
STAT 535: Statistical Machine Learning Autumn 2019

Lecture 1: Review on Probability and Statistics
Instructor: Yen-Chi Chen

1.1 Sample Space and Random Variables

1.1.1 Sample Space and Probability Measure

The sample space Ω is the collection of all possible outcomes of a random experiment, e.g. toss of a coin,
Ω = {H,T}. Elements ω ∈ Ω are called outcomes, realizations or elements. Subsets A ⊆ Ω are called events.
You should able to express events of interest using the standard set operations. For instance:

• “Not A” corresponds to the complement Ac = Ω \A;

• “A or B” corresponds to the union A ∪B;

• “A and B” corresponds to the intersection A ∩B.

We said that A1, A2, ... are pairwise disjoint/mutually exclusive if Ai ∩ Aj = ∅ for all i 6= j. A partition of
Ω is a sequence of pairwise disjoint sets A1, A2, ... such that ∪∞i=1Ai = Ω. We use |A| to denote the number
of elements in A.

The sample space defines basic elements and operations of events. But it is still too simple to be useful in
describing our senses of ‘probability’. Now we introduce the concept of σ-algebra.

A σ-algebra F is a collection of subsets of Ω satisfying:

(A1) (full and null set) Ω ∈ F , ∅ ∈ F (∅ = empty set).

(A2) (complement)A ∈ F ⇒ Ac ∈ F .

(A3) (countably union) A1, A2, ... ∈ F ⇒
⋃∞
i=1Ai ∈ F .

The sets in F are said to be measurable and (Ω,F) is a measurable space. The intuition of a set being
measurable is that we can find a function that takes the elements of F and output a real number; this
number represents the ‘size’ of the input element.

Now we introduce the concept of probability. Intuitively, probability should be associated with an event –
when we say a probability of something, this ‘something’ is an event. Using the fact that the σ-algebra F is
a collection of events and the property that F is measurable, we then introduce a measure called probability
measure P(·) that assigns a number between 0 and 1 to every element of F . Namely, this function P maps
an event to a number, describing the likelihood of the event.

Formally, a probability measure is a mapping P : F 7→ R satisfying the following three axioms

(P1) P(Ω) = 1.

(P2) P(A) ≥ 0 for all A ∈ F .
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(P3) (countably additivity) P (
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai) for mutually exclusive events A1, A2, ... ∈ F .

The triplet (Ω,F ,P) is called a probability space.

The three axioms imply:

P(∅) = 0

0 ≤ P(A) ≤ 1

A ⊂ B =⇒ P(A) ≤ P(B),

P(Ac) = 1− P(A)

P(A ∪B) = P(A) + P(B)− P(A ∩B)

The countable additivity (P3) also implies that if a sequence of sets A1, A2, . . . in F satisfying An ⊆ An+1

for all n, then

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

If An ⊇ An+1 for all n, then

P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).

How do we interpret the probability? There are two major views in statistics. The first view is called
the frequentist view – the probability is interpreted as the limiting frequencies observed over repetitions in
identical situations. The other view is called the Bayesian/subjective view where the probability quantifies
personal belief. One way of assigning probabilities is the following. The probability of an event E is the
price one is just willing to pay to enter a game in which one can win a unit amount of money if E is true.
Example: If I believe a coin is fair and am to win 1 unit if a head arises, then I would pay 1

2 unit of money
to enter the bet.

Now we have a basic mathematical model for probability. This model also defines an interesting quantity
called conditional probability. For two events A,B ∈ F , the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

Note that when B is fixed, the function P(·|B) : F 7→ R is another probability measure.

In general, P(A|B) 6= P(B|A). This is sometimes called as the prosecutor’s fallacy:

P(evidence|guilty) 6= P(guilty|evidence).

The probability has a power feature called independence. This property is probably the key property that
makes the ‘probability theory’ distinct from measure theory. Intuitively, when we say that two events are
independent, we refers to the case that the two event will not interfere each other. Two events A and B are
independent if

P(A|B) = P(A) (or equivalently, P(A ∩B) = P(A)P(B)).

For three events A,B,C, we say events A and B are conditional independent given C if

P(A ∩B|C) = P(A|C)P(B|C)
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Probability measure also has a useful property called law of total probability. If B1, B2, ..., Bk forms a
partition of Ω, then

P(A) =

k∑
i=1

P(A|Bi)P(Bi).

In particular, P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). And this further implies the famous Bayes rule: Let
A1, ..., Ak be a partition of Ω. If P(B) > 0 then, for i = 1, ..., k:

P(Ai|B) =
P(B|Ai)P(Ai)∑k
j=1 P(B|Aj)P(Aj)

.

1.1.2 Random Variable

So far, we have built a mathematical model describing the probability and events. However, in reality, we
are dealing with numbers, which may not be directly link to events. We need another mathematical notion
that bridges the events and numbers and this is why we need to introduce random variables.

Informally, a random variable is a mapping X : Ω 7→ R that assigns a real number X(ω) to each outcome
ω ∈ Ω. Fo example, we toss a coin 2 times and let X represents the number of heads. The sample
space is Ω = {HH,HT, TH, TT}. Then for each ω ∈ Ω, X(ω) outputs a real number: X({HH}) = 2,
X({HT}) = X({TH}) = 1, and X({TT}) = 0.

Rigorously, a function X(ω) : Ω→ R is called a random variable (R.V.) if X(ω) is measurable with respect
to F , i.e.

X−1((−∞, c]) := {ω ∈ Ω : X(ω) ≤ c} ∈ F , for all c ∈ R.

Note that the condition is also equivalent to saying that X−1(B) ∈ F for every Borel set B1. This means
that the set X−1(B) is indeed an event so that it makes sense to talk about P(X ∈ B), the probability that
X lies in B, for any Borel set B. The function B 7→ P(X ∈ B) is a probability measure and is called the
(probability) distribution of X.

A very important characteristic of a random variable is its cumulative distribution function (CDF), which is
defined as

F (x) = P (X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}).

Actually, the distribution of X is completely determined by the CDF F (x), regardless of X being a discrete
random variable or a continuous random variable (or a mix of them).

When X takes discrete values, we may characterize its distribution using the probability mass function
(PMF):

p(x) = P (X = x) = F (x)− F (x−),

where F (x−) = limε→0 F (x−ε). In this case, one can recover the CDF from PMF using F (x) =
∑
x′≤x p(x

′).

If X is an absolutely continuous random variable, we may describe its distribution using the probability
density function (PDF):

p(x) = F ′(x) =
d

dx
F (x).

In this case, the CDF can be written as

F (x) = P (X ≤ x) =

∫ x

−∞
p(x′)dx′.

1A Borel set is a set that can be formed by countable union/intersection and complement of open sets.
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However, the PMF and PDF are not always well-defined. There are situations where X does not have a PMF
or a PDF. The formal definition of PMF and PDF requires the notion of the Radon-Nikodym derivative,
which is beyond the scope of this course.

1.2 Common Distributions

1.2.1 Discrete Random Variables

Bernoulli. If X is a Bernoulli random variable with parameter p, then X = 0 or, 1 such that

P (X = 1) = p, P (X = 0) = 1− p.

In this case, we write X ∼ Ber(p).

Binomial. If X is a binomial random variable with parameter (n, p), then X = 0, 1, · · · , n such that

P (X = k) =

(
n

k

)
pk(1− p)n−k.

In this case, we write X ∼ Bin(n, p). Note that if X1, · · · , Xn ∼ Ber(p), then the sum Sn = X1+X2+· · ·+Xn

is a binomial random variable with parameter (n, p).

Geometric. If X is a geometric random variable with parameter p, then

P (X = n) = (1− p)n−1p

for n = 1, 2, · · · . Geometric random variable can be constructed using ‘the number of trials of the first
success occurs’. Consider the case we are flipping coin with a probability p that we gets a head (this is
a Bernoulli (p) random variable). Then the number of trials we made to see the first head is a geometric
random variable with parameter p.

Poisson. If X is a Poisson random variable with parameter λ, then X = 0, 1, 2, 3, · · · and

P (X = k) =
λke−λ

k!
.

In this case, we write X ∼ Poi(λ). Poisson is often used to model a counting process. For instance, the
intensity of an image is commonly modeled as a Poisson random variable.

Example: Wright-Fisher Model. Recall the Wright-Fisher model: Xn is the number of A alleles in the
population at generation n, with 2m alleles in all. We have 2m Bernoulli trials with P (A) = j/2m where
j is the number of A alleles in the previous generation (recall, assumed sampling with replacement). The
probability of Xn+1 = k given Xn = j is Binomial(2m, j/2m):

P (Xn+1 = k|Xn = j) =

(
2m

k

)(
j

2m

)k (
1− j

2m

)2m−k

,

for j, k = 0, 1, ...., 2m.

1.2.2 Continuous Random Variables

Uniform. If X is a uniform random variable over the interval [a, b], then

p(x) =
1

b− a
I(a ≤ x ≤ b),
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where I(statement) is the indicator function such that if the statement is true, then it outputs 1 otherwise
0. Namely, p(x) takes value 1

b−a when x ∈ [a, b] and p(x) = 0 in other regions. In this case, we write
X ∼ Uni[a, b].

Normal. If X is a normal random variable with parameter (µ, σ2), then

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

In this case, we write X ∼ N(µ, σ2).

Exponential. If X is an exponential random variable with parameter λ, then X takes values in [0,∞) and

p(x) = λe−λx.

In this case, we write X ∼ Exp(λ). Note that we can also write

p(x) = λe−λxI(x ≥ 0).

1.3 Properties of Random Variables

1.3.1 Conditional Probability and Independence

For two random variables X,Y , the joint CDF is

PXY (x, y) = F (x, y) = P (X ≤ x, Y ≤ y).

When both variables are absolute continuous, the corresponding joint PDF is

pXY (x, y) =
∂2F (x, y)

∂x∂y
.

The conditional PDF of Y given X = x is

pY |X(y|x) =
pXY (x, y)

pX(x)
,

where pX(x) =
∫∞
−∞ pXY (x, y)dy is sometimes called the marginal density function.

When both X and Y are discrete, the joint PMF is

pXY (x, y) = P (X = x, Y = y)

and the conditional PMF of Y given X = x is

pY |X(y|x) =
pXY (x, y)

pX(x)
,

where pX(x) = P (X = x) =
∑
y P (X = x, Y = y).

Random variables X and Y are independent if the joint CDF can be factorized as

F (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).
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For random variables, we also have the Bayes theorem:

pX|Y (x|y) =
pXY (x, y)

pY (y)

=
pY |X(y|x)pX(x)

pY (y)

=


pY |X(y|x)pX(x)∫
pY |X(y|x′)pX(x′)dx′

, if X,Y are absolutely continuous.
pY |X(y|x)pX(x)∑
x′ pY |X(y|x′)pX(x′) , if X,Y are discrete.

1.3.2 Expectation

For a function g(x), the expectation of g(X) is

E(g(X)) =

∫
g(x)dF (x) =

{∫∞
−∞ g(x)p(x)dx, if X is continuous∑
x g(x)p(x), if X is discrete

.

Here are some useful properties and quantities related to the expected value:

• E(
∑k
j=1 cjgj(X)) =

∑k
j=1 cj · E(gj(Xi)).

• We often write µ = E(X) as the mean (expectation) of X.

• Var(X) = E((X − µ)2) is the variance of X.

• If X1, · · · , Xn are independent, then

E (X1 ·X2 · · ·Xn) = E(X1) · E(X2) · · ·E(Xn).

• If X1, · · · , Xn are independent, then

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
i · Var(Xi).

• For two random variables X and Y with their mean being µX and µY and variance being σ2
X and σ2

Y .
The covariance

Cov(X,Y ) = E((X − µx)(Y − µy)) = E(XY )− µxµy
and the (Pearson’s) correlation

ρ(X,Y ) =
Cov(X,Y )

σxσy
.

The conditional expectation of Y given X is the random variable E(Y |X) = g(X) such that when X = x,
its value is

E(Y |X = x) =

∫
yp(y|x)dy,

where p(y|x) = p(x, y)/p(x). Note that when X and Y are independent,

E(XY ) = E(X)E(Y ), E(X|Y = y) = E(X).



Lecture 1: Review on Probability and Statistics 1-7

Law of total expectation:

E[E[Y |X]] =

∫
E[Y |X = x]pX(x)dx =

∫ ∫
ypY |X(y|x)pX(x)dxdy

=

∫ ∫
ypXY (x, y)dxdy = E[Y ].

Law of total variance:

Var(Y ) = E[Y 2]− E[Y ]2

= E[E(Y 2|X)]− E[E(Y |X)]2 (law of total expectation)

= E[Var(Y |X) + E(Y |X)2]− E[E(Y |X)]2 (definition of variance)

= E[Var(Y |X)] +
{
E[E(Y |X)2]− E[E(Y |X)]2

}
= E [Var(Y |X)] + Var (E[Y | X]) (definition of variance).

1.3.3 Moment Generating Function and Characteristic Function

Moment generating function (MGF) and characteristic function are powerful functions that describe the
underlying features of a random variable. The MGF of a RV X is

MX(t) = E(etX).

Note that MX may not exist. When MX exists in a neighborhood of 0, using the fact that

etX = 1 + tX +
(tX)2

2!
+

(tX)3

3!
+ · · · ,

we have

MX(t) = 1 + tµ1 +
t2µ2

2!
+
t3µ3

3!
+ · · · ,

where µj = E(Xj) is the j-th moment of X. Therefore,

E(Xj) = M (j)(0) =
djMX(t)

dtj

∣∣∣∣
t=0

Here you see how the moments of X is generated by the function MX .

For two random variables X,Y , if their MGFs are the same, then the two random variables have the same
CDF. Thus, MGFs can be used as a tool to determine if two random variables have the identical CDF. Note
that the MGF is related to the Laplace transform (actually, they are the same) and this may give you more
intuition why it is so powerful.

A more general function than MGF is the characteristic function. Let i be the imagination number. The
characteristic function of a RV X is

φX(t) = E(eitX).

When X is absolutely continuous, the characteristic function is the Fourier transform of the PDF. The
characteristic function always exists and when two RVs have the same characteristic function, the two RVs
have identical distribution.
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1.4 Convergence

Let F1, · · · , Fn, · · · be the corresponding CDFs of Z1, · · · , Zn, · · · . For a random variable Z with CDF F ,
we say that Zn converges in distribution (a.k.a. converge weakly or converge in law) to Z if for every x,

lim
n→∞

Fn(x) = F (x).

In this case, we write

Zn
D→ Z, or Zn

d→ Z.

Namely, the CDF’s of the sequence of random variables converge to a the CDF of a fixed random variable.

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges in probability to another random
variable Z if for any ε > 0,

lim
n→∞

P (|Zn − Z| > ε) = 0

and we will write

Zn
P→ Z

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges almost surely to a random
variable Z if

P ( lim
n→∞

Zn = Z) = 1

or equivalently,

P ({ω : lim
n→∞

Zn(ω) = Z(ω)}) = 1.

We use the notation

Zn
a.s.→ Z

to denote convergence almost surely.

Note that almost surely convergence implies convergence in probability. Convergence in probability implies
convergence in distribution.

In many cases, convergence in probability or almost surely converge occurs when a sequence of RVs converging
toward a fixed number. In this case, we will write (assuming that µ is the target of convergence)

Zn
P→ µ, Zn

a.s.→ µ.

Later we will see that the famous Law of Large Number is describing the convergence toward a fixed number.

Examples.

• Let {X1, X2, · · · , } be a sequence of random variables such that Xn ∼ N
(
0, 1 + 1

n

)
. Then Xn converges

in distribution to N(0, 1).

Continuous mapping theorem: Let g be a continuous function.

• If a sequence of random variables Xn
D→ X, then g(Xn)

D→ g(X).

• If a sequence of random variables Xn
p→ X, then g(Xn)

p→ g(X).
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Slutsky’s theorem: Let {Xn : n = 1, 2, · · · } and {Yn : n = 1, 2, · · · } be two sequences of RVs such that

Xn
D→ X and Yn

p→ c, where X is a RV c is a constant. Then

Xn + Yn
D→ X + c

XnYn
D→ cX

Xn/Yn
D→ X/c (if c 6= 0).

We will these two theorems very frequently when we are talking about the maximum likelihood estimator.

Why do we need these notions of convergences? The convergence in probability is related to the concept
of statistical consistency. An estimator is statistically consistent if it converges in probability toward its
target population quantity. The convergence in distribution is often used to construct a confidence interval
or perform a hypothesis test.

1.4.1 Convergence theory

We write X1, · · · , Xn ∼ F when X1, · · · , Xn are IID (independently, identically distributed) from a CDF F .
In this case, X1, · · · , Xn is called a random sample.

Theorem 1.1 (Law of Large Number) Let X1, · · · , Xn ∼ F and µ = E(X1). If E|X1| <∞, the sample
average

X̄n =
1

n

n∑
i=1

Xi

converges in probability to µ. i.e.,
X̄n

a.s→ µ.

The above theorem is also known as Kolmogorov’s Strong Law of Large Numbers.

Theorem 1.2 (Central Limit Theorem) Let X1, · · · , Xn ∼ F and µ = E(X1) and σ2 = Var(X1) < ∞.
Let X̄n be the sample average. Then

√
n

(
X̄n − µ
σ

)
D→ N(0, 1).

Note that N(0, 1) is also called standard normal random variable.

Note that there are other versions of central limit theorem that allows dependent RVs or infinite variance
using the idea of ‘triangular array’ (also known as the Lindeberg-Feller Theorem). However, the details are
beyond the scope of this course so we will not pursue it here.

In addition to the above two theorems, we often use the concentration inequality to obtain convergence in
probability. Let {Xn : n = 1, 2, · · · } be a sequence of RVs. For a given ε > 0, the concentration inequality
aims at finding the function φn(ε) such that

P (|Xn − E(Xn)| > ε) ≤ φn(ε)

and φn(ε) → 0. This automatically gives us convergence in probability. Moreover, the convergence rate of
φn(ε) with respect to n is a central quantity that describes how fast Xn converges toward its mean.
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Theorem 1.3 (Markov’s inequality) Let X be a non-negative RV. Then for any ε > 0,

P (X ≥ ε) ≤ E(X)

ε
.

Example: concentration of a Gaussian mean. The Markov’s inequality implies a useful bound on
describing how fast the sample mean of a Gaussian converges to the population mean. For simplicity, we
consider a sequence of mean 0 Gaussians: X1, · · · , Xn ∼ N(0, σ2). Let X̄n = 1

n

∑n
i=1Xi be the sample

mean. It is known that X̄n ∼ N(0, σ2/n). Then

P (X̄n > ε) = P (eX̄n > eε)

= P (esX̄n > esε)

≤ E(esX̄n)

esε
by Markov’s inequality

≤ e 1
2nσ

2s2−sε by the MGF of Gaussian

for any positive number s. In the exponent, it is a quadratic function of s and the maximal occurs at s = nε
σ2 ,

leading to

P (X̄n > ε) ≤ e−
nε2

2σ2 .

The same bound holds for the other direction P (X̄n < −ε) ≤ e−
nε2

2σ2 . So we conclude

P (|X̄n| > ε) ≤ 2e−
nε2

2σ2

or more generally,

P (|X̄n − E(X1)| > ε) ≤ 2e−
nε2

2σ2 .

A bound like the above is often referred to as a concentration inequality.

Theorem 1.4 (Chebyshev’s inequality) Let X be a RV with finite variance. Then for any ε > 0,

P (|X − E(X)| ≥ ε) ≤ Var(X)

ε2
.

Let X1, · · · , Xn ∼ F be a random sample such that σ2 = Var(X1). Using the Chebyshev’s inequality, we
know that the sample average X̄n has a concentration inequality:

P (|X̄n − E(X̄n)| ≥ ε) ≤ σ2

nε2
.

However, when the RVs are bounded, there is a stronger notion of convergence, as described in the following
theorem.

Theorem 1.5 (Hoeffding’s inequality) Let X1, · · · , Xn be IID RVs such that 0 ≤ X1 ≤ 1 and let X̄n be
the sample average. Then for any ε > 0,

P (|X̄n − E(X̄n)| ≥ ε) ≤ 2e−2nε2 .
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Hoeffding’s inequality gives a concentration of the order of exponential (actually it is often called a Gaussian
rate) so the convergence rate is much faster than the one given by the Chebyshev’s inequality. Obtaining
such an exponential rate is useful for analyzing the property of an estimator. Many modern statistical topics,
such as high-dimensional problem, nonparametric inference, semi-parametric inference, and empirical risk
minimization all rely on a convergence rate of this form.

Note that the exponential rate may also be used to obtain an almost sure convergence via the Borel-Cantelli
Lemma.

Example: consistency of estimating a high-dimensional proportion. To see how the Hoeffding’s
inequality is useful, we consider the problem of estimating the proportion of several binary variables. Suppose
that we observe IID observations

X1, · · · , Xn ∈ {0, 1}d.

Xij = 1 can be interpreted as the i-th individual response ‘Yes’ in j-th question. We are interested in
estimating the proportion vector π ∈ [0, 1]d such that πj = P (Xij = 1) is the proportion of ‘Yes’ response in
j-th question in the population. A simple estimator is the sample proportion π̂ = (π̂1, · · · , π̂d)T such that

π̂j =
1

n

n∑
i=1

Xij .

When d is much smaller than n, it is easy to see that this is a good estimator. However, if d = dn →∞ with
n → ∞, will π̂ still be a good estimator of π? To define a good estimator, we mean that every proportion
can be estimated accurately. A simple way to quantify this is the vector max norm:

‖π̂ − π‖max = max
j=1,··· ,d

|π̂j − πj |.

We consider the problem of estimating πj first. It is easy to see that by the Hoeffding’s inequality,

P (|π̂j − πj | > ε) ≤ 2e−2nε2 .

Thus,

P (‖π̂ − π‖max > ε) = P

(
max

j=1,··· ,d
|π̂j − πj | > ε

)
≤

d∑
j=1

P (|π̂j − πj | > ε)

≤ 2de−2nε2 .

(1.1)

Thus, as long as 2de−2nε2 → 0 for any fixed ε, we have the statistical consistency. This implies that we need

log d

n
→ 0,

which allows the number of questions/variables to increase a lot faster than the sample size n!

1.5 Estimators and Estimation Theory

Let X1, · · · , Xn ∼ F be a random sample. Here we can interpret F as the population distribution we are
sampling from (that’s why we are generating data from this distribution). Any numerical quantity (or even
non-numerical quantity) of F that we are interested in is called the parameter of interest. For instance,
the parameter of interest can be the mean of F , the median of F , standard deviation of F , first quartile of
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F , ... etc. The parameter of interest can even be P (X ≥ t) = 1 − F (t) = S(t). The function S(t) is called
the survival function, which is a central topic in biostatistics and medical research.

When we know (or assume) that F is a certain distribution with some parameters, then the parameter of
interest can be the parameter describing that distribution. For instance, if we assume F is an exponential
distribution with an unknown parameter λ. Then this unknown parameter λ might be the parameter of
interest.

Most of the statistical analysis is concerned with the following question:

“given the parameter of interest, how can I use the random sample to infer it?”

Let θ = θ(F ) be the parameter of interest and let θ̂n be a statistic (a function of the random sample

X1, · · · , Xn) that we use to estimate θ. In this case, θ̂n is called an estimator. For an estimator, there are
two important quantities measuring its quality. The first quantity is the bias:

Bias(θ̂n) = E(θ̂n)− θ,

which captures the systematic deviation of the estimator from its target. The other quantity is the variance
Var(θ̂n), which measures the size of stochastic fluctuation.

Example. Let X1, · · · , Xn ∼ F and µ = E(X1) and σ2 = Var(X). Assume the parameter of interest is the
population mean µ. Then a natural estimator is the sample average µ̂n = X̄n. Using this estimator, then

bias(µ̂n) = µ− µ = 0, Var(µ̂n) =
σ2

n
.

Therefore, when n→∞, both bias and variance converge to 0. Thus, we say µ̂n is a consistent estimator

of µ. Formally, an estimator θ̂n is called a consistent estimator of θ if θ̂n
P→ θ.

The following lemma is a common approach to prove consistency:

Lemma 1.6 Let θ̂n be an estimator of θ. If bias(θ̂n) → 0 and Var(θ̂n) → 0, then θ̂n
P→ θ. i.e., θ̂n is a

consistent estimator of θ.

In many statistical analysis, a common measure of the quality of the estimator is the mean square error
(MSE), which is defined as

MSE(θ̂n) = MSE(θ̂n, θ) = E
(

(θ̂n − θ)2
)
.

By simple algebra, the MSE of θ̂n equals

MSE(θ̂n, θ) = E
(

(θ̂n − θ)2
)

= E
(

(θ̂n − E(θ̂n) + E(θ̂n)− θ)2
)

= E
(

(θ̂n − E(θ̂n))2
)

︸ ︷︷ ︸
=Var(θ̂n)

+2E
(
θ̂n − E(θ̂n)

)
︸ ︷︷ ︸

=0

·(E(θ̂n)− θ) +

E(θ̂n)− θ︸ ︷︷ ︸
=bias(θ̂n)


2

= Var(θ̂n) + bias2(θ̂n).

Namely, the MSE of an estimator is the variance plus the square of bias. This decomposition is also known
as the bias-variance tradeoff (or bias-variance decomposition). By the Markov inequality,

MSE(θ̂n, θ)→ 0 =⇒ θ̂n
P→ θ.
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i.e., if an estimator has MSE converging to 0, then it is a consistent estimator. The convergence of MSE is
related to the L2 convergence in probability theory.

Note that we write θ = θ(F ) for the parameter of interest because θ is a quantity derived from the population
distribution F . Thus, we may say that the parameter of interest θ is a ‘functional’ (function of function; the
input is a function, and the output is a real number).

1.6 OP and oP Notations

For a sequence of numbers an (indexed by n), we write an = o(1) if an → 0 when n → ∞. For another
sequence bn indexed by n, we write an = o(bn) if an/bn = o(1).

For a sequence of numbers an, we write an = O(1) if for all large n, there exists a constant C such that
|an| ≤ C. For another sequence bn, we write an = O(bn) if an/bn = O(1).

Examples.

• Let an = 2
n . Then an = o(1) and an = O

(
1
n

)
.

• Let bn = n+ 5 + log n. Then bn = O(n) and bn = o(n2) and bn = o(n3).

• Let cn = 1000n+ 10−10n2. Then cn = O(n2) and cn = o(n2 · log n).

Essentially, the big O and small o notation give us a way to compare the leading convergence/divergence
rate of a sequence of (non-random) numbers.

The OP and oP are similar notations to O and o but are designed for random numbers. For a sequence of
random variables Xn, we write Xn = oP (1) if for any ε > 0,

P (|Xn| > ε)→ 0

when n → ∞. Namely, P (|Xn| > ε) = o(1) for any ε > 0. Let an be a nonrandom sequence, we write
Xn = oP (an) if Xn/an = oP (1).

In the case of OP , we write Xn = OP (1) if for every ε > 0, there exists a constant C such that

P (|Xn| > C) ≤ ε.

We write Xn = OP (an) if Xn/an = OP (1).

Examples.

• Let Xn be an R.V. (random variable) from a Exponential distribution with λ = n. Then Xn = OP ( 1
n )

• Let Yn be an R.V from a normal distribution with mean 0 and variance n2. Then Yn = OP (n) and
Yn = oP (n2).

• Let An be an R.V. from a normal distribution with mean 0 and variance 10100 · n2 and Bn be an R.V.
from a normal distribution with mean 0 and variance 0.1 · n4. Then An +Bn = OP (n2).

If we have a sequence of random variables Xn = Yn + an, where Yn is random and an is non-random such
that Yn = OP (bn) and an = O(cn). Then we write

Xn = OP (bn) +O(cn).

Examples.
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• Let An be an R.V. from a uniform distribution over the interval [n2 − 2n, n2 + 2n]. Then An =
O(n2) +OP (n).

• Let Xn be an R.V from a normal distribution with mean log n and variance 10100, then Xn = O(log n)+
OP (1).

The following lemma is an important property for a sequence of random variables Xn.

Lemma 1.7 Let Xn be a sequence of random variables. If there exists a sequence of numbers an, bn such
that

|E(Xn)| ≤ an, Var(Xn) ≤ b2n.

Then
Xn = O(an) +OP (bn).

Examples.

• Let X1, · · · , Xn be IID from Exp(5). Then the sample average

X̄n = O(1) +OP (1/
√
n).

• Let Y1, · · · , Yn be IID from N(5 log n, 1). Then the sample average

Ȳn = O(log n) +OP (1/
√
n).

Application.

• Let Xn be a sequence of random variables that are uniformly distributed over [−n2, n2]. It is easy to
see that |Xn| ≤ n2 so E(|Xn|) ≤ n2. Then by Markov’s inequality,

P (|Xn| ≥ t) ≤
E(|Xn|)

t
≤ n2

t
.

Let Yn = 1
n2Xn. Then

P (|Yn| ≥ t) = P

(
1

n2
|Xn| ≥ t

)
= P (|Xn| ≥ n2 · t) ≤ n2

n2 · t
= t

for any positive t. This implies Yn = OP (1) so Xn = OP (n2).

• The Markov inequality and Chebeshev’s inequality are good tools for deriving the OP bound. For a
sequence of random variables {Xn : n = 1, · · · }, the Markov inequality implies

Xn = OP (E(|Xn|)).

The Chebeshev’s inequality implies
Xn = OP (

√
Var(Xn))

if E(Xn) = 0.

• If we obtain a bound like equation (1.1), we can use OP notation to elegantly denote it as

‖π̂ − π‖max = OP

(√
log d

n

)
.
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1.7 Introduction: Statistical Inference

Statistical inference is about drawing conclusions from the data. This process often involves with estimating
some parameters of interest. In a parametric model, the parameter of interest are often the parameters of
the corresponding parametric family. For a parametric model, there are three common tasks in statisti-
cal inference – estimating the underlying parameter, providing an interval inference about the underlying
parameter, and testing if the underlying parameter satisfy certain conditions.

In statistics, there are two major paradigm for making inference – the frequentist paradigm and the Bayesian
paradigm2. We will talk about their principles of estimation, interval inference, and testing.

Note that there is no right or wrong about each paradigm – they are just different ways of making argu-
ments. Each paradigm is a self-consistent way to making logical arguments and has its own advantages and
limitations.

1.8 Frequentist Approach

The Frequentist approach is the paradigm we learn from Statistics 101. It interprets probability as the long
term frequency. In Frequentist approach, the parameter of interest is a fixed and unknown number.

1.8.1 Estimation

In a parametric model, we often estimate the parameter of interest using the so-called maximum likelihood
estimator (MLE). The idea is very simple. Suppose we observe only one observation X from a PDF/PMF
p(x). The parametric model assumes that such a PDF/PMF can be written as p(x) = p(x; θ), where θ is
the parameter of the model (θ is often the parameter of interest) inside a parameter space Θ (θ ∈ Θ). The
idea of MLE is to ask the following question: given the observation X, which θ is the most likely parameter
that generates X? To answer this question, we can vary θ and examine the value of p(X; θ).

Because we are treating X as fixed and θ being something that we want to optimize, we can view the problem
as finding the best θ such that the likelihood function L(θ|X) = p(X; θ) is maximized. The MLE uses
the θ that maximizes the likelihood value. Namely,

θ̂MLE = argmaxθL(θ|X).

When we have multiple observations X1, · · · , Xn, the likelihood function can be defined in a similar way –
we use the joint PDF/PMF to define the likelihood function. Let p(x1, · · · , xn; θ) be the joinr PDF/PMF.
Then the likelihood function is

Ln(θ) = L(θ|X1, · · · , Xn) = p(X1, · · · , Xn; θ).

Note that when we assume IID observations,

Ln(θ) =

n∏
i=1

L(θ|Xi) =

n∏
i=1

p(Xi; θ).

In many cases, instead of using the likelihood function, we often work with the log-likelihood function

`n(θ) = logLn(θ).

2There are also other paradigms such as the fiducial inference (https://en.wikipedia.org/wiki/Fiducial_inference) but
the Frequentists and Bayesian are the two major paradigm.

https://en.wikipedia.org/wiki/Fiducial_inference
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Because taking the logarithmic does not change the maximizer of a function, the maximizer of the log-
likelihood function is the same as the maximizer of the likelihood function. There are both computational
and mathematical advantages of using a log-likelihood function over likelihood function. To see this, we
consider the case of IID sample. Computationally, the likelihood function often has a very small value due to
the product form of PDF/PMFs. So it is very likely that the number if too small, making the computation
very challenging. Mathematically, when we take log of the likelihood function, the product of PDF/PMFs
becomes an additive form

`n(θ) = logLn(θ) =

n∑
i=1

log p(Xi; θ).

Under IID assumption, each log p(Xi; θ) is an IID random variable so the central limit theorem and the law
of large number can be applied to the average, making it possible to analyze it asymptotic behavior.

Since under the IID assumptions, we have many advantages, we will assume IID from now on. Because
MLE finds the maximum of `n(θ), a common trick to find MLE is to study the gradient of the log-likelihood
function, which is also known as the score function:

Sn(θ) =
∂

∂θ
`n(θ) =

n∑
i=1

s(θ|Xi),

where s(θ|Xi) = ∂
∂θ `(θ|Xi) = ∂

∂θ log p(Xi; θ). Under suitable conditions, the MLE satisfies the score equation:

Sn(θ̂MLE) = 0.

Note that if there are more than one parameter, say θ ∈ Rp, the score equation will be a system of p
equations.

Because the MLE is at the maximal point of the likelihood function, the curvature of the likelihood function
around the maximal will determine its stability. To measure the curvature, we use the Fisher’s information
matrix:

In(θ) = −E
[

∂2

∂θ∂θT
`n(θ)

]
= n · I1(θ) = n · −E

[
∂2

∂θ∂θT
p(X1; θ)

]
.

If the data is generated from a PDF/PMF p(x; θ0) and some regularity conditions are satisfied,

E(Sn(θ0)) = 0, I1(θ0) = E(S1(θ0)ST1 (θ0)).

Moreover,
√
n
(
θ̂MLE − θ0

)
D→ N(0, I−1

1 (θ)).

Namely, the MLE is asymptotically normally distributed around the true parameter θ0 and the covariance
is determined by the Fisher’s information matrix. Note that the asymptotic normality also implies that

θ̂MLE − θ0
P→ 0.

Example 1: Binomial Distribution. Assume that we obtain a single observation Y ∼ Bin(n, p), and we
assume that n is known. The goal is to estimate p. The log-likelihood function is

`(p) = Y log p+ (n− Y ) log(1− p) + Cn(Y ),

where Cn(Y ) = log
(
n
Y

)
is independent of p. The score function is

S(p) =
Y

p
− n− Y

1− p
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so solving the score equation gives us p̂MLE = Y
n . Moreover, the Fisher’s information is

I(p) = E
{
∂

∂p
S(p)

}
= −E(Y )

p2
− n− E(Y )

(1− p)2
=

n

p(1− p)
.

Example 2: Multinomial Distribution. Let X1, · · · , Xn be IID from a multinomial distribution such
that P (X1 = j) = pj for j = 1, · · · , s and

∑s
j=1 pj = 1. Note that the parameter space is Θ = {(p1, · · · , ps) :

0 ≤ pj ,
∑s
j=1 pj = 1}. By setting Nj =

∑n
i=1 I(Xi = j) for each j = 1, · · · , s, we obtain the random vector

(N1, · · · , Ns) ∼ Multinomial(n, p), where p = (p1, · · · , ps). The parameters of interest are p1, · · · , ps. In this
case, the likelihood function is

Ln(p1, · · · , ps) =
n!

N1! · · ·Ns!
pN1

1 · · · pNss

and the log-likelihood function is

`n(p1, · · · , ps) =
s∑
j=1

Nj log pj + Cn,

where Cn is independent of p. Note that naively computing the score function and set it to be 0 will not grant
us a solution (think about why) because we do not use the constraint of the parameter space – the parameters
are summed to 1. To use this constraint in our analysis, we consider adding the Lagrange multipliers and
optimize it:

F (p, λ) =

s∑
j=1

Nj log pj + λ

1−
s∑
j=1

pj

 .

Differentiating this function with respect to p1, · · · , ps, and λ and set it to be 0 gives

∂F

∂pj
=
Nj
pj
− λ0⇒ Nj = λp̂MLE,j

and 1−
∑s
j=1 pj = 0. Thus, n =

∑s
j=1Nj = λ

∑p
j=1 = λ so p̂MLE,j =

Nj
n .

1.8.2 Confidence Intervals

In some analysis, we not only want to have just a point estimate of the parameter of interest, but also want
to use an interval to infer the parameter of interest. And we also want to assign a level to this interval to
describe how ‘accurate’ this interval is. Note that here the concept of accuracy is not well-defined – we will
talk about it later. Ideally, given an accuracy level, we want an interval as small as possible.

The Frequentist and the Bayesian defines the accuracy differently so their construction of intervals are
also different. In short, the Frequentists defines the accuracy as the long term frequency coverage of the
underlying true parameter of interest whereas the Bayesian defines the accuracy in terms of covering the
posterior probability. In this section, we will talk about the Frequentist approach and the interval is known
as the confidence interval. The accuracy that Frequentists are using is called the confidence level.

Formally, given a confidence level 1 − α, a confidence interval of θ0 is a random interval Cn,α that can be
constructed solely from the data (i.e., can be constructed using X1, · · · , Xn) such that

P (θ ∈ Cn,α) ≥ 1− α+ o(1).

Beware, what is random is not θ but the interval Cn,α. The quantity P (θ ∈ Cn,α) is also called the
(Frequentist) coverage. Note that we allow the coverage to be asymptotically 1 − α; when there is no o(1)
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term, we will say that the confidence interval has a finite sample coverage. A confidence interval with the
above property is also called a (asymptotically) valid confidence interval.

Normal confidence interval. A traditional approach to constructing a confidence interval of θ0 is based
on the asymptotic normality of the MLE:

√
n(θ̂MLE − θ0)

D→ N(0, I−1
1 (θ0)).

When the dimension of the parameter is 1, a simple confidence interval is

θ̂MLE ± z1−α/2 · σθ0 ,

where σ2
θ0

= I−1
1 (θ0) Such interval is not a confidence interval because θ0 is unknown. We can modify it

using a plug-in estimate of the Fisher’s information:

Cn,α = [θ̂MLE − z1−α/2 · σθ̂MLE , θ̂MLE + z1−α/2 · σθ̂MLE ],

where zβ the β-percentile of the standard normal distribution. Using the slutsky’s theorem, you can easily
show that this confidence interval has the asymptotic coverage.

When the dimension of the parameter is greater than 1, there are multiple ways we can construct a confidence
interval. Note that in this case, the set Cn,α is no longer an interval but a region/set so it is often called a
confidence region/set. A simple approach of constructing a confidence set is via an ellipse. Note that the
asymptotic normality also implies that (using continuous mapping theorem)

n(θ̂MLE − θ0)T I1(θ̂MLE)(θ̂MLE − θ0)
D→ χ2

p,

where χ2
p denotes the χ2 distribution with a degree of freedom p. So we construct the confidence set using

Cn,α =
{
θ : n(θ̂MLE − θ)T I1(θ̂MLE)(θ̂MLE − θ) ≤ χ2

p,1−α

}
,

where χ2
p,β is the β-percentile of the χ2 distribution with a degree of freedom p.

Bootstrap confidence interval. Bootstrap approach is an Monte Carlo method for assessing the uncer-
tainty of an estimator. It can be used to compute the variance of an estimator (not necessarily the MLE) and
construct a confidence interval. In the case of likelihood inference, the bootstrap approach has an advantage
that we do not need to know the closed-form of I1(θ) to construct the confidence interval or to approximate
the variance of the MLE.

While there are many variant of bootstrap methods, we introduce the simplest one – the empirical bootstrap.
For simplicity, we assume that the dimension of θ is 1 (the bootstrap works for higher dimensions as well).
Let X1, · · · , Xn be the original sample. We then sample with replacement from the original sample to obtain
a new sample of each size X∗1 , · · · , X∗n. This new sample is called a bootstrap sample. We find the MLE

using the bootstrap sample and let θ̂∗MLE denote the bootstrap MLE. Now we repeat the bootstrap process
B times, leading to B bootstrap MLEs

θ̂
∗(1)
MLE , · · · , θ̂

∗(B)
MLE .

Let tβ denotes the β-percentile of these B values, i.e.,

t̂β = Ĝ−1(β), Ĝ(t) =
1

B

B∑
b=1

I(θ̂
∗(b)
MLE ≤ t).

Then the bootstrap confidence interval of θ0 is

Cn,α = [t̂α/2, t̂1−α/2].
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One can prove that under very mild conditions, the bootstrap confidence interval has asymptotic coverage.

The power of the bootstrap method is that we do not use anything about the Fisher’s information! As long as
we can compute the estimator, we can construct an asymptotically valid confidence interval. Note that if we
do know the Fisher’s information, the bootstrap method can be modified using the bootstrap t-distribution
method, which provides a better asymptotic coverage (namely, the o(1) decays faster to 0 than the above
method and the normal confidence interval)3.

1.8.3 Test of Significance

Statistical test is about how to design a procedure that allows us to make scientific discovery. Such a
procedure has to be able to handle the uncertain nature of our data. In statistics, we model the data as
random variables so the testing procedure needs to account for the randomness.

Let Dn = {X1, · · · , Xn} denotes our data. The testing procedure involves two competing hypotheses:

• Null hypothesis H0: the hypothesis that we want to challenge. It is often related to the current scientific
knowledge.

• Alternative hypothesis Ha: the hypothesis that complements to the null hypothesis. It is the hypothesis
we would like to prove to be plausible using our data.

The goal is to see if we have strong enough evidence (from Dn) that we can argue the alternative hypothesis
is more reasonable than the null hypothesis. If we do have enough evidence, then we will reject the null
hypothesis. When the null hypothesis reflects the scenarios that can be explained by the current scientific
knowledge, rejecting the null hypothesis means that we have discovered something new.

To design a testing procedure, we need to quantify the notion of evidence. The Frequentists and the Bayesian
use different ways to measure the evidence. The Frequentist approach is the p-value whereas the Bayesian
approach is the Bayes factor. We will talk about Bayes factor later so here we focus on the p-value.

Here is a summary on Frequentist approach of hypothesis test.

1. Based on the model and null hypothesis, design a test statistic.

2. Compute the distribution of the test statistics under the null hypothesis.

3. Plug-in the data into the test statistic, compute the probability of observing a more extreme data
against the null hypothesis. Such a probability is the p-value.

4. Compare p-value to the significance level. If p-value is less than the significance level, we reject the
null hypothesis.

The central idea of hypothesis test is to control the type-1 error, the probability of falsely rejecting H0

when H0 is correct. Essentially, the p-value can be interpreted as if we reject the null hypothesis (under
this p-value), then our type-1 error is the same as the p-value. The significance level reflects the amount of
type-1 error we can tolerate so when p-value is less than the significance level, we can reject H0. Due to the
construction of p-value, a small p-value means that the null hypothesis does not fit to the data very well (so
we are seeing an extreme event if H0 is true). Thus, small p-value or rejecting H0 under a small significance
level means that we have more evidence against H0.

3see, e.g., Chapter 2 of All of nonparametric statistics by Larry Wasserman and Chapter 3.5 of The bootstrap and Edgeworth
expansion by Peter Hall.
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Note that there is another quantity called type-2 error, the probability of not rejecting H0 when H0 is false.
Namely, type-2 error is concerned with the case that we fail to reject H0 when we should.

In statistics, we often control type-1 error first and the hope that the type-2 error is also small. When do
we put more emphasis on type-1 error? This has something to do with the philosophy of scientific research.
The scientific approach is a systematic way to acquire reliable knowledge. Thus, every discovery we made
should be accompanied with sufficient evidences. In Frequentist approach, the measure of evidence against
H0 is the p-value – the smaller p-value, the more evidence. Thus, controlling type-1 error means that we
put requirements on the amount of evidence we need to claim a scientific discovery.

While there are many possible ways to construct a test statistic, here we consider two common approaches:
Wald test and the likelihood ratio test.

Wald test. Assume in a simple case where we model the data as IID from a parametric model p(x; θ) with
a 1D parameter. Suppose that we are comparing two hypotheses

H0 : θ = θ1, Ha : θ 6= θ1.

Since the MLE is a good estimate of θ, we can design our test statistic using the MLE. Because we know
that the MLE has asymptotic normality,

√
nI1(θ)−1/2(θ̂n − θ)

D→ N(0, 1),

we can then use
Tn(θ) =

√
nI1(θ)−1/2(θ̂n − θ)

as our test statistic. If H0 is true, Tn(θ1) should behaves like a standard normal distribution. When we
observe the actual data, we can then compare the observed value of Tn(θ1) against 0 (since Tn(θ1) = 0 means
a perfect match with H0). We reject H0 if Tn(θ1) is either too large or too small. The p-value is then

p(Dn) = 1− 2 · Φ−1(|Tn(θ1)|),

where Φ(t) = P (Z ≤ t) is the CDF of a standard normal distribution. Note that the above method is also
known as the Wald test.

Likelihood ratio test (LRT). LRT is another popular way to conduct hypothesis test under a parametric
model. It can be easily applied to multivariate parameters so now we assume that there are p parameters,
i.e., θ ∈ Θ ⊂ Rp. The null hypothesis and the alternative hypothesis are

H0 : θ ∈ Θ0, Ha : θ ∈ Θ\Θ0.

Let `n(θ) be the log-likelihood function and let

θ̂MLE = argmaxθ∈Θ`n(θ), θ̂MLE,0 = argmaxθ∈Θ0
`n(θ)

be the global MLE and the constrained MLE (in the null hypothesis space). The LRT starts with a test
statistic

LRT =
supθ∈Θ0

Ln(θ)

supθ∈Θ Ln(θ)
=
Ln(θ̂MLE,0)

Ln(θ̂MLE)

and reject H0 if LRT is too small. To get the p-value of the LRT, we often use the following fact:

−2 log LRT = 2
(
`n(θ̂MLE)− `n(θ̂MLE,0)

)
D→ χ2

r,

where r = dim(Θ)−dim(Θ0) is the difference of the dimensions/degree-of-freedoms between the full parameter
space and constrained parameter space. The above result is also known as the likelihood ratio approximation
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or Wilk’s theorem. The LRT proposes to use the Tn = 2
(
`n(θ̂MLE)− `n(θ̂MLE,0)

)
as our test statistic and

compared it with the CDF of χ2
r to obtain the p-value.

Remarks.

• Why r degrees of freedom? Some of you may be wondering why we are getting a χ2 distribution with a
degree of freedom r. Here is a simple explanation using geometry. Recall that the MLE behaves like a
normal distribution around the true parameter θ0. If H0 is true, θ0 ∈ Θ0 so θ̂MLE will be asymptotically
normally distributed around θ0 . Since θ̂MLE is the maximizer over Θ so it has p degrees of freedom
(it can moves in each of the p dimensions). The constrained MLE θ̂MLE,0 is the maximizer under Θ0,
which has r constraints. Thus, Θ0 has p − r degrees of freedom, which implies that its maximizer
θ̂MLE,0 uses p − r degree of freedom. The remaining degrees of freedom is p − (p − r) = r so this is
why we are obtaining a χ2 distribution with r degrees of freedom. Note that one can replace the r
constraints to be saying that Θ0 is a p− r dimensional manifold.

• Equivalence between likelihood ratio test and Wald test. Asymptotically, one can show that the likeli-
hood ratio test and the Wald test are the same under classical assumptions on the MLE. Also, there
is another test that is closely related to them called the score test, which is based on the value of score
function as a test statistic. Again, asymptotically the score test and other two tests are equivalent.
However, when the likelihood function is more complex, such as having multiple local maxima. These
three tests may not be the same (they can be quiet different)4.

• Relation to confidence interval. Hypothesis test can be used to construct a confidence interval. Consider
testing the null hypothesis: H0 : θ = θ1 for a specific value θ1 under a significance level α. For each
θ1 ∈ Θ, we can do a hypothesis test. Some parameters will be rejected whereas the others will not.
Let Ân,α be the collection of parameters that the null hypothesis will not be rejected. Then you can

show that Ân,α is a confidence interval of θ. This approach is also known as the confidence interval
from inverting a hypothesis test. Note that if we are given a 1−α confidence interval of the parameter
of interest θ, we can use it to test the null hypothesis H0 : θ ∈ Θ0. If the confidence interval intersects
with Θ0, we cannot reject H0. If they are disjoint, then we can reject H0 under a significance level
α. Thus, hypothesis test problem and confidence intervals are highly related to each other. However,
testing a given hypothesis is often an easier problem than constructing a confidence interval because
confidence interval requires a procedure that is valid regardless of the null hypothesis being correct or
not. On the other hand, hypothesis test problem only requires a procedure that works when H0 is
true.

There are many misconceptions about p-values. To clarify what p-value stands for and what it does NOT
stand for, I obtain the following 6 principles from American Statistical Association’s website5:

1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that
the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value
passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a
result.

4see https://arxiv.org/abs/1807.04431
5https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

https://arxiv.org/abs/1807.04431
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

1.8.4 Model Mis-specification

Many theory about the MLE assumes that the population distribution function belongs to our parametric
family. However, this is a very strong assumption in reality. It is very likely that the population distribution
function does not belong to our parametric family (e.g., the population PDF is not Gaussian but we fit a
Gaussian to it). What will happen in this case for our MLE? Will it still converge to something? If so, what
will be the quantity that it is converging?

Model mis-specification studies the situation like this – we assume a wrong model for the population distri-
bution function. Let p0(x) be the population PDF and we assume that the population PDF can be written

as p(x; θ). However, p0 6= p(x; θ) for every θ ∈ Θ. It turns out that the MLE θ̂MLE still converges under
mild assumptions to a quantity θ∗ in probability. Moreover, the corresponding PDF/PMF p(x; θ∗) has an
interesting relation with p0(x). Assume that the RV X has a PDF/PMF p0. Then

E
{

log

(
p0(X)

p(X; θ∗)

)}
= inf
θ∈Θ

E
{

log

(
p0(X)

p(X; θ)

)}
= inf
θ∈Θ

KL(p0, pθ),

where KL is also known as the Kullback-Liebler (KL) divergence and pθ(x) = p(x; θ). Namely, the MLE
corresponds to the parametric distribution in the specified family that minimizes the KL divergence to the
population distribution.

In model mis-specification case, the MLE still satisfies the score equation (under appropriate assumption)
but the Fisher’s information may not reflect the actual curvature of the likelihood function around θ∗. The
asymptotic covariance (related to the curvature) of θ̂MLE will be Σ = I−1

1 (θ∗)E(S1(θ∗)ST1 (θ∗))I−1
1 (θ∗) and

we still have √
n(θ̂MLE − θ∗)

D→ N(0,Σ).

1.9 Bayesian Approach

The Bayesian inference is an alternative statistical paradigm to the Frequentist approach. The Bayesian
approach interprets the probability in a broader sense that include subjective probability, which allows us
to assign probability to almost every quantity in our model (including the parameter of interest and even a
statistical model). The Bayesian inference relies on a simple decision theoretic rule – if we are competing
two or more choices, we always choose the one with higher probability. This simple rule allows us to design
an estimator, construct an interval, and perform hypothesis test.

In the Bayesian analysis, we assign a probability to every parameter in our model. For a parametric model
p(x; θ), the parameter of interest θ is given a prior distribution π(θ) that reflects our belief about the
value of θ. In a sense, the prior distribution quantifies our subjective belief about the parameter θ. The
higher value of π(θ) indicates that we believe that θ is a more likely value of it.

How do we interpret this prior distribution? Here is a decision theoretic way of viewing it. To simplify the
problem we assume that Θ = {0, 1, 2}. Even without any data at hand, we can ask ourselves about our
belief about each parameter value. Some people may think that 1 is the most likely one; some may think
that 2 is the most likely one. To make our belief more precise, we use probability to work on it. Let π(j)
be the number that reflects our belief about θ = j. We interpret the numerical value of π(j) as follows. We
are forced to guess the answer of θ = j versus θ 6= j. If the answer is θ = j and we indeed guess it correctly,
we will be rewarded δ dollar. If the answer is θ 6= j and we get it correct, we will be rewarded 1 dollar. If
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we get it wrong, we do not lose anything. Our principle is to maximize our expected reward. Now assume
that the true value of θ has equal probability of being j or not j. Then what should we choose? θ = j or
θ 6= j? Now we think about this problem by varying δ from 0 to infinity. When δ is small, unless we have
very strong belief on θ = j, we will not bid on it. When increasing δ, at certain threshold we will switch our
decision from bidding on θ 6= j to θ = j. Let this threshold be ηj . ηj is a number that reflects our belief
about θ = j and we associate it with our prior

π(j) =
1

1 + ηj
⇔ ηj =

1− π(j)

π(j)
(odds of θ = j).

Here, you see that we only use one simple decision rule – bidding on the one with a higher expected outcome.
This allows us to quantify our belief.

Using the prior distribution, the Bayesian probability model can be written as follows:

X1, · · · , Xn|θ
IID∼ p(x|θ)

θ ∼ π.

The Bayesian inference focuses on the distribution of θ after observing X1, · · · , Xn:

π(θ|X1, · · · , Xn) =
p(X1, · · · , Xn, θ)

p(X1, · · · , Xn)
∝ p(X1, · · · , Xn|θ)︸ ︷︷ ︸

likelihood

×π(θ)︸︷︷︸
prior

.

This distribution is also known as the posterior distribution.

The posterior distribution informs us about how our prior belief is updated after seeing the data. It is
the central quantity in Bayesian inference – all our decisions will be related to it. In Bayesian’s point of
view, probability models are just mathematical tools for analyzing data. We do not assume that the data is
generated from a probability distribution. We just view the data as generated from p(x; θ). Given that we
do not assume the probability model to be the true model, there is NO true parameter so we cannot talk
about conventional statistical errors. However, Bayesian does have another way to expressing the error in
our inference – the posterior distribution. The posterior distribution reflects our belief about the parameter
after seeing the data, we can use it as a measure of uncertainty about θ. If the posterior distribution is more
spread out, then the uncertainty in our inference is larger. On the other hand, if the posterior distribution
is very concentrated, then there is very little (Bayesian) uncertainty.

1.9.1 Bayesian Estimation

There are two common estimator in Bayesian inference: the posterior mean and the maximum a posteriori
estimation (MAP).

Posterior mean. Just like we often use the sample mean as an estimator of the population mean, the mean
of the posterior distribution is a common quantity that was used as an estimator of θ:

θ̂π = E(θ|X1, · · · , Xn) =

∫
θ · π(θ|X1, · · · , Xn)dθ.

It represents the average location of our belief about the parameter after seeing the data.

Maximum a posteriori estimation (MAP). Another common estimator of θ is the MAP; it relies on
the similar principle as the MLE – we choose the one that is the most likely. Here the ‘likely’ is interpreted
as our posterior belief about the parameter of interest θ. Formally, MAP is defined as

θ̂MAP = argmaxθπ(θ|X1, · · · , Xn).



1-24 Lecture 1: Review on Probability and Statistics

Example: Binomial Sampling. Assume that we have an observation Y ∼ Bin(N, θ) where N is known
and the parameter of interest is θ:

P (Y = y|θ) =

(
N

y

)
θy(1− θ)N−y.

We use a Beta distribution with parameters (α, β) as our prior distribution for θ. Namely,

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

where Γ(z) =
∫∞

0
tz−1e−tdt is the Gamma function and α, β > 0. Note that (α, β) are called the hypter-

parameters and are known quantities (because we know our belief about the data). For a Beta distribution
with parameter α, β, the mean is α

α+β .

The posterior distribution is

π(θ|Y ) =

(
N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1∫ (

N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1dθ

∝ θY+α−1(1− θ)N−Y+β−1

so it is a Beta distribution with parameters (Y + α,N − Y + β). Then the posterior mean and MAP are

θ̂π =
Y + α

N + α+ β
, θ̂MAP =

Y + α− 1

N + α+ β − 2

(these are the mean and the mode of a Beta distribution).

Note that in this problem, the MLE is θ̂MLE = Y
N . Thus, the posterior mean has an interesting decomposi-

tion:

θ̂π =
Y + α

N + α+ β

= θ̂π =
Y

N + α+ β
+

α

N + α+ β

=
Y

N
× N

N + α+ β
+

α

α+ β
× α+ β

N + α+ β

= θ̂MLE ×W + Prior mean× (1−W ),

where W = N
N+α+β is a weight that is tending to 1 when N → ∞. This phenomenon – the posterior

mean can be written as the weighted average of the MLE and the prior mean – occurs in several scenarios.
Moreover, the fact that the weights W → 1 as the sample size N → ∞ means that when we have more
and more data, the prior distribution seems to be irrelevant. Thus, the posterior mean would have a similar
asymptotic property as the sample mean. However, this is not a general phenomenon; often only certain
combination of prior and likelihood models will have this feature.

Remark

• Choice of prior and conjugate prior. The choice of prior reflects our belief about the parameter
before seeing any data. Sometimes people want to choose a prior distribution such that the posterior
distribution is in the same family as the prior distribution, just like what we have observed in the above
example. If a prior distribution and a likelihood function leads to a posterior that belongs to the same
family as the prior, we call this prior conjugate prior. There are several conjugate priors know to
date, see https://en.wikipedia.org/wiki/Conjugate_prior for an incomplete list of cases.

Another common choice of prior is called the Jeffreys prior6, which chooses a prior π(θ) ∝
√
det(I1(θ)),

6see https://en.wikipedia.org/wiki/Jeffreys_prior for more details.

https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Jeffreys_prior
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where I1(θ) is the Fisher’s information matrix. One can view the Jeffreys prior as the prior that we do
not have any prior belief about θ; or more formally, an uninformative prior.

• Challenge of computing the posterior. In general, if we do not choose a conjugate prior, the posterior
distribution could be difficult to compute. The challenge often comes from the normalization quantity
p(X1, · · · , Xn) in the denominator of the posterior π(θ|X1, · · · , Xn) (the numerator is just the prior
times the likelihood). In practice we will use Monte Carlo method to compute the posterior – we gen-
erate points from π(θ|X1, · · · , Xn) and as we generate enough points, these points should approximate
the true posterior distribution well. We will talk more about this later in the lecture of MCMC (Monte
Carlo Markov Chain).

• Consistency. In pure Bayesian’s point of view, statistical consistency is not an important property
because probability model is a working model to describe the data and we do not need to assume
that there exists an actual parameter that generates the data. Thus, the posterior distribution is the
quantity that we really need to make our inference. However, sometimes Bayesian estimators, such as

the posterior mean or MAP, does have statistical consistency. Namely, θ̂π
P→ θ0 and θ̂MAP

P→ θ0, where

the data X1, · · · , Xn
IID∼ p(x; θ0). This is often related to the Bernstein-von Mises theorem7. Although

statistical consistency was not an important property in Bayesian paradigm (because Bayesian does
not assume the data is indeed from a probability model; probability models are just a mathematical
model to help us analyze the data), still many researchers would prove consistency when proposing a
Bayesian approach.

1.9.2 Bayesian Interval: Credible Interval

The Bayesian’s interval is very straight forward – since the posterior contains our belief about the parameter
after seeing the data, we just construct the interval using the posterior distribution. Given a credible level
1− α, a credible interval Dn,α satisfies

1− α =

∫
Dn,α

π(θ|X1, · · · , Xn)dθ.

Often we will choose the credible interval such that it is shortest. It turns out that (actually it is not hard
to prove) such a credible interval is related to the upper level set of the posterior. Given a level λ, we define

Lλ = {θ ∈ Θ : π(θ|X1, · · · , Xn) ≥ λ}.

Define V (λ) =
∫
Lλ
π(θ|X1, · · · , Xn)dθ. When λ is very large, V (λ) is very small. When we decrease λ, V (λ)

will increase since we are including more regions. At a critical level λα, we will have exactly

V (λα) = 1− α.

We will then use the level set Lλα as the credible interval. You can show that under appropriate conditions
(π(θ|X1, · · · , Xn) has not flat region and is Lipschitz), Lλα is a shortest credible interval with a credible
level 1− α.

Because the above (shortest) credible interval is very straight forward, when people are talking about credible
intervals, they are often referring to this interval.

7https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem

https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem
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1.9.3 Bayesian Testing: Bayes Factor

Bayesian hypothesis testing is also very straight forward – as you can guess, it is based on the posterior
distribution. Instead of just putting priors on parameter, using our decision theoretic way, we can also put
priors on the hypotheses.

Recall that H0 and Ha are the null and alternative hypotheses. Let π(H0) and π(Ha) = 1−π(H0) denote the
prior distribution on the two hypotheses and let π(H0|X1, · · · , Xn) and π(Ha|X1, · · · , Xn) be the posterior
distribution given the data.

The testing procedure is very simple – we reject H0 if

π(H0|X1, · · · , Xn)

π(H1|X1, · · · , Xn)
< 1⇔ p(X1, · · · , Xn|H0)

p(X1, · · · , Xn|Ha)
· π(H0)

π(Ha)
< 1. (1.2)

Namely, we reject H0 if our posterior belief about H0 is less than that of Ha.

In many scenarios, the hypotheses will not directly give us a probability model related to the data. In a
parametric model, they often put some constraints on the parameter. Thus, we can then rewrite the posterior
p(X1, · · · , Xn|H0) as

p(X1, · · · , Xn|H0) =

∫
p(X1, · · · , Xn, θ|H0)dθ =

∫
p(X1, · · · , Xn|θ,H0)π(θ|H0)dθ.

Using the above equality, we define the Bayes factor as

BF(X1, · · · , Xn) =
p(X1, · · · , Xn|H0)

p(X1, · · · , Xn|Ha)
=

∫
p(X1, · · · , Xn|θ,H0)π(θ|H0)dθ∫
p(X1, · · · , Xn|θ,Ha)π(θ|Ha)dθ

. (1.3)

Using the Bayes factor, we can rewrite the decision rule as: we reject H0 if

BF(X1, · · · , Xn) · π(H0)

π(Ha)︸ ︷︷ ︸
odds

< 1.

Namely, if the Bayes factor is less than the inverse of the odds of H0, we reject H0.

The Bayes factor can be viewed as a Bayesian version of p-value – the smaller, the less favor for H0. To see
how the Bayes factor is like the p-value, note that the Frequentist way of rejecting H0 is if the p-value is less
than a pre-specified significance level α. The Bayesian’s threshold is given by the odds of H0 from the prior
distribution. If the inverse of the Bayes factor is greater than the odds of H0, we reject H0. In Bayesian,
the threshold in testing (significance level) has a simple interpretation – the odds of our prior belief about
the null hypothesis.

Example: Binomial Sampling. Now we come back to the Binomial sampling example where we have an
observation Y ∼ Bin(N, θ) where N is known and the parameter of interest is θ:

P (Y = y|θ) =

(
N

y

)
θy(1− θ)N−y.

We use a Beta distribution with parameters (α, β) as our prior distribution for θ. Now we consider testing

H0 : θ = 0.5, Ha : θ 6= 0.5.

Our goal is to compute the Bayes factor. First, we compute the numerator:

p(Y |H0) =

∫ 1

0

p(Y |θ,H0)π(θ|H0)dθ =

∫ 1

0

p(Y |θ)δ(θ = 0.5)dθ = p(Y |θ = 0.5) =

(
N

Y

)
0.5Y 0.5N−Y =

(
N

Y

)
0.5N .
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The denominator of the Bayes factor will be

p(Y |Ha) =

∫ 1

0

p(Y |θ,Ha)π(θ|Ha)dθ

=

∫ 1

0

p(Y |θ,Ha)π(θ)dθ (Note that θ = 0.5 is just a single point so it does not affect the integral)

=

∫ 1

0

(
N

Y

)
θY θN−Y

Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ

=

(
N

Y

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(Y + a)Γ(N − Y + b)

Γ(N + a+ b)
.

Therefore, the Bayes factor is

BF(Y ) =
0.5N

Γ(α+β)
Γ(α)Γ(β)

Γ(Y+a)Γ(N−Y+b)
Γ(N+a+b)

.

As you can see, the computation of Bayes factor does not involve the prior on H0. However, it does involve
the prior of the parameter θ (and this is why the value of it depends on the hyperparameters α, β).

There is an interesting relation between the Bayes factor and the likelihood ratio test. In the above Binomial
example, if we use the likelihood ratio test, we obtain a test statistic:

LRT =
p(Y |θ = 0.5)

p(Y |θ = θ̂MLE)
=

(
N
Y

)
0.5N

supθ∈[0,1]

(
N
Y

)
θY (1− θ)N−Y

=
0.5N

(Y/N)Y (1− Y/N)N−Y
.

The numerator is the same while the denominator is slightly different – the LRT only uses the maximum
likelihood value whereas the Bayes factor uses the average value within Ha! An interesting fact: if the
alternative hypothesis is a simple hypothesis Ha : θ = θa for a fixed quantity θa, then the Bayes factor and
the LRT statistic coincides.

1.9.4 Bayesian nonparametric

Bayesian approach can also be applied to nonparametric estimation. Nonparametric estimation refers to
the case where we do not assume the parameter of interest is a vector or number. One common problem is
density estimation. If our goal is to estimate the underlying PDF or CDF, we can do it without assuming
the data being from a parametric family such as a Gaussian. For instance, histogram can be used as a
density estimator without assuming the data is from a Gaussian or any other parametric family (there are
many more advanced techniques such as the kernel density estimator, orthonormal basis approach, wavelet
approach, ...etc).

The challenge of Bayesian inference in nonparametric problem is that we need to put a prior on ‘function
space’ (a collection of functions). Often a function space does not admit a density function. However, there
are some tricks that we can put a prior on function space.

• Dirichlet process. The Dirichlet process8 is a stochastic process that generates random probability
distributions. It also has several other interesting names such as the Chinese buffet process and stick-
breaking process. The appealing feature of Dirichlet process is that it is constructed from an algorithmic
scheme so there is a simple way to sampling points from a random distribution generated from this
process.

8https://en.wikipedia.org/wiki/Dirichlet_process

https://en.wikipedia.org/wiki/Dirichlet_process
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• Sequential mixture model. Another way to assign priors on distributions is to use a sequential mixture
model. For instance, a Gaussian mixture model with parameters drawn from some distribution. When
we allow the number of mixture to increase with sample size, we can approximate many distributions
in the function space. Note that when we allow the number of mixture to increase, this implies that
our prior distribution is changing with respect to the sample size.

• Basis approach. A smooth density function with a compact support may be written as p0(x) =∑∞
k=1 θkφk(x), where {φk(x) : k = 1, 2, · · · } is a basis and {θk : k = 1, 2, · · · } are the coefficients.

For instance, one may choose the cosine basis or spline basis. Putting priors on θk leads to a prior
distribution over functions. Note that in practice we often had to truncate the basis at certain level ,
i.e., we use only {φk(x) : k = 1, 2, · · · , N} for some N = N . Often we allow N = Nn to increase with
respect to the sample size so that our prior covers most part of the function space.

• ε-cover/bracketing. There is another approach to assign priors over function space using the cover-
ing/bracketing of function space. An ε-cover is a collection of functions in a function space such that
every function inside the space has a distance at most ε to the nearest element inside the cover (brack-
eting is a generalization of this concept). There are many ε-covers but we often use those with the
minimal number of elements. Now consider a sequence of ε-cover with ε = εn → 0 as n→∞. Let Πn be
a uniform distribution over each element of εn-cover. Then the mixture distribution Π =

∑∞
n=1 βnΠn,

with an appropriate choice of {βn} forms a prior distribution that can well-approximate almost ev-
ery function in the function space (when the function space is sufficiently smooth). This idea is a
powerful tool in constructing a prior with amazing theoretical properties9 although it is often hard to
numerically compute this prior.

1.10 Prediction

Prediction is about the question that given observations X1, · · · , Xn, what will be the possible range of
the next observation Xn+1? Using probability model, we know that the next observation Xn+1 will have
a distribution. So the prediction problem is about finding the distribution p(xn+1|X1, · · · , Xn). Here we
will show how the Frequentist prediction method and the Bayesian prediction method are different in a
parametric model.

The Frequentist approach is very simple – given that we have already assigned a parametric model p(x; θ) for
the observations, we should just use it as our predictive distribution. To use this model, we need to choose
the parameter θ. A simple choice is the MLE θ̂MLE . Thus, we will predict the distribution of Xn+1 as

p(xn+1|X1, · · · , Xn) = p(xn+1; θ = θ̂MLE).

The Bayesian approach again relies on the posterior. The predictive distribution p(xn+1|X1, · · · , Xn) can
be written as

p(xn+1|X1, · · · , Xn) =

∫
p(xn+1, θ|X1, · · · , Xn)dθ

=

∫
p(xn+1|θ,X1, · · · , Xn)π(θ|X1, · · · , Xn)dθ

=

∫
p(xn+1|θ) π(θ|X1, · · · , Xn)︸ ︷︷ ︸

posterior distribution

dθ.

9see, e.g., the famous paper Ghosal et al. (2000) “Convergence rates of posterior distributions”: https://projecteuclid.

org/euclid.aos/1016218228

https://projecteuclid.org/euclid.aos/1016218228
https://projecteuclid.org/euclid.aos/1016218228
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Thus, the predictive distribution is the averaged distribution of p(x|θ) where we average θ over the posterior
distribution.

Here, as you can see, the two paradigms make prediction using different principles – the Frequetists use only
the most likely model to make predictions whereas the Bayesians use the averaged model over the posterior
distribution to make predictions.

1.11 Comments: Frequentist versus Bayesian

Both Frequentist and Bayesian approaches are self-consistent. They start with probability models and design
their own procedure for estimation, interval inference, and hypothesis test. In practice, it is hard to really
say if any method truly describes the reality because we do not even know if our data are indeed generated
from a random process. Some people believe that our data should be viewed as realizations from a complex
dynamic system and they can still construct estimators and derive consistency without introducing any
probability (often they would use the Ergodic theory10). Thus, we cannot say if Frequentist or Bayesian
approach is the right approach to analyze data – they are just principles that allows us to analyze data in a
well-established way. In what follows, I briefly comments on the criticisms and defends of the two paradigms.

Many people support Frequentist paradigm because it is more objective – we do not introduce any subjective
belief (prior) on the parameter of interest. Moreover, the way Frequentist views the parameter of interest,
an unknown but fixed quantity, fits into the what most scientists think about parameters in model – these
parameters are some fixed numbers but we just do not know it. Moreover, the Frequentist’s view of the
probability – long term frequency – is very intuitive for most people.

The Bayesian paradigm is very clean. From estimation, interval inference, to hypothesis test, every inference
just depends on one single quantity – the posterior distribution. And we only have one single guiding principle
– decision theoretic rule – we choose the one that has a higher posterior distribution. On the other hand,
in the case of Frequentist approach, estimation requires a principle (such as the MLE principle), confidence
interval relies on another principle (coverage), and the hypothesis test introduces another principle (p-value
and significance level). So Bayesian is a very elegant way to analyzing the data.

A major criticism of Bayesian is the concept of subjectivity – the prior distribution. Many people prefer Fre-
quentist approaches over Bayesian approaches because they think that scientific studies should be objective.
However, this argument is actually not valid if we really think deep about Frequentist approach – when we
use a probability model to describe the data, we are already making a subjective choice of how we model
the data! Why not use a dynamic system approach? why not use a Bayesian? The choice of Frequentist
approach itself is a subjective decision made by scientists. Moreover, the choice of estimator, the choice
of confidence level, and the choice of significance level along with the testing procedures, are all subjective
decisions. None of them are truly objective. One attractive feature of Bayesian paradigm is that Bayesians
not only accept the fact that we are making many subjective choices in analyzing data but also they have
a well-defined mathematical framework – the probability model – to describe how these subjectivity are
propagating throughout the analysis.

10https://en.wikipedia.org/wiki/Ergodic_theory

https://en.wikipedia.org/wiki/Ergodic_theory
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