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Monte Carlo Simulations

Assume in a dataset, we observe n values, denoted as Xi,---,X,,. For simplicity, we assume that these
observations are an IID (indenpendently, identically distributed) random sample from an unknown distribution
function F(z).

Because these n values are random, any statistic derived from them will also be random. For instance, let
Smed be the median of these n values (sample median). The value of the median will be determined by these
n observations. Because these observations are a random sample from the distribution F', the median will also
be random, and it will have its own distribution (also depends on F but through a more complicated way)!

Assume the distirbution is something we know, say a standard Normal distribution N(0,1), and the sample
size n = 100. What will the distribution of the sample median be?

We can find this out using the Monte Carlo Simulation approach. First we draw a random sample using R
and compute the sample median:

X = rnorm(100)
X_med = median(X)
X_med

## [1] 0.01708379

This gives us one realization of the median. However, every time we apply the same program, we obtain a
different value of the sample median because of a different sets of points we are having.

One way to investigate the distribution of sample median is to repeat the above procedure many times and
keep track of the sample median of each sample we generate.

N = 10000

# number of repitions
many_median = rep(NA, N)
for(i in 1:N){

X = rnorm(100)

X_med = median(X)

many_median[i] = X_med

# save the median in each repitition

}

head (many_median)

## [1] 0.03550759 0.13135906 -0.14435323 -0.12738564 0.03880981 -0.01144368

The object many_median contains the 10000 realizations of the sample median. To see its distribution, we
can simply use the histogram:

hist(many_median, col="lightgreen")



Histogram of many_median
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Surprisingly, the sample median also follows roughly a Normal distribution (actually you can prove this fact
but it requires some advanced probability techniques).

The above method we are using is call Monte Carlo Simulation—to investigate the distribution of something,
instead of using mathematics to derive it, we use computer experiments to obtain an approximated answer
to the problem. The number of repition N is sometimes called the size of Monte Carlo Simulation and it
controls the error of the simulation (this type of error is called Monte Carlo errors). Similar to the sample
size, a large repition N we are using, a smaller Monte Carlo error we have.

Not only the median, we can also use the Monte Carlo Simluation to investigate other statistic, for instance,
the interquartile range (IQR).

N = 10000

# number of repitions
MC_IQR = rep(NA, N)
for(i in 1:N){

X = rnorm(100)

X_IQR = IQR(X)

MC_IQr[i] = X_IQR

# save the median in each repitition

3
hist(MC_IQR, col="orchid")



Histogram of MC_IQR
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The distribution of IQR also follows a Normal distribution! Actually, many statistics you are familiar with
follow a Normal distribution. But of course there will be some exceptions (for instance, the maximum value
and the minimum value will not follow a Normal distribution in general).

If now we want to investigate the distribution of sample median/IQR of a different size of sample and from a
different distribution, we can simply change the sample size 100 to another value and the function rnorm() to
others. Here is an example of the sample median and IQR from a size 500 random sample from a distribution

N(2,4):
N = 10000
# number of repitions
MC_median = rep(NA, N)
MC_IQR = rep(NA, N)
for(i in 1:N){
X = rnorm(500, mean=2,sd=2)
# N(2,4): mean=2, SD=2
X_median = median(X)
MC_median[i] = X_median
X_IQR = IQR(X)
MC_IQR[i] = X_IQR
# save the median in each repitition
}

hist(MC_median, col="limegreen")



Histogram of MC_median
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hist(MC_IQR, col="orchid")

Histogram of MC_IQR
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Because these statistics have a distribution, we can also measure their spreads by the “variance”. Note that
here we are looking for the “variance” of “sample median” and the “variance” of “sample IQR”, not the
variance of the original sample.



var (MC_median)

## [1] 0.01217119

# this gives you the wvariance of the sample median
var (MC_IQR)

## [1] 0.01994174
# this gives you the wvariance of the sample I{R

Analyzing the density of a random variable

Let V4 and V4 be two IID random variables that are from a uniform distribution over [0, 1]. Their average

Vo = % is also a random variable. Then what is the distribution of V5?

Here is a simple application of Monte Carlo Simulation to figure it out.

N = 10000
V1 = runif (N)
V2 = runif (N)

V_bar = (V1+V2)/2
hist(V_bar, probability = T, col="tan")

Histogram of V_bar
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Tt looks like a triangle distribution! And actually, you can prove that its density is indeed a triangle!

What would happend if now we are taking average of 4 uniform random variables?

N = 10000

V1l = runif (N)
V2 = runif (N)
V3 = runif (N)



V4 = runif (N)
V_bar = (V1+V2+V3+V4)/4
hist(V_bar, probability = T, col="tan")

Histogram of V_bar
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Hmm it looks like something similar to a normal distribution! Actually, this is what the Central Limit
Theorem refers to-the distribution of the average behaves like a Normal distribution when we are averaging
many IID random numbers.

Here is the case when we average over 10 random variables:

N = 10000

V_matrix = matrix(runif (N*10),ncol=10)

V_bar = rowSums(V_matrix)/10

hist(V_bar, probability = T, col="tan", breaks=seq(from=0,to=1,by=0.02))



Histogram of V_bar
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This distirbution does look very similar to a Normal.

Estimating a probability

The Monte Carlo Simulation can also be used to estimate a “probability”. Here is one example. Let X be a
random variable from N(2,4) and Y is a random variable (independent from X) from a uniform distribution
over [1,5]. What is the probability that X < Y'? Namely, what is the value P(X < Y)? Mathematically, we
know that there is an answer. But it may not be easily computed. Here is how we can use the Monte Carlo
Simulation to compute it:

N = 10000
X = rnorm(N,2,2)
Y = runif (N, min=1,max=5)

cf_value = X<Y
head(cf_value)

## [1] TRUE TRUE FALSE TRUE TRUE FALSE

# this cf_walue is a vector consistss of the comparison
sum(cf_value) /N

## [1] 0.6663
# this is an estimated value of that probability

In the Monte Carlo simulation, we keep generating realizations of X and Y and try to compare if X < Y.
Now let X;,Y; be a pair of value that are generated. What is the outcome if we type X; < Y; in R? It
will be a logical value such that if X; < Y;, the value is T otherwise the value is F. If we treat the logical
value as numerics, then the outcome take value 1 if X; < Y; otherwise it takes value 0. Let the outcome be
D;. Because X;,Y; are random, D; is also a random number. But D; only takes value 0 and 1-this implies
that D; is a Bernoulli random variable! For a Bernoulli random variable, there is a probability parameter



determining the chance of generating value 1. What is that probability for D;? Recall that D; = 1 if and
only if X; < Y;. Thus P(D; = 1) = P(X; <Yj;) is the probability we want to estimate!

As a result, the logical vector cf_value is actually just n realizations of a Bernoulli distribution with the
probability parameter P(X < Y)! So the average value of the vector cf_value is just the proportion of value
T (or the numeric value 1) being generated (sometimes it is called the proportion statistic). Thus, by the Law
of Large Number, this average converges to P(X < Y') when the size of Monte Carlo Simulation N — oc.

Exercise - 1

1. Assume we want to investigate the distribution of sample standard deviation (SD) of a size n = 200
random sample from a N(2,1). Use Monte Carlo Simulation with N = 10000 to show the histogram of
the distribution of sample SD.

2. What is the variance of the distribution of sample SD?

3. Let X be a random variable that is uniformly distribution over [—1,1] and Y is a random variable from
N(1,1) that is indepdent of X. What is the probability that X +Y > 1.5?

4. Let U and V be two independent random variables that both are from a uniform distribution over [0, 1].
Use the Monte Carlo Simulation with size N = 10000 to show the distribution of (U 4+ V')/2 (you can
show the distirbution by a histogram).

Bootstrap

The bootstrap is a Monte Carlo Simulation approach based on the data we haveto estimate the uncertainty
of a statistic or an estimator. A powerful feature of the bootstrap is: we do not need to know the true
distribution.

Take the median for an example. How do we estimate its distribution/uncertainty (say variance)? We
generate the same size of data from the same distribution many times and then use the histogram/variance
of these new realizations.

The bootstrap uses a similar idea but now we treat the original data as the population and sample with
replacement from it. A key element here is sample with replacement. This is to mimic the process of generating
an IID sample-recall that when we sample with replacement, every points are IID.

Here is one example of applying the bootstrap to approximate the uncertainty of sample median of the
variable eruptions in the faithful data:

head(faithful)

##  eruptions waiting

## 1 3.600 79
## 2 1.800 54
## 3 3.333 74
## 4 2.283 62
## 5 4.533 85
## 6 2.883 55

hist(faithful$eruptions, breaks=20, col="skyblue")



Histogram of faithful$eruptions

o _
<
o _]
o™

>

(&)

c

Q o _

=) N

o

()

S

LL
o _]
i
o_

I I I I I I I I
15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

faithful$eruptions

median(faithful$eruptions)

## [1] 4

# this gives us the sample median of 'eruptions'

B = 10000
# B plays the same role as the size of Monte Carlo Simulation
med_BT = rep(NA, B)
n = nrow(faithful)
for(i in 1:B){
w = sample(n,n, replace=T)
# this generates the indices we are selecting during the sample with replacement
X_BT = faithful$eruptions [w]
med_BT[i] = median(X_BT)
3
hist(med_BT, col="orchid")
abline(v=median(faithful$eruptions), col="blue",lwd=4)



Histogram of med BT
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# an approzimated distribution of sample median
var (med_BT)

## [1] 0.006437381

# an approxzimated wvariance of sample median

The command w = sample(n,n, replace=T) generates indices that are IID from a uniform distribution
over 1,2,3,...,n. Thus, the command faithful$eruptions[w] selects those observations being selected and
it is then a sample with replacement from the original data faithful$eruptions.

Moreover, because we know that the sample median (under suitable conditions) follows roughly a Normal
distribution. We can then construct a 90% confidence interval using

median(faithful$eruptions) + gnorm(0.95)*sd(med_BT)

## [1] 4.131972
median(faithful$eruptions) - gnorm(0.95)*sd(med_BT)

## [1] 3.868028

Sample correlation

The bootstrap can also be applied to estimate the uncertainty of a statistic of values of two variables such as
the sample correlation. Here is one example using the faithful data again.

cor(faithful)
## eruptions waiting

## eruptions 1.0000000 0.9008112
## waiting  0.9008112 1.0000000

10



# this returns a sample correlation matriz

r0 = cor(faithful) [1,2]
# this s the correlation between the two wvariables
n = nrow(faithful)
B 10000
rO_BT = rep(NA, B)
for(i in 1:B){
w = sample(n,n,replace=T)
faithful BT = faithful([w,]
r0_BT[i] = cor(faithful BT)[1,2]
}
hist(r0_BT, col="pink")
abline(v=r0, col="red",lwd=4)

Histogram of rO_BT
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# the distribution from the bootstirap
var (rO_BT)

## [1] 7.788901e-05

# the estimated wvariance
rO+gnorm(0.95) *sd (rO_BT)

## [1] 0.9153278
r0-qnorm(0.95)*sd (rO_BT)

## [1] 0.8862946
# a 907 CI of the correlation
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Density estimation

The bootstrap can also be applied to estimate the uncertainty of a density estimator. Here we will illustrate
this by the KDE of variable eruptions in the faithful dataset.

dat = faithful$eruptions

hO = 0.2

dat_kde = density(dat, bw=h0, from=1, to=6)

plot(dat_kde, 1lwd=3, col="limegreen", main="KDE with h=0.2")

kde_value = dat_kde$y
# this is the density value at the grid point

n = nrow(faithful)
B = 10000
kde_value_BT = matrix(NA, nrow=B, ncol=length(kde_value))
for(i in 1:B){

w = sample(n,n,replace=T)

dat_BT = dat[w]

kde_value_BT[i,] = density(dat_BT, bw=hO, from=1, to=6)$y
} # get the KDE of the bootstrap sample at each grid point
kde_value_sd = rep(NA, length(kde_value))
for(i in 1:length(kde_value)){

kde_value_sd[i] = sd(kde_value_BT[,il])
} # compute the SD at each grid point

## making the plot

plot(dat_kde, 1lwd=3, col="limegreen", main="KDE with h=0.2")

lines(x=dat_kde$x, y=dat_kde$y+qnorm(0.95)*kde_value_sd, lwd=2, col="limegreen", 1lty=2)
lines(x=dat_kde$x, y=dat_kde$y-qnorm(0.95)*kde_value_sd, lwd=2, col="limegreen", 1lty=2)

KDE with h=0.2

Density
00 01 02 03 04 05

N =272 Bandwidth =0.2
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## a more fancy plot using 'polygon' function

plot(dat_kde, lwd=3, col="limegreen", main="KDE with h=0.2", ylim=c(0,0.65))

y_upper = dat_kde$y+qnorm(0.95)*kde_value_sd

y_lower = dat_kde$y-qnorm(0.95)*kde_value_sd

x_seq = dat_kde$x

polygon(x=c(x_seq, rev(x_seq)), y=c(y_upper, rev(y_lower)), col="palegreen", border="palegreen")
lines(dat_kde, lwd=3, col="limegreen")

KDE with h=0.2
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Exercise - 2

Now we will consider the dataset iris.

1. We focus on the variable Sepal.Length.
e What is the sample SD of this variable?
o Use the bootstrap to show the distribution of the sample SD.
e What is the variance of the sample SD computed using the bootstrap?
e Find a 90% CI of the sample SD.
2. We focus on two variables Sepal.Length and Sepal.Width. And we want to analyze the correlation
between them.
e What is the sample correlation?
e Use the bootstrap to show the distribution of the sample correlation
e What is the variance of the sample correlation computed using the bootstrap?
¢ Find a 90% CI of the sample correlation.
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