
STAT/Q SCI 403: Introduction to Resampling Methods Spring 2017

Lecture 9: Introduction to the Bootstrap Theory
Instructor: Yen-Chi Chen

9.1 Statistical Functionals

To study how the bootstrap works, we first introduce the concepts of statistical functionals.

What is a functional? A functional is just a function of a function. Namely, it is a ‘function’ such that
the input is another function and the output is a number. Formally speaking, a functional is a mapping
T : F 7→ R, where F is a collection of functions. A statistical functional is a mapping T such that you input
a distribution (CDF) and it returns a number.

This sounds very complicated but actually, we have encountered numerous statistical functionals. Here are
some examples.

• Mean of a distribution. The mean of a distribution is a statistical functional

µ = Tmean(F ) =

∫
xdF (x).

When F has a PDF p(x), dF (x) = p(x)dx so the mean functional reduces to the form that we are
familiar with:

µ = Tmean(F ) =

∫
xdF (x) =

∫
xp(x)dx.

When F is a distribution of discrete random variables, we define∫
xdF (x) =

∑
x

xP (x) =⇒ µ = Tmean(F ) =
∑
x

xP (x),

where P (x) is the PMF of the distribution F .

You may have noticed that if a random variable X has a CDF F , then

E(X) =

∫
xdF (x) = Tmean(F ).

Therefore, for any function g,

E(g(X)) =

∫
ω(x)dF (x).

Using the function g, we introduce another functional Tω such that

Tω(F ) =

∫
ω(x)dF (x).

Such a functional, Tω, is called a linear functional.

• Variance of a distribution. The variance of a distribution is also a statistical functional. Let X be
a random variable with CDF F . Then

σ2 = Tvar(F ) = Var(X) = E(X2)− E2(X) =

∫
x2dF (x)−

(∫
xdF (x)

)2

.
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• Median of a distribution. Using the concept of a statistical functional, median and any quantile
can be easily defined. The median of a distribution F is a point θmed such that F (θmed) = 0.5. Thus,

Tmed(F ) = F−1 (0.5) .

Note that when F is a CDF of a discrete random variable, F−1 may have multiple values. In this case,
we define

F−1(q) = inf{x : F (x) ≥ q}.

Any quantile of a distribution can be represented in a similar way. For instance, the q-quantile (0 <
q < 1) will be

Tq(F ) = F−1 (q) .

As a result, the interquartile range (IQR) is

TIQR(F ) = F−1(0.75)− F−1(0.25).

Why do we want to use the form of statistical functionals? One answer is: it elegantly describes a population
quantity that we may be interested in. Recall that the statistical model about how the data is generated is
that we observe a random sample X1, · · · , Xn IID from an unknown distribution F . Thus, the distribution
F is our model for the population. Because the statistical functionals map F into some real numbers, they
can be viewed as quantities describing the features of the population. The mean, variance, median, quantiles
of F are numbers characterizing the population. Thus, using statistical functionals, we have a more rigorous
way to define the concepts of population parameters.

In addition to the above advantage, there is a very powerful features of statistical functionals–they provide
a simple estimator to these population quantities. Recall that the EDF F̂n(x) = 1

n

∑n
i=1 I(Xi ≤ x) is a good

estimator of F . Thus, if we want to estimate a population quantity θ = Ttarget(F ), we can use Ttarget(F̂n) = θ̂n
as our estimator. Actually, many estimators do follow this form. For instance, in the case of estimating the
mean µ = Tmean(F ), we often use the sample mean X̄n as our estimator. However, if you plug-in F̂n into the
statistical functional:

Tmean(F̂n) =

∫
xdF̂n(x) =

n∑
i=1

Xi
1

n
=

n∑
i=1

Xi

n
= X̄n.

This implies that the estimator from the statistical functional is the same as sample mean! Note that we in
the above calculation, we use the fact that F̂n(x) is a distribution with whose PMF puts equal probability

(1/n) at X1, · · · , Xn. The estimator formed via replacing F by F̂n is called a plug-in estimator.

Similarly, we may estimate the variance σ2 = Tvar(F ) via

Tvar(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

=
1

n

n∑
i=1

X2
i − X̄2

n =
1

n

n∑
i=1

(Xi − X̄n)2 =
n− 1

n
S2
n.

This estimator is very similar to the sample variance S2
n (they are asymptotically the same).

Using how we define the inverse of a CDF of a discrete random variable, we can define the estimator of
median

Tmed(F̂n) = F̂−1n (0.5)

and other quantiles of a distribution. And it turns out that this estimator is the sample median (and the
corresponding sample quantiles)!

Therefore, the statistical functional provides an elegant way to define a population quantities as well as an
estimator. And the plug-in estimator will be a good estimator if the statistical functional T (·) is ‘smooth’
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with respect to the input function because we know that F̂n → F in various ways so that the smoothness of
T with respect the input will implies T (F̂n)→ T (F )1.

9.2 Bootstrap and Statistical Functionals

So far, we have not yet talked about the bootstrap. However, we have learned that the (empirical) bootstrap

sample is a new random sample from the EDF F̂n. The bootstrap sample forms another EDF called the
bootstrap EDF, denoted as F̂ ∗n . Namely, let X∗1 , · · · , X∗n be a bootstrap sample. Then the bootstrap EDF is

F̂ ∗n(x) =
1

n

n∑
i=1

I(X∗i ≤ x).

Here is how the statistical functionals and the bootstrap is connected. In estimating the parameter θ =
Ttarget(F ), we often use a plug-in estimate from the EDF θ̂n = Ttarget(F̂n) (just think of how we estimate the
sample mean). In this case, the bootstrap estimator, the estimator using the bootstrap sample, will be

θ̂∗n = Ttarget(F̂
∗
n),

another plug-in estimator but now we are plugging in the bootstrap EDF F̂ ∗n .

Consistency of bootstrap variance estimator. How do we use the bootstrap to estimate the variance
and construct a confidence interval? We keep generating bootstrap samples from the EDF F̂n and obtain
several realizations of θ̂∗n’s. Namely, we generate

θ̂∗(1)n , · · · , θ̂∗(B)
n

and use their sample variance, V̂arB(θ̂∗n), as an estimator of Var(θ̂n). Note that V̂arB(θ̂∗n) is

V̂arB(θ̂∗n) =
1

B − 1

N∑
`=1

(
θ̂∗(`)n − ¯̂

θ
∗
n,B

)
,

¯̂
θ
∗
n,B =

1

B

B∑
`=1

θ̂∗(`)n .

When B is large, the sample variance of the bootstrap estimators

V̂arB(θ̂∗n) ≈ Var(θ̂∗n|F̂n). (9.1)

Note that ·|F̂n means conditioned on F̂n being fixed. The reason why here it converges to this conditioned

variance is because when we generate bootstrap samples, the original EDF F̂n is fixed (and we are generating

from it). Thus, the variance is conditioned on F̂n being fixed.

To argue that the bootstrap variance V̂arB(θ̂∗n) is a good estimate of the original variance, we need to argue

V̂arB(θ̂∗n) ≈ Var(θ̂∗n|F̂n) ≈ Var(θ̂n).

However, because of equation (9.1) and we can select B as large as we wish, so what really matters is

Var(θ̂∗n|F̂n) ≈ Var(θ̂n).

1 Note that here we ignore lots of technical details. The smoothness of a ‘functional’ is an advanced topic in mathematics
called functional analysis: https://en.wikipedia.org/wiki/Functional_analysis. There are formal ways of defining continu-
ity of functionals and even ‘differentiation’ of functionals; see, e.g., https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative.

https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative
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Or more formally,

Var(θ̂∗n|F̂n)

Var(θ̂n)
≈ 1 (9.2)

(people generally use the ratio expression because both quantities often converge to 0 when the sample size
n→∞).

Therefore, we conclude that

as long as we can show that equation (9.2) holds, the bootstrap variance is a good estimate of the

variance of the estimator θ̂n.

Because θ̂n = Ttarget(F̂n) is a statistic (a function of our random sample X1, · · · , Xn), its distribution is
completely determined by the distribution X1, · · · , Xn are sampling from, which is F , and the sample size
n. This implies that the variance of θ̂n is determined by F and n as well. Therefore, we can write

Var(θ̂n) = Var(Ttarget(F̂n)) = Vn,target(F ).

And it turns out that we often have

Vn,target(F ) ≈ 1

n
V1,target(F ) ≡ 1

n
Vtarget(F ).

Note that here Vn,target(·),Vtarge(·) are both again statistical functionals!

Because the bootstrap estimator θ̂∗n = Ttarget(F̂
∗
n), its conditional variance will be

Var(θ̂∗n|F̂n) = Var(Ttarget(F̂
∗
n)|F̂n) = Vn,target(F̂n) ≈ 1

n
Vtarget(F̂n).

Thus, as long as
Vtarget(F̂n) ≈ Vtarget(F ), (9.3)

equation (9.2) holds. Namely, the bootstrap variance estimate will be a good estimator of the variance of
the true estimator2.

Validity of bootstrap confidence interval. How about the validity of the bootstrap confidence interval?
Here is a derivation showing that the consistency of bootstrap variance estimator implies the validity of
bootstrap confidence interval.

For the bootstrap confidence interval, a simple way is first show that

√
n(θ̂n − θ) =

√
n
(
Ttarget(F̂n)− Ttarget(F )

)
≈ N(0,Vtarget(F )) (9.4)

which implies √
n(θ̂∗n − θ̂n) =

√
n
(
Ttarget(F̂ ∗n)− Ttarget(F̂n)

)
≈ N(0,Vtarget(F̂n)).

Thus, as long as the bootstrap variance converges, we also have the convergence of the entire distribution,
implying the validity of a bootstrap confidence interval 3.

2A more formal way is to show that it converges in probability.
3To formally prove this, we need to show the convergence in terms of CDF of the difference. In more details, let Zn =√
n(θ̂n − θ) and Z∗n =

√
n(θ̂∗n − θ̂n). We need to prove

sup
t

∣∣∣P (Z∗n ≤ t|F̂n)− P (Zn ≤ t)
∣∣∣ P→ 0.
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Example: mean. We now consider a simple example: the mean of a distribution Ttarget = Tmean. The mean
of a distribution has the form

µ = Tmean(F ) =

∫
xdF (x).

The plug-in estimator is

µ̂n = Tmean(F̂n) =

∫
xdF̂n(x) = X̄n

and the bootstrap estimator is

µ̂∗n = Tmean(F̂
∗
n) =

∫
xdF̂ ∗n(x) = X̄∗n.

In it clearly from the Central Limit Theorem that

√
n(µ̂n − µ) ≈ N(0,Var(Tmean(F̂n)))

so equation (9.4) holds and
√
n(µ̂∗n − µ̂n) ≈ N(0,Var(Tmean(F̂

∗
n)|F̂n)).

In this case, we know that

Var(Tmean(F̂n)) = Var(X̄n) =
1

n
Var(Xi) =⇒ Vmean(F ) = Var(Xi) = E(X2

i )−E2(Xi) =

∫
x2dF (x)−

(∫
xdF (x)

)2

.

Therefore, the bootstrap variance is

Var(Tmean(F̂
∗
n)|F̂n) =

1

n
Vmean(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

.

Because of the Law of Large Number,∫
x2dF̂n(x) =

1

n

n∑
i=1

X2
i
P→ E(X2

i ) =

∫
x2dP (x)

∫
xdF̂n(x) =

1

n

n∑
i=1

Xi
P→ E(Xi) =

∫
xdP (x).

Thus, 4

Vmean(F̂n)
P→ Vmean(F ),

which shows that equation (9.3) holds and so is equation (9.2). Thus, the bootstrap variance estimator
converges to the true variance estimator and we conclude that

Var(Tmean(F̂
∗
n)|F̂n)

Var(Tmean(F̂n))

P→ 1.

As a result, the bootstrap variance estimator is consistent and the bootstrap confidence interval is also valid.

4Note that here we use the continuous mapping theorem: if f is a continuous function and random variable An
P→ a0, then

f(An)
P→ f(a0). Setting f(x) = x2, we obtain the convergence of the second quantity.
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9.3 Delta Method

In this section, we will talk about a very useful technique in handling the convergence–the delta method. We
start with an example of proving consistency theorem of some bootstrap estimates.

Example: inverse of mean. Assume we are interested in the inverse of the population mean. Namely,
the statistical functional we will be using is

Tinv(F ) =
1∫

xdF (x)
= λ.

This statistical functional was implicitly used when we the MLE of the rate parameter of an exponential
distribution. The plug-in estimator (as well as the MLE of estimating an exponential model) is

λ̂n = Tinv(F̂n) =
1∫

xdF̂n(x)
=

1

X̄n
.

The bootstrap estimator is

λ̂∗n = Tinv(F̂
∗
n) =

1∫
xdF̂ ∗n(x)

=
1

X̄∗n
.

In the lab session, we have shown that this estimator follows asymptotically a normal distribution. But how
do we show this? and how do we compute the variance of the estimator λ̂n? Here is how the delta method
will help us.

The Delta Method

Assume that we have a sequence of random variables Y1, · · · , Yn · · · such that

√
n(Yn − y0)

D→ N(0, σ2
Y ) (9.5)

for some constants y0 and σ2
Y . Note that this implies that Var(Yn) = σ2

Y . If a function f is
differentiable at y0, then using the Taylor expansion,

√
n (f(Yn)− f(y0)) ≈

√
nf ′(y0) · (Yn − y0) = f ′(y0)

√
n (Yn − y0) .

Notice that f ′(y0) is just a constant. Thus, this implies

√
n (f(Yn)− f(y0)) ≈ N(0, |f ′(y0)|2σ2

Y ), Var(f(Yn)) ≈ 1

n
|f ′(y0)|2σ2

Y . (9.6)

Now using equation (9.6) and identifying Yn as X̄n and f(x) as 1
x , we obtain

√
n(λ̂n − λ) =

√
n

(
1

X̄n
− 1

E(Xi)

)
≈ − 1

E2(Xi)

√
n

(
X̄n −

1

E2(Xi)

)
≈ N

0,
1

E4(Xi)
Var(Xi)︸ ︷︷ ︸

=Vinv(F )

 .

Using the fact that E(Xi) =
∫
xdF (x) and Var(Xi) =

∫
x2dF (x)−

(∫
xdF (x)

)2
, we obtain

√
n(λ̂n − λ) ≈ N(0,Vinv(F )),



Lecture 9: Introduction to the Bootstrap Theory 9-7

where

Vinv(F ) =

∫
x2dF (x)−

(∫
xdF (x)

)2(∫
xdF (x)

)4 .

So equation (9.4) holds and √
n(λ̂∗n − λ̂n) ≈ N(0,Vinv(F̂n)),

where

Vinv(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2
(∫

xdF̂n(x)
)4

is the corresponding bootstrap variance component.

As long as
∫
xdF (x) 6= 0, each component in Vinv(F̂n) is a natural estimator of the corresponding component

in Vinv(F ). Therefore, we conclude

Vinv(F̂n)
P→ Vinv(F ),

which shows that equation (9.3) holds, implying that the bootstrap variance estimator is consistent:

Var(Tinv(F̂
∗
n)|F̂n)

Var(Tinv(F̂n))

P→ 1

and moreover, the bootstrap confidence interval is also valid.

9.4 Influence Function

9.4.1 Linear Functional

In the above derivations, we see many examples of statistical functionals that are of the form

Tω(F ) =

∫
ω(x)dF (x),

where g is a function. As we have mentioned, this type of statistical functionals are called linear functionals.

Linear functionals has a feature that the estimators

Tω(F̂n) =

∫
ω(x)dF̂n(x) =

1

n

n∑
i=1

g(Xi),

Tω(F̂ ∗n) =

∫
ω(x)dF̂ ∗n(x) =

1

n

n∑
i=1

g(X∗i ).

Moreover, a powerful feature of the linear functional is that for another CDF G, we always have

Tω(G)− Tω(F ) =

∫
ω(x)dG(x)− Tω(F )

=

∫
ω(x)dG(x)−

∫
Tω(F )dF (x)

=

∫
LF (x)dG(x),
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where
LF (x) = ω(x)− Tω(F ) (9.7)

is called the influence function of the functional Tω.

The influence is a power tool because when we replace G in the above derivation by F̂n, we obtain

Tω(F̂n)− Tω(F ) =

∫
LF (x)dF̂n(x) =

1

n

∑
LF (Xi)

.

Moreover,

E(LF (Xi)) =

∫
LF (x)dF (x) =

∫
(ω(x)− Tω(F )) dF (x) = Tω(F )− Tω(F ) = 0.

Thus, by central limit theorem,

√
n
(
Tω(F̂n)− Tω(F )

)
≈ N

(
0,Vω(F ) =

∫
L2
F (x)dF (x)

)
(you can check that the variance of

√
n
(
Tω(F̂n)− Tω(F )

)
is indeed

∫
L2
F (x)dF (x)). Namely, for a linear

functional Tω, equation (9.4) always holds with

Vω(F ) =

∫
L2
F (x)dF (x) =

∫ (
ω2(x)− 2ω(x)Tω(F )− T 2

ω(F )
)
dF (x) =

∫
ω2(x)dF (x) = Tω2(F ). (9.8)

Moreover,

Vω(F̂n) =

∫
L2
F̂n

(x)dF̂n(x) =

∫ (
ω2(x)− 2ω(x)Tω(F̂n) + T 2

ω(F̂n)
)
dF̂n(x)

=

∫
ω2(x)dF̂n(x)− T 2

ω(F̂n).

(9.9)

By Law of Large Number (and continuous mapping theorem),

T 2
ω(F̂n)

P→ T 2
ω(F ) = 0

if E(|ω(Xi)|) = T|ω| <∞. And∫
ω2(x)dF̂n(x) = Tω2(F̂n)

P→ Tω2(F ) = Vω(F )

if E(ω(Xi)
2) = Tω2(F ) <∞. Therefore, we conclude that when Tω2(F ) <∞,

Vω(F̂n) =

∫
ω2(x)dF̂n(x)− T 2

ω(F̂n)
P→ Vω(F ) + 02 = Vω(F ),

implying that the equation (9.3) holds. As a result, the bootstrap always works for the linear functional
whenever Tω2(F ) <∞.

9.4.2 Non-linear Functional

Although the linear functional has so many beautiful properties, many statistical functionals are not linear.
For instance, the median

Tmed(F ) = F−1(0.5)
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is not a linear functional. Therefore, our results of linear functional cannot be directly applied to analyze
the median.

Then how can we analyze the properties of non-linear statistical functionals? One way to proceed is to
generalize the notion of influence function. And here is the formal definition of the influence function.

Let δx be a point mass at location x. The influence function of a (general) statistical function Ttarget is

LF (x) = lim
ε→0

Ttarget((1− ε)F + εδx)− Ttarget(F )

ε
. (9.10)

Some of you may find equation (9.10) very familiar; it seems to be taking a derivative. And yes – it is a
derivative of a functional with respect to a function. This type of derivative is called Gâteaux derivative5, a
type of derivative of functionals. You can check that applying equation(9.10) to a linear functional leads to
an influence function as we defined previously.

A powerful feature of this generalized version of influence function is that when the statistical functional
Ttarget is ‘smooth6’, equation (9.8) and (9.9) hold in the sense that

Vtarget(F ) =

∫
L2
F (x)dF (x), Vtarget(F̂n) =

∫
L2
F̂n

(x)dF̂n(x) (9.11)

and, moreover, equation (9.4) holds. Note that LF̂n
(x) is defined via replacing F by F̂n in equation (9.10).

That is, when the statistical functional Ttarget is smooth, we only need to verify∫
L2
F̂n

(x)dF̂n(x) ≈
∫
L2
F (x)dF (x)

to argue the validity of bootstrap consistency.

Example: median. Why median follows a normal distribution? Here we will show this using the influence
function. The influence function of the functional Tmed is

LF (x) =
1

2p(F−1(0.5))
,

where p is the PDF of F (you can verify it). Thus, equation (9.4) implies

√
n

 Tmed(F̂n)︸ ︷︷ ︸
sample median

− Tmed(F )︸ ︷︷ ︸
population median

 ≈ N (0,
1

4p2(F−1(0.5))

)
.

Note that F−1(0.5) = Tmed(F ) is the median of F . So this shows not only the asymptotic normality of
sample median but also its limiting variance, which is inversely related to the PDF at the median.

The influence function is also related to the robustness of an estimator7 and plays a key role in the semi-
parametric statistics8. You would encounter it several times if you want to pursue a career in statistics.

5https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative.
6More precisely, we need it to be Hadamard differentiable with respect to the L∞ metric d(F,G) = supx |F (x)−G(x)|; see

https://en.wikipedia.org/wiki/Hadamard_derivative
7https://en.wikipedia.org/wiki/Robust_statistics#Influence_function_and_sensitivity_curve
8https://en.wikipedia.org/wiki/Semiparametric_model

https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative
https://en.wikipedia.org/wiki/Hadamard_derivative
https://en.wikipedia.org/wiki/Robust_statistics#Influence_function_and_sensitivity_curve
https://en.wikipedia.org/wiki/Semiparametric_model
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