X,Y") for some given function f. In this case, a general
strategy is to investigate the underlying CDF and take the derivative to obtain the corresponding PDF.
Here we will illustrate the idea via a few examples.

Example. Consider (X,Y’) to be a uniform distribution over [0, 1] x [0, 1]. Note that in this case, they are

from two independent uniform distributions.

e Case 1: U = X +Y. Note that the event {U = X +Y < u} will be the region of [0,1] x [0,1]
intersecting with « + y < w. So it will be 0 when u < 0 and 1 when u > 2. When u € [0, 2], we can
easily work it out using the area of a triangle, which leads to

0, u <0
B u?/2, 0<u<il
)1 -@2-w?2, 1<u<?2’
1, u>2
The PDF py(u) will be
0, u <0
(u) Uu, 0<u<l1
u) = i
pu 9w, 1<u<?2
0, u > 2

e Case 2: U =max{X,Y}. A common trick to compute the distribution of a maximum of two or more
independent random variables is based on the following insight:

{max{X, Y} <u}={X <u,Y <u}.
Therefore,
Fy(u)=PU <u)=Pmax{X,Y} <u)=PX <u,Y <u)=P(X <u)P(U < u),
which implies Fy7(u) = u? and py(u) = 2u when u € [0, 1].

e Case 3: U = min{X,Y}. The case of minimum is similar to the case of maximal but we will consider
a reverse event:

{min{X,Y} >u} ={X >u,Y > u}.
Therefore.
1—Fy(u) = P(U >u)=Pmin{X,Y} >u) = P(X >u,Y >u) = P(X >u)P(U >u) = (1—u)?
Thus, Fyy(u) =1 — (1 —u)? so py(u) =2 — 2u for u € [0, 1].
Example (minimum of many uniforms). Now consider Xi,:--, X, that are IID from a uniform dis-

tribution over [0, 1]. Define U = nmin{Xy,---, X, }. What will the distribution of U be when n is large?
Using the trick that we have discussed,

{min{X1y, -, X} >u} ={X51 >u, -, X, > u},

SO
n

i=1
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As a result, Fy(u) = 1 —e™™ and py(u) — e so when n is large, U behaves like from an Exponential
distribution.

Example (exponential distributions). Consider X,Y are IID from exponential distribution with pa-
rameter 1.

e Sum of two exponentials. What is the distribution of U = X + Y? A simple trick is to fixed one
variable at a time and make good use of integration. Specifically, for a given u > 0,

u

Thus, py(u) = ue™™.

e Minimum of two exponentials. Now we consider V' = min{X,Y}. Using the same trick as the
minimum of many uniforms, i.e.,

{min{X, Y} > v} ={X >v,Y > v}

SO

1 Fy(v) = P(X > 0)P(Y >v) =%,

which implies that V' ~ Exp(2). In fact, you can easily generalize it to showing that if Xy, -+, X,, ~
Exp(A), then min{Xy,---, X, } ~ Exp(nA).

e Difference. Consider

Z =max{X,Y} —min{X,Y} =|X -Y].

What will the distribution of Z be?

Using a direct computation, we see that

Fy(z)=P(Z < z)
=P(X -Y[<2)
=P(-2<X-Y <2
—P(X-Y <2)-P(X-Y < —2)
=PX<Y+2)—-1+PX-Y >—2)

=—-1+PX<Y+2)+PY <X+2)
=—-142P(X <Y +2) X,Y are symmetriic.
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Moreover,
) y+z
P(X§Y+Z)=/ / e "dre Ydy
y=0 Jx=0
:/ (1—€yz)e ydy
y=0
=1- e*'z/ e Mdy
0
1 L -
—e
2
As a result,

Fy(z2)=—-142P(X <Y +4+2z)=1-¢7%,
which is the CDF of Exp(1)! This is another memoryless property.

e Ratio. Finally, we consider W = Xiﬂ, and studies its distribution. Clearly, 0 < w < 1 so we will
focus on the range [0, 1].

Fw(w) =P (Xi( y S “’)

=P(X <w(X+Y))
=P((1-w)X <wY)

:P(Xg v Y)
1—w

w

o 1—wy
= / / e *dxe Ydy
y=0Jz=

oo Cw
= / (I1—em™w¥)e Ydy
y

=0

o 1
=1 —/ e T-w¥dy
0

=l1-14+w=w.

Thus W ~ Unif[0, 1].
Useful properties about normal (please verify them).

e Let X ~ N(uj,0%) and Y ~ N(uz2,03) be independent. Then
X +Y ~ N(u + p2, 07 + 03)

Also, for any real number a,
aX ~ N(api,a’0?).

e Let X;,---, X, be IID normal random variables from N (i, c?). Then the sample mean
_ 1 &
X, = p Z;Xi ~ N(p,0%/n).

e Let Xy, -+, X, be IID normal random variables from N(0,1). Then Z; = X7 follows the x? distri-
bution with a degree of freedom 1. And Z,, = Y. | X? follows the x? distribution with a degree of
freedom n.
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