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Recent advances in nanomaterials have produced a new class
of fluorescent labels by conjugating semiconductor quantum
dots with biorecognition molecules. These nanometer-sized
conjugates are water-soluble and biocompatible, and provide
important advantages over organic dyes and lanthanide
probes. In particular, the emission wavelength of quantum-dot
nanocrystals can be continuously tuned by changing the
particle size, and a single light source can be used for
simultaneous excitation of all different-sized dots. High-quality
dots are also highly stable against photobleaching and have
narrow, symmetric emission spectra. These novel optical
properties render quantum dots ideal fluorophores for
ultrasensitive, multicolor, and multiplexing applications in
molecular biotechnology and bioengineering. 
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Introduction
Metal and semiconductor nanoparticles in the 2–6 nm size
range are of considerable current interest, not only because 
of their unique size-dependent properties but also because of
their dimensional similarities with biological macromolecules
(e.g. nucleic acids and proteins) [1–4]. These similarities could
allow an integration of nanotechnology and biology, leading to
major advances in medical diagnostics, targeted therapeutics,
molecular biology and cell biology [5•]. Recent research 
by several groups has linked colloidal nanoparticles to bio-
molecules such as peptides [6], proteins [7••,8••,9], and DNA
[10,11]. These nanoparticle bioconjugates are being used for
assembling new materials [12,13], for developing homo-
geneous bioassays [14–16], and as multicolor fluorescent labels
for ultrasensitive detection and imaging [7••,8••,9–11].

This review focuses on the synthesis, optical properties,
surface chemistry, and biological applications of semi-
conductor nanocrystals, also known as quantum dots
(QDs). These nanocrystals are often composed of atoms
from groups II-VI or III-V elements in the periodic table,
and are defined as particles with physical dimensions
smaller than the exciton Bohr radius [1–4]. For spherical
CdSe particles, this occurs when the particle diameter is
less than ~10 nm. The effect of quantum confinement
gives rise to unique optical and electronic properties that
are not available in either discrete atoms or in bulk solids.
Extensive research in the past 20 years has focused on the
photophysics of nanostructures and their applications in
microelectronics and optoelectronics [1–4]; however,
recent developments indicate that the first practical appli-
cations of QDs are occurring in biology and medicine
[17•,18•]. Key advances that have enabled these applica-
tions include the synthesis of highly luminescent QDs in
large quantities [19••], a reasonable understanding of the
surface chemistry, the preparation of water-soluble and
biocompatible nanocrystals [7••,8••], and the incorporation
of multicolor QDs into microbeads and nanobeads for 
multiplexed optical encoding of biomolecules [20••].

Synthesis
Both group II-VI (e.g. CdSe, CdTe, CdS, and ZnSe) and
group III-V (e.g. InP and InAs) nanocrystals have been 
synthesized and studied extensively in the past [1–4]. Before
1993, QDs were mainly prepared in aqueous solution 
with added stabilizing agents (e.g. thioglycerol or polyphos-
phate). This procedure yielded low-quality QDs with poor
fluorescence efficiencies and large size variations (relative
standard deviation [RSD] > 15%). In 1993, Bawendi and
coworkers [21] synthesized highly luminescent CdSe QDs
by using a high-temperature organometallic procedure.
The nanocrystals had nearly perfect crystal structures and
narrow size variations (RSD < 5%), but the fluorescence
quantum yields were still relatively low (~10%).

The deposition of a surface-capping layer such as ZnS or
CdS was found to dramatically increase the quantum
yields of CdSe nanocrystals [22–24]. ZnS has a wider
bandgap (energy difference between the valence band and
the conduction band) than CdSe, but the Zn–S bond
length is similar to that of Cd–Se. This property allows the
epitaxial growth of a thin ZnS layer on the CdSe core. In
practice, the Zn(CH3)2/S solution is added slowly in small
aliquots to a CdSe/tri-n-octylphosphine oxide (TOPO, a
high boiling point and coordinating solvent) solution to
prevent ZnS nucleation. The quantum yields of the
capped CdSe nanocrystals are about 40–50% at room 
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temperature. Most recently, Peng and Peng [19••] have
pushed the art of QD synthesis one step further by demon-
strating that alternative precursor materials (such as CdO)
can be used to prepare high-quality CdS, CdSe, and CdTe
nanocrystals. In contrast to traditional core/shell nano-
crystals, the QDs synthesized show excellent quantum
yields without an inorganic capping layer.

The nanocrystal size can be controlled by several pro-
cedures; for example, nucleated CdSe QDs can be grown
at high temperatures (300°C or higher) for an extended
period of time (ranging from minutes to hours, depending
on the desired particle size) [25]. In this process (known as
Ostwald ripening), smaller nanocrystals are broken down,
and the dissolved atoms are transferred to larger crystals.
The rate of this ‘ripening’ process is dependent on both
the temperature and the amount of limiting reagent
[25,26]. Continuous injection of precursor solutions into
the CdSe reaction mixture (in TOPO) at 300°C also 
produces larger nanocrystals. Figure 1 shows a set of 
different sized ZnS-capped CdSe QDs excited with a
handheld near-UV lamp.

Optical properties
The optical properties of semiconductor nanoclusters arise
from interactions between electrons, holes, and their local
environments. Semiconductor QDs absorb photons when
the excitation energy exceeds the bandgap. During this
process, electrons are promoted from the valence band to
the conduction band. Measurements of UV–visible spectra
reveal a large number of energy states in QDs. The lowest
excited energy state is shown by the first observable peak,
known as the quantum-confinement peak. Excitation at
shorter wavelengths is possible because multiple electronic
states are present at higher energy levels. In fact, the molar
extinction coefficient gradually increases towards shorter
wavelengths. This is an important feature for biological
applications because it allows simultaneous excitation of
multicolor QDs with a single light source (Figure 2).

Light emission arises from the recombination of mobile or
trapped charge carriers (Figure 2b). The emission from

mobile carriers is called excitonic fluorescence and is
observed as a sharp peak. The emission spectra of single
ZnS-capped CdSe QDs are as narrow as 13 nm (full-width at
half maximum; FWHM) at room temperature [8••]. The
excited-state lifetimes of nanocrystals contain three expo-
nential components. In bulk measurements, the lifetimes
are 5 ns, 20–30 ns, and 80–200 ns, with 20–30 ns dominating
[27,28]. These excited-state decay rates are slightly slower
than those of organic dyes (1–5 ns), but much faster than
those of lanthanide probes (1 µs–1 ms). Single-dot measure-
ment further reveals that the excited-state lifetimes are
dependent on the emission intensity, but the exact origins of
this multi-exponential behavior remain unclear.

By varying the size and composition of QDs, the emission
wavelength can be tuned from the blue to the near infrared.
For example, CdS and ZnSe dots emit blue to near-UV
light [29], different sized CdSe dots emit light across the
visible spectrum, and InP and InAs QDs emit in the far-red
and near-infrared [30–32]. We also note that elongated 
QDs (quantum rods) show linearly polarized emission [33],
whereas the fluorescence emission from spherical CdSe
dots is circularly polarized or non-polarized [34,35].

In comparison to organic dyes such as rhodamine 6G and 
fluorescein, CdSe nanocrystals show similar or slightly lower
quantum yields at room temperature, but the lower quantum
yields are compensated by their larger absorption cross-
sections and much reduced photobleaching rates. Bawendi
and coworkers [21,22] estimated that the molar extinction
coefficients of CdSe QDs are about 105–106 M–1 cm–1,
depending on the particle size and the excitation wave-
length. These values are 10–100 times larger than those of
organic dyes, but are similar to the absorption cross-sections
of phycoerytherin, a multichromophore fluorescent protein.
Chan and Nie [8••] estimated that single ZnS-capped CdSe
QDs are ~20 times brighter and ~100–200 times more stable
than single rhodamine 6G molecules.

Surface chemistry
The complex surface chemistry of nanocrystals has been
studied by NMR spectroscopy and X-ray photoemission

Figure 1

Ten distinguishable emission colors of ZnS-
capped CdSe QDs excited with a near-UV
lamp. From left to right (blue to red), the emis-
sion maxima are located at 443, 473, 481,
500, 518, 543, 565, 587, 610, and 655 nm.
(Figure adapted from [20•• ] with permission.)
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spectroscopy (XPS) [36,37]. Morphologically, QDs are not
smooth spherical particles, but are faceted with many
planes and edges. They are generally considered to be
negatively charged owing to molecules adsorbed on the
surface [38]. TOPO strongly coordinates to the surface
metal atoms, whereas tri-n-octylphosphine (TOP) or 
tributylphosphine (TBP) are only weakly bound. The 
surface properties (such as TOPO molecules interacting
with each other and their dimerization) [39] improve the
long-term solubility of QDs in organic solvents.

Two methods have been developed to prepare water-sol-
uble QDs. Alivisatos and coworkers [7••,40] reported the
use of a silica/siloxane coating for creating water-soluble

ZnS-capped CdSe QDs. In this procedure, 3-(mercaptopropyl)
trimethoxysilane (MPS) is directly adsorbed onto the
nanocrystals and TOPO molecules are displaced. A 
silica/siloxane shell is formed on the surface by the intro-
duction of a base and hydrolysis of the silanol groups.
Polymerizing silanol groups help stabilize the nano-
crystals against flocculation. The QDs become soluble in
intermediate polar solvents, such as methanol and
dimethyl sulfoxide. Further reaction with bifunctional
methoxy compounds, such as aminopropyl trimethoxysi-
lane or trimethoxysilyl propyl urea, renders the particles
soluble in aqueous buffer. The second method to prepare
water-soluble QDs involves the direct adsorption of
bifunctional ligands such as mercaptoacetic acid or
dithiothreitol to the QD surface [8••]. Here, a mercapto
compound and an organic base are added together to
TOPO-capped QDs dissolved in chloroform. The base
deprotonates both the thiol and the carboxylic group,
leading to favorable electrostatic binding between nega-
tively charged sulfur atoms and surface Cd2+ or Zn2+ ions.
The semiconductor QDs precipitate out of the organic
solution, but can be redissolved in aqueous solution.

Polymerized siloxane-coated QDs are highly stable against
flocculation, but only small amounts (milligram quantities)
can be prepared per batch. Also, residual silanol groups on
the nanocrystal surface often lead to precipitation and gel
formation at neutral pH. In comparison, the direct adsorp-
tion procedure yields gram quantities of water-soluble
QDs, but the mercapto ligands are not completely stable.
Slow desorption of mercaptoacetic acid molecules often
results in aggregation and precipitation of the solubilized
QDs. This problem has recently been solved by using
chemically modified proteins to coat and ‘passivate’ the
QD surface (XH Gao, SM Nie, unpublished results).
Preliminary results indicate that the protein-coated QDs
are stable indefinitely (for more than 2 years) in buffer 
solution, exhibit excellent spectral widths, and have 
quantum yields similar to those of the original QDs in chlo-
roform (FWHM = 25 nm and quantum yield = 40–50%).
Furthermore, the protein layer provides multiple functional
groups (amines, carboxylic acids, and cysteine residues) for
covalent conjugation with a variety of biological molecules
and biocompatible polymers.

Bioconjugation and applications
Reactive functional groups include primary amines, 
carboxylic acids, alcohols, and thiols. Primary amines react
with carboxylic acids, catalyzed with a carbodiimide or
sulfo N-hydroxysuccinimide ester, to form a stable amide
bond. A thioether bond is formed when sulfhydryl groups
react with maleimides. Another approach for linking 
biomolecules to nanocrystals is to use a thiol-exchange
reaction. Here, mercapto-coated QDs (prepared by direct
adsorption) are mixed with thiolated biomolecules (such 
as oligonucleotides or proteins) [10,41]. After overnight 
incubation at room temperature, a chemical equilibrium 
is reached between the adsorbed thiols and the free thiols.

Figure 2

Comparison of (a) the excitation and (b) the emission profiles between
rhodamine 6G (red) and CdSe QDs (black). The QD emission
spectrum is nearly symmetric and much narrower in peak width. Its
excitation profile is broad and continuous. The QDs can be efficiently
excited at any wavelength shorter than ~530 nm. By contrast, the
organic dye rhodamine 6G has a broad and asymmetric emission peak
and is excited only in a narrow wavelength range. au, arbitrary units
(Data taken from [45].)
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A similar approach has recently been used by Mattoussi
and coworkers [9] in which engineered proteins with 
a linear polylysine chain are directly adsorbed onto 
negatively charged nanocrystals through electrostatic inter-
actions. Current bioconjugation methods are schematically
illustrated in Figure 3. It should be noted that the surface
area of a single QD is large enough for linking to multiple
biomolecules. Two to five protein molecules and 50 
or more small molecules (such as oligonucleotides or 
peptides) may be conjugated to a single 4 nm QD.

Bioconjugated QDs have been used in DNA hybridization
[10], immunoassay [8••], receptor-mediated endocytosis
[8••], and time-gated fluorescence imaging of tissue sec-
tions [28]. Nanocrystals are also emerging as a new class of
fluorescent labels for in vivo cellular imaging. An important
advantage is that the extremely high photostability of QDs
allows real-time monitoring or tracking of intracellular
processes over long periods of time (minutes to hours).
Another advantage is the ability to use multicolor
nanocrystals to simultaneously image multiple targets
inside living cells or on the cell surface. Furthermore, with

an inert layer of surface coating, the nanocrystals are
believed to be less toxic than organic dyes. In preliminary
studies, we have conjugated luminescent QDs to transferrin
(an iron transport protein), antibodies that recognize 
cancer biomarkers, and folic acid (a small vitamin molecule
recognized by many cancer cells). In each case, we found
that receptor-mediated endocytosis occurred and the
nanocrystals were transported into the cell. Single QDs as
well as clusters of dots trapped in vesicles were clearly 
visible inside living cells (Figure 4).

Another promising area of application is the use of 
near-infrared (NIR) QDs for in vivo molecular imaging.
With long-wavelength organic dyes, Weissleder and
coworkers [42,43•] have developed bioconjugated probes
for tumor imaging in live animals. Recent research in our
group has synthesized novel NIR fluorescent nanocrystals
with emission wavelengths as long as 850 nm and quantum
yields as high as 50% at room temperature (RE Bailey,
JB Strausburg J, SM Nie, unpublished results). Similar 
to the CdSe nanocrystals, the NIR QDs can be made 
water-soluble and biocompatible. In comparison with 
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Figure 3

Schematic illustration of bioconjugation 
methods. (a) Use of a bifunctional ligand
such as mercaptoacetic acid for linking QDs
to biomolecules [8•• ]. (b) TOPO-capped QDs
bound to a modified acrylic acid polymer by
hydrophobic forces. (c) QD solubilization and
bioconjugation using a mercaptosilane 
compound [7•• ]. (d) Positively charged 
biomolecules are linked to negatively 
charged QDs by electrostatic attraction [9].
(e) Incorporation of QDs in microbeads and
nanobeads [20•• ].
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Figure 4

Fluorescence imaging of folate-conjugated
QDs inside human cancer cells. (a) Bright-
field image of control KB cell (without QDs).
(b) KB cell incubated with folate-conjugated
QDs. (c) KB cell incubated with bovine serum
albumin-conjugated QDs. Receptor-mediated
endocytosis occurs only when the QDs are
conjugated to folic acid, which is recognized
by folate receptors overexpressed on the 
surface of cancer cells.
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carbocyanine and related organic dyes, our NIR dots are
much brighter (higher quantum yields and larger absorp-
tion cross-sections) and are much more stable against
photobleaching. These NIR nanocrystals could provide
new opportunities for in vivo imaging of gene expression
and enzyme activities.

A further application of QDs is the multiplexed optical
encoding and high-throughput analysis of genes and 
proteins, as reported by Nie and coworkers [20••].
Polystyrene beads are embedded with multicolor CdSe
QDs at various color and intensity combinations
(Figure 5). The use of six colors and 10 intensity levels can
theoretically encode one million protein or nucleic acid
sequences. Specific capturing molecules such as peptides,
proteins, and oligonucleotides are covalently linked to the
beads and are encoded by the bead’s spectroscopic signa-
ture. A single light source is sufficient for reading all the
QD-encoded beads. To determine whether an unknown
analyte is captured or not, conventional assay methodologies
(similar to direct or sandwich immunoassay) can be
applied. This so-called ‘barcoding’ technology can be used
for gene profiling and high-throughput drug and disease
screening. Based on entirely different principles, Natan
and coworkers [44••] reported a metallic nanobarcoding
technology for multiplexed bioassays. Together with
QD-encoded beads, these ‘barcoding’ technologies offer
significant advantages over planar chip devices (e.g.
improved binding kinetics and dynamic range), and are
likely to find use in various biotechnological applications.

Conclusions
A pervasive trend in biotechnology is the development of
ultrasensitive and high-throughput technologies for the
rapid detection and quantification of genes, proteins, and
cells. The ability to quickly screen a large number of 

biomolecules is important in several research areas, such 
as drug discovery and medical diagnostics. In the next
10 years, we envision that novel platforms based on multi-
color QDs will be developed for massive parallel biosensing
and analytical detection. These multiplexing technologies
will probably combine the advantages of QDs with those of
microfluidics and microarrays. In addition, non-invasive
molecular imaging technologies could be developed using
luminescent QDs. This should allow viral particles to be
followed in vivo, drug molecules to be analyzed in biological
systems, and tumor cells to be tracked in real time.
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