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Figure 1: A screen-reader user’s interaction with: (left) a geospatial map showing COVID-19 cases per US state, and (right) a
multi-series line graph showing Olympic medals for the top 10 countries over multiple years. For each visualization, the user

issues a question (“Q”) to our system, VoxLens, which answers the user via their screen reader (“A”).

ABSTRACT

Inaccessible online data visualizations can significantly disenfran-
chise screen-reader users from accessing critical online information.
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Current accessibility measures, such as adding alternative text to
visualizations, only provide a high-level overview of data, limiting
screen-reader users from exploring data visualizations in depth.
In this work, we build on prior research to develop taxonomies of
information sought by screen-reader users to interact with online
data visualizations granularly through role-based and longitudinal
studies with screen-reader users. Utilizing these taxonomies, we ex-
tended the functionality of VoxLens—an open-source multi-modal
system that improves the accessibility of data visualizations—by
supporting drilled-down information extraction. We assessed the
performance of our VoxLens enhancements through task-based
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user studies with 10 screen-reader and 10 non-screen-reader users.
Our enhancements “closed the gap” between the two groups by
enabling screen-reader users to extract information with approx-
imately the same accuracy as non-screen-reader users, reducing
interaction time by 22% in the process.
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1 INTRODUCTION

Online data visualizations are commonly used on the web to ef-
fectively communicate large volumes of data [37]. Additionally,
visualizations assist users in extracting information efficiently, help-
ing people make informed life decisions concerning their health,
finances, and activities. Recent work in politics [46, 84], health
[32, 63, 85], finance [24, 76], and business analytics [6, 82] indicate
the importance and wide adoption of online data visualizations.

However, the essential visual nature of data visualizations inher-
ently disenfranchises people who cannot see [20, 47, 55, 68]. These
people include people who use screen readers (over 7.6 million
people in the United States) to read the contents of their computer
screens. In contrast, non-screen-reader users can explore data visu-
alizations by rapidly interpreting visual patterns [1, 28, 55]. Prior
work has reported that alternative textual descriptions (“alt-text”)
for visualizations are often missing [68, 86]. In cases when alt-text is
present, screen-reader users (SRUs) spend 211% more time and are
61% less accurate in extracting information than their non-screen-
reader user counterparts [68]. Therefore, it is essential to find ways
to make online data visualizations more accessible, efficient, and
usable to screen-reader users (SRUs).1

Several prior works have attempted to improve the accessibility
of online data visualizations [2, 30, 43, 44, 69, 70, 72], such as by
auto-generating alt-text [44, 58, 69] and enabling verbal informa-
tion extraction [70]. While these tools contribute to the accessibility
of online visualizations, they either focus on simple graphs (e.g.,
single-series bar graphs) or the extraction of mainly high-level
(“holistic”) information, such as extrema and averages. Therefore,
their granular (“drilled-down”) interactions, such as extracting and
comparing data points, especially with complex visualizations, re-
main unexplored.2

1Following prior work [68, 70], we define “screen-reader users” as people who use
screen readers (e.g., JAWS [67]) and might have conditions including complete or
partial blindness, low vision, learning disabilities (such as alexia), or motion sensitivity.
2We use the term “drilled-down” in line with its usage in the domain of accessible
visualizations [68, 70, 86], as this term can have different meanings in different domains.

To achieve this goal, we employed a three-step process. First, we
aimed to understand the granular information SRUs seek from sim-
ple and complex online data visualizations.3 Then, we utilized these
findings to develop taxonomies of the information sought by SRUs
during their holistic and drilled-down explorations. Finally, using
the taxonomies, we extended the functionality of VoxLens [70]—
an open-source JavaScript plug-in that improves the accessibility
of online data visualizations using a multi-modal approach—by
supporting granular information extraction for SRUs.

To understand the granular information SRUs seek from online
data visualizations, the questions they ask to extract that infor-
mation, and the responses they prefer, we conducted a role-based
and longitudinal user study with 12 and seven SRUs, respectively.
For our role-based study, we employed a role-playing methodol-
ogy [75], prompting our participants to explore data visualizations
from different perspectives. Utilizing our findings, we composed
taxonomies of the information sought by SRUs from visualizations.

We enhanced the capabilities of VoxLens using these taxonomies.
To assess the performance of our enhancements, we conducted a
task-based user study with SRUs who used VoxLens with our en-
hancements (𝑁=10) and non-SRUswho did not use any tools (𝑁=10).
Our results show that using our enhancements, SRUs performed
5.6% more accurately than non-SRUs. (By contrast, using the origi-
nal version of VoxLens, SRUs performed 15% less accurately than
non-SRUs [70].) Our follow-up semi-structured interviews with
SRUs revealed that our enhancements made VoxLens a “promising
tool” (S1), helping users extract information quickly and accurately
from online data visualizations.

The main contributions of this work are:
(1) We provide taxonomies of the information sought by SRUs

in their holistic and drilled-down explorations of online data
visualizations.

(2) We present our open-source enhancements to VoxLens [70]
to support drilled-down information extraction from com-
plex data visualizations (geospatial maps and multi-series
line graphs; see Figure 1). We describe our design improve-
ments and functional enhancements to VoxLens.

(3) We provide empirical results from a task-based user study
with 10 SRUs and 10 non-SRUs to evaluate the performance
of our enhancements.

2 RELATEDWORK

We review research that has highlighted the need for accessible vi-
sualizations or provided recommendations and solutions to improve
the interaction experiences of SRUs with online data visualizations.

2.1 Need for Accessible Data Visualizations

Prior research has identified the need for accessible online data
visualizations, shedding light on the disenfranchisement caused
by inaccessible visualizations for SRUs [45, 52, 55, 68]. Marriott
et al. [55] put forward a call-to-action for inclusive visualizations,
declaring the lack of access to visualizations a significant equity
issue. Sharif et al. [68] provided empirical evidence of this inequity
3We use the terms “simple visualizations” to refer to single-series bar graphs and
“complex visualizations” to refer to geospatial maps and multi-series line graphs.
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by conducting mixed-methods studies with 36 SRUs and 36 non-
SRUs. Their results show that due to the inaccessibility of online
data visualizations, SRUs extract information 61% less accurately
and spend 211% more time interacting than non-SRUs.

2.2 Accessibility Recommendations

Researchers have recommended techniques to improve the acces-
sibility of online data visualizations [17, 22, 52, 62, 68, 74]. Most
recently, Sharif et al. [68] recommended auto-generation of alter-
native text (“alt-text”) to represent dynamic data, and using multi-
modality (e.g., tables, summaries, sonification) to enable SRUs to ex-
plore visualizations based on their preferences. Lundgard et al. [52]
presented a set of sociotechnical considerations for accessible visu-
alization designs, identifying participatory design and the usage of
Accessible Rich Internet Application (ARIA) attributes as crucial
elements in creating online data visualizations.

2.3 Solutions for Accessible Data Visualizations

Several researchers have developed solutions to enhance the ex-
periences of SRUs in extracting information from data visualiza-
tions, including auto-generation of alt-text [44, 53, 58, 69], sonifica-
tion [2, 4, 13, 26, 36, 57, 83], data summarization [43], tables [21],
andmulti-modality [70]. Prior research has also developed solutions
to make data visualizations accessible through other user interfaces,
such as haptic graphs [78, 81] and 3-D printing [12, 40, 72]. As our
work focuses on the accessibility of online data visualizations, we
only discuss the work relevant to our exploration.

Most recently, Sharif et al. [70] developed VoxLens, an open-
source JavaScript plug-in that enables SRUs to interact with on-
line data visualizations using a multi-modal approach. VoxLens
assists users in obtaining the data summary, listening to a soni-
fied version of the data, and verbally interacting with visualiza-
tions. Kim et al. [43] generated summarization text displaying the
high-level information from image-based line graphs using a multi-
modal deep learning framework. Ahmetovic et al. [2] developed
AudioFunctions.web, which enables blind people to explore math-
ematical function graphs using sonification.

These solutions focus on simple graphs (e.g., single-series two-
dimensional graphs) and the extraction of holistic information (e.g.,
data summary or trend information). In contrast, our work: (1)
presents a detailed account of screen-reader users’ drilled-down
explorations of simple and complex visualizations; (2) extends the
findings and contributions of prior work [68, 71] by providing fur-
ther insights into the holistic and drilled-down exploration of SRUs
with online data visualizations; and (3) enhances the capabilities of
VoxLens [70], enabling SRUs to verbally extract granular informa-
tion from simple as well as complex visualizations.

3 TAXONOMY DEVELOPMENT

We conducted role-based and longitudinal user studies [14, 48] with
12 and seven SRUs, respectively, to understand their information
needs from online data visualizations. Utilizing our findings, we gen-
erated taxonomies of the information sought by screen-reader users
for their holistic and drilled-down interactions. First, we present our
methodology and results from the role-based and longitudinal user
studies. Then, we discuss our process of taxonomy development.

Figure 2: Sample visualizations shown during our longitudi-

nal study. Plots (a) is a single-series bar graph, (b) is a geospa-

tial map, and (c) is a multi-series line graph. “Q” is one of the

questions participants asked during the study and “A” is the

enhanced VoxLens’s response.
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3.1 Visualizations Selection

We selected three types of data visualizations based on their wide
usage on the web: (1) single-series bar graphs; (2) multi-series line
graphs; and (3) geospatial maps. Then, we curated a set of 30 online
data visualizations (10 for each type) based on the search results
for “most popular data visualizations 2021” and “most popular map
visualizations 2021” on Google. Figure 2 shows three of the 30
visualizations used in our longitudinal study.

3.2 Overview of VoxLens

VoxLens is an open-source JavaScript plug-in that improves the
accessibility of online data visualizations for SRUs using a multi-
modal approach [70]. Additionally, VoxLens requires only a single
line of code for integration into existing and future online data
visualizations created using D3, Google Charts, or ChartJS. There
are three modes of VoxLens: (1) Question-and-Answer mode, where
the user verbally interacts with the visualizations; (2) Summary
mode, where VoxLens gives a summary of the visualization and the
information it contains; and (3) Sonification mode, where VoxLens
enables listeners to interpret data trends by mapping data to a
musical scale. Prior to the enhancements presented in this work,
VoxLens was limited to only simple visualizations created using
two-dimensional single-series data, such as single-series bar graphs.

3.3 Role-Playing User Study

We conducted aWizard-of-Oz [19, 33] role-based user study [14, 48]
with 12 SRUs acting as the “wizards” and simulating responses from
a hypothetical screen reader. Our goal was to elicit diverse perspec-
tives and motivations for SRUs to perform information extraction
granularly from online data visualizations. Building on and follow-
ing recommendations from prior work [39, 49, 56], we identified
three roles that provided in-depth perspectives: (1) explorer ; (2)
teacher; and (3) news reporter. We were unsuccessful at finding
SRUs who were actual teachers or news reporters, as is often the
case with recruiting disabled participants, particularly those with
specialties [65]. Therefore, we used role-playing in our user study.

3.3.1 Participants. As our goal was to build on prior work [71],
we recruited the same participants as in that user study. These
participants were 12 SRUs (𝑀=50.3 years, 𝑆𝐷=13.6), recruited via
word-of-mouth, snowball sampling, and advertisements through
email distribution lists for disabled people. All but one participant
had complete blindness; six participants had been blind since birth,
and five had lost their vision gradually. The recruitment of partici-
pants ceased after reaching saturation of insights, as in prior work
[68, 70, 80]. Participants received a $20 Amazon gift card for one
hour of their time.

3.3.2 Procedure. We conducted hour-long user studies with our
participants using Zoom videoconferencing and collected their de-
mographic information. At least two authors took detailed notes
during the sessions. We utilized Zoom’s built-in features for record-
ing and transcribing sessions. First, we presented participants with
a summary of the visualization generated using the Summary mode
from VoxLens [70] to provide them with a holistic overview of
the data. Then, we had our participants explore the data in the
visualization by verbally asking questions, to which we responded

as “wizards,” replicating the behavior of the Question-and-Answer
mode of VoxLens. Each participant interacted with nine visual-
izations randomly selected from the 30 visualizations we curated
(three of each type). We randomized the order of the visualizations
across participants.

We randomly assigned each participant a unique role (explorer,
teacher, news reporter) for each of the three visualizations in each
visualization type. As an “explorer,” the participants interacted
with the visualizations based on their curiosity and interests; as a
“teacher” and “news reporter,” they had to extract information as-
suming they were to present it to their students and news audience,
respectively. We explained the definitions of these roles to the par-
ticipants before conducting the study. Hence, each participant took
on each role three times. Participants did not portray any difficulty
in assuming the roles. We counterbalanced the order of roles across
participants. On average, our participants spent approximately five
minutes interacting with each visualization.

3.4 Longitudinal Study

We conducted a longitudinal study with seven SRUs to gain more
insight into their holistic and drilled-down information extraction
behaviors. Our study with each participant lasted 12 days, including
a tutorial session and an hour-long follow-up interview.

3.4.1 Participants. Our participants were seven SRUs (𝑀=48.1
years, 𝑆𝐷=8.7), recruited similarly like our role-based user study.
Five had complete blindness, four of whom had been blind since
birth. We compensated people with a $230 Amazon gift card for
participating in our longitudinal study of 12 days.

3.4.2 Procedure. On the first of 12 days, our participants took part
in a tutorial conducted using Zoom videoconferencing, in which
we asked them to share their screen and computer sound. They
interacted with a sample visualization using all modes of VoxLens
until they were comfortable. We used these modes because they
were commonly used (Sonification and Summary modes) or a new
interaction technique (Question-and-Answer mode) to make online
data visualizations accessible.

On days 2–11, we asked our participants to interact daily with our
curated visualizations using all three VoxLens modes and extract
information from the visualizations. All participants interacted with
three visualizations per day (one of each type). Therefore, each
participant interacted with 30 different visualizations, spending
approximately 10 minutes with each visualization. We logged their
interactions, including any queries or commands they issued to
VoxLens and the responses they received. Additionally, at the end
of a participant’s interaction with each visualization, we asked them
to summarize the information they extracted from the visualization.
All sessions were unsupervised. On the 12th and final day of the
study, we conducted hour-long follow-up interviews. Specifically,
we asked participants about their overall experiences with each
type of visualization.

3.5 Data Analysis

Weused amixed-methods approach to analyze our data. Specifically,
we employed both quantitative and qualitative methods to analyze
the data from our role-based and longitudinal user studies. Our
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primary sources of data were the interaction logs from VoxLens
and our semi-structured interviews.

3.5.1 Quantitative Analysis. Our goal was to explore differences
between the commands issued and the effects of different visual-
ization types on the information sought by SRUs. Therefore, our
independent variables were Command Issued (𝐶𝑀𝐷)4, representing
the information sought by screen-reader users, and visualization
type (𝑉𝑇 ). Count (𝐶𝑁𝑇 ) was our dependent variable, calculated as
the number of times each participant issued a command per chart
type. We employed a mixed Poisson regression model [29] to ana-
lyze 𝐶𝑁𝑇 , as is standard practice for count data. Additionally, we
included 𝑆𝑢𝑏 𝑗𝑒𝑐𝑡𝑟 as a random factor [27] to account for repeated
measures on the same participants.

3.5.2 Qualitative Analysis. We used semantic thematic analysis
[54, 64] to analyze the interview sessions from our role-playing
and longitudinal studies. We employed Braun and Clarke’s [9] “es-
sentialist” method for our thematic analysis, combining 33 initial
codes into 18 axial codes. We separated the axial codes for each
exploration type (holistic and drilled-down). Each exploration type
contained nine axial codes. Finally, we classified our axial codes
into two broader categories within each exploration type. Addition-
ally, we calculated inter-rater reliability, expressed as percentage
agreement among raters before resolving disagreements [35]. Our
percentage agreement was 90.1%, demonstrating a high level of
agreement between raters [31, 35].

3.6 Quantitative Results

Command Issued (𝐶𝑀𝐷) had a significant effect on Count (𝐶𝑁𝑇 )
(𝜒2(10, 𝑁=1370)=8336.1, 𝑝<.001, Cramer’s 𝑉=0.93). Specifically, the
most issued command was the Value command, issued 28.6% of
the time to extract the value of an individual data point.

We also examined the interaction between Command Issued and
Visualization Type (CMD × VT ), finding a significant effect (𝜒2(20,
𝑁=1370)=5640.7, 𝑝<.001, Cramer’s 𝑉=0.77). For a Single-Series Bar
Graph, Factor was the most issued command (26.7%); for Multi-
Series Line Graph and Geospatial Map, it was Average (22.0%) and
Value (46.4%), respectively. (The Factor command enables users to
get information about the independent and dependent variables.)

3.7 Qualitative Results

We present our findings for each exploration type (holistic and
drilled-down) and discuss our taxonomy development process.

3.7.1 Holistic Exploration. SRUs look for holistic information in
data visualizations as an initial step before exploring data in detail
[68]. We identified two high-level categories for SRUs’ holistic
explorations: (1) Summary Statistics and (2) Understanding Trends.
To obtain summary statistics, our participants looked for extrema,
averages, axis ranges, factor levels, medians, and sums (in that order
of frequency). For example, P9 compared the two “extremes” by
asking for the maximum and minimum data points:

I would definitely write down the minimum data point
and the maximum data point. So then I can compare
the two extremes. (P9)

4Full list of VoxLens commands is present in Table 2 in our prior work [70]

Similarly, P4 was interested in learning about the average of
COVID-19 cases in North America:

What’s the rough average in North America? (P4)
Our participants also sought data trend information. Specifically,

they looked for overall trend, best-fit line, and correlation coefficient.
P12 looked for “visual representation” of the data:

And then what I would do is ask for some type of soni-
fication of that graph that’ll let me get a visual repre-
sentation of it. (P12)

Overall, our findings show that SRUs look for summary statistics
and data trends to explore the data holistically. In our role-playing
and longitudinal user studies, extrema were the most commonly
sought information.

3.7.2 Drilled-Down Exploration. Our user studies revealed that
SRUs perform drilled-down explorations by extracting and com-
paring data points. These explorations were straightforward for
single-series data (bar graphs, geospatial maps) with at most one
independent factor. However, for multi-series data with multiple
factors (i.e., multi-line graphs), our participants not only performed
the extraction and comparison within but also across different fac-
tors. For example, in a graph of housing prices over the past 10
years per U.S. state, participants looked for:

• Extraction; within factors: The data for a given state (e.g.,
Texas housing price average).

• Comparison; within factors: The data for a given state com-
pared to another state (e.g., Texas vs. Oregon).

• Extraction; across factors: The data for a given state in a given
year (e.g., Texas 2017).

• Comparison; across factors: The data for a given state in a
given year compared to another year for a different state
(e.g., Texas 2017 vs. Oregon 2019).

Our participants categorized data as regional, political, climate-
related, population-related, and spoken-language-related to extract
information from geospatial data. For example, P1 was interested
in finding the United States traffic congestion differences between
eastern, western, northern, and southern regions:

I mean, is there a difference between the west and the
east or north and south? (P1)

Similarly, P2 categorized the data by political spectrum, whereas
P10 was interested in climate categorization:

The federal funding... What happened when the Repub-
licans were in power and when the Democrats were in
power? That would be interesting to check out. (P2)
Usually, there’s not much information presented about
that in maps, but I would like to see how states compare
with climate, I mean cold, hot, whatever. (P10)

We found that our participants performed categorization by
factor levels for multi-series data. P2 wanted to categorize the
alcohol consumption data for Canada for every five years:

I would like to be able to isolate these [data points] and
say... I would ask that what is the number in Canada
for the past five years? Like, by five-year increments?
(P2)
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We found that SRUs ranked data based on the top, bottom, and
near-average values. For example, P2 was interested in the average
housing prices for U.S. states in 2021:

Well, I would like to get an order of the lowest to the
highest, so I can maybe organize this in my head. (P2)

Our findings show that SRUs categorize and rank the data to
extract and compare data points. We found regional and factor-
level categorization the most frequently sought information for
geospatial and multi-series data, respectively.

3.7.3 Taxonomy Development Process. We developed two tax-
onomies of the information sought by SRUs. Our taxonomies con-
tain three tiers: (1) Category (broader categories); (2) Information
Type (axial codes); and (3) Query (participants questions). Appendix
A shows the taxonomy for holistic exploration, organizing the cate-
gories and information types in the order of their frequency (most
to least). To build the taxonomy for drilled-down exploration, we
collected the information SRUs seek to extract data points. Appen-
dix B shows the taxonomy for drilled-down exploration. Through
these taxonomies, we produced generalizable knowledge that vi-
sualization creators and researchers can use to improve the acces-
sibility of online data visualizations. To demonstrate the utility of
the above discoveries and taxonomies, we extended the capabil-
ities of VoxLens—an open-source JavaScript plug-in that makes
online data visualizations accessible to SRUs using a multi-modal
approach.

4 ENHANCEMENTS TO VOXLENS

Utilizing the taxonomies from our role-playing and longitudinal
studies, we enhanced the functionality of VoxLens by supporting
drilled-down information extraction from complex visualizations
(geospatial maps and multi-series line graphs). We present the
design, features, and implementation of our enhancements.

4.1 Our Additions to VoxLens

We extended the functionality of the Question-and-Answer mode, as
the other two interaction modes only assist in holistic exploration.
We added two more parameters to the existing configuration op-
tions: “chartType” and “dataModule.” Five values for “chartType”
are possible: (1) bar (single-series bar graphs); (2) line (single-series
line graphs); (3) scatter (single-series scatter plots); (4)map (geospa-
tial maps); and (5) multiseries (multi-series line graphs). VoxLens
currently supports (1), (2), and (3), whereas (4) was introduced in
prior work [71]. In this work, we improved upon and provided
additional details for (4) (maps) and introduced (5) (multi-series line
graphs) as a significant new feature for VoxLens.

We selected the most frequently sought information types from
our taxonomies to implement as additional features for VoxLens.
From our taxonomy of the holistic information, extremum, average,
axis ranges, factor levels, and overall trend were the most frequently
used. Out of these five, extremum, average and overall trend were
already implemented in VoxLens. Therefore, we implemented axis
ranges and factor levels. For drilled-down information extraction, the
most frequently used information types were regional categorization
for geographic data, factor-level categorization for multi-series line
graphs, and top and bottom for the ranking category.

4.2 Factor-Level Categorization (Multi-Series)

We used the keyword matching algorithm from VoxLens to support
categorization by factor levels.5 Specifically, we searched the user’s
query to find keywords matching the factor levels. For example, if
the user said, “Tell me the housing price for Texas,” our algorithm
would identify “Texas” as the factor level and calculate the average
housing prices in Texas for the past 10 years. We used “average” as
the default command based on the findings from our role-playing
and longitudinal studies. However, users can specify other statistical
measures based on their needs (e.g., “Total housing price for Texas”).

However, if the user said, “Tell me the housing price for Texas
in 2017,” our algorithm would identify “Texas” as the factor level
for state and “2017” as the factor level for year. We employed the
same strategy to perform comparisons between data points. To
obtain all the data points, our users suggested making the data
available through a table, as listening to values from large data sets
can induce high cognitive overload. We discuss this further in our
subsection below on additional features.

In addition to line graphs, our enhancements are generalizable
to other visualizations created using multi-series data. We also note
that, currently, our enhancements are limited when categorizing by
factor levels if the input query contains prepositions or adverbs of
time (e.g., housing price for Texas five years “ago” or housing price
for Texas “between” 2017 and 2019). Future work can utilize more
advanced Natural Language Processing techniques to understand
such queries.

4.3 Regional Categorization (Geospatial Maps)

Our participants extracted and compared data points from geospa-
tial maps by performing regional categorization. As all of our par-
ticipants were from the United States, they categorized the data by
regions within the United States (e.g., east coast); for countries of
the world, they grouped the data by continents (e.g., Asia). We fur-
ther expanded the state module based on the National Geographic
Society’s classification of regions in the United States [61]. Specif-
ically, we added the following regions: Mountain West, Far West,
Northwest, Northeast, Southeast, Midsouth, New England, Central,
Southcentral, and Great Lakes. As the modules are open-source and
engineered to be scalable, developers can easily make necessary
adjustments to the VoxLens library to extend the modules to add
more regions (and provinces). Figure 1 shows an interaction of
an SRU with a geospatial map after our enhancements. Similar to
multi-series line graphs, our enhancements for geospatial maps are
generalizable to other visualizations created using geospatial data.

4.4 Improvements for Ranking

VoxLens enables users to obtain the top 𝑁 and bottom 𝑁 data
points, where 𝑁 represents the number of data points. However,
the existing algorithm only recognizes specific keywords to rank the
data (e.g., “top” or “bottom”). Therefore, we extended the vocabulary
of VoxLens in our enhancement to recognize more keywords (e.g.,
“most” and “least”).
5In a graph showing average housing prices per U.S. state for the past 10 years, state
and year are factors. For state, the levels are the 50 U.S. states; for year, they are the
last 10 years. Housing prices is the dependent variable.
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4.5 Additional Features

We implemented additional functionality for SRUs to obtain the
factor levels and range of the dependent variable and acquire the
data set via a table.

4.5.1 Factor Levels. We employed a two-step interaction design
for factors and their levels. The first step presents the users with
the count for the factor levels and the second step enables them to
obtain the list. For example, in a visualization showing the stock
market prices per company, if the user asks, “How many companies
are present?” the response is, “Data is from three companies. Say
‘tell me factor levels for companies’ to hear all companies.” If the
user asks for the factor levels, the response is, “Data is from three
companies: Apple, Microsoft, and Google.”

4.5.2 Range for the Dependent Variable. We added the functionality
to obtain the range of the dependent variable, providing users with
the minimum and maximum values. For example, if the user asks
for the stock market price range, the response is, “Stock market
price ranges from [minimum value] to [maximum value].”

4.5.3 Visually-Hidden Tables. Our participants expressed an inter-
est in obtaining the entire data set. They noted that through the
Question-and-Answer mode of VoxLens, such information could
be cumbersome to process, especially for data sets with large cardi-
nalities. They suggested presenting the data using visually-hidden
tables, a strategy employed by Google Charts [21]. Therefore, we
appended a table to the end of the visualization, which was visually
hidden but accessible to screen readers.

5 TASK-BASED USER STUDY

To assess the performance of our VoxLens enhancements, we con-
ducted a task-based user study with follow-up interviews.

5.1 Method

We evaluated the performance of our VoxLens enhancements
through a task-based user study with 10 SRUs who used VoxLens
and 10 non-SRUs who did not use any tools to aid in their interac-
tion. We also administered the NASA-TLX questionnaire [34].

5.1.1 Participants. We recruited 10 SRUs and 10 non-SRUs for our
study, advertising via word-of-mouth, snowball sampling, and email
distribution lists. No participants had partaken in our role-playing
or longitudinal user studies. Among SRUs, the average age was 46.1
years (𝑆𝐷=11.8). All participants had complete blindness; seven
were blind since birth, and three had lost their vision gradually. For
non-SRUs users, the average agewas 45.9 (𝑆𝐷=8.3) years.We did not
find a statistically significant difference between the ages of the two
participant groups (𝑡 (18)=0.04, 𝑛.𝑠.). We compensated SRUs with a
$20 Amazon gift card and non-SRUs with a $15 Amazon gift card
for 45–60 minutes and 20–35 minutes of their time, respectively.

5.1.2 Apparatus. We conducted our task-based user study online
using the study platform from prior work [70], created using the
JavaScript React framework [41]. We randomly selected nine data
visualizations from our 30 curated visualizations (see Section 3.1;
three for each visualization type). We implemented these visualiza-
tions following the WCAG 2.0 Guidelines [15]. The performance

of users with VoxLens did not significantly differ between visu-
alization libraries [70]. Therefore, we generated all visualizations
using D3 [8]. All visualizations supported interactive features (e.g.,
hover and click), as our goal was to accurately replicate the current
behavior of these visualizations on the Web. We include all the
visualizations in supplementary materials for reproducibility.

We finalized the question categories for our task-based user
study based on Brehmer and Munzner’s task topology [11] and
prior work on the type of questions users ask of graphs [10, 42, 68].
We intentionally did not base our questions on our findings from
the role-playing and longitudinal studies. Overall, we identified five
question categories for each visualization:

(1) Order Statistics: Extraction of the maximum/minimum data
point, chosen randomly (e.g., “Which state has the minimum
number of cases in this visualization?”).

(2) Symmetry Comparison: Identification of the relationship be-
tween two data points (e.g., “Are the cases of state ‘Oregon’
greater, lesser, or equal compared to ‘Michigan’?”).

(3) Value Retrieval: Extraction of the value of an individual data
point (e.g., “What is the number of cases for state ‘Califor-
nia’?”).

(4) Ranking: Identification of the highest/lowest ranked data
points, chosen randomly (e.g., “Which of these states is not
in the top three based on cases?”).

(5) Chart-Type Specific Questions:
• Factor Levels: Extraction of the total number of levels for
any given independent variable (e.g., “How many coun-
tries are shown in this visualization?”). We randomly
selected the independent variable for multi-series line
graphs.

• Symmetry Comparison by Region: Identification of the re-
lationship between two regions (e.g., “Are the cases on
the east coast greater, lesser, or equal compared to the
west coast?”). We only asked this question for geographic
map-based visualizations.

All questions were multiple-choice with four choices: the correct
answer, two incorrect answers, and the option for “Unable to extract
information.” Following the study design from prior work [68, 70],
we determined the incorrect answer choices programmatically, ran-
domly choosing two data points for categorical values and two
integers using a random number generator for numerical values.
We randomized the order of the four choices for each question.

5.1.3 Procedure. We conducted an over-the-shoulder-style user
study [77] and asked our participants to share their screens and
make their screen reader’s audio outputs audible using Zoom video-
conferencing. The study sessions were unsupervised for non-SRUs.
At the beginning of the study, we collected preliminary informa-
tion from participants. In the next step, we engaged with our SRUs
in an interactive tutorial session, introducing the operations and
functions of our enhancements (e.g., activating the tool and issu-
ing commands). Using a sample visualization of a single-series bar
graph, we assisted our SRUs in extracting information from the
visualization using the Question-and-Answer mode. We shared sam-
ple questions for them to ask and guided them until they expressed
confidence in their familiarity with our system. We did not present
a tutorial session to non-SRUs.
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Table 1: Statistical test results for Accuracy of Extracted In-
formation (𝐴𝐸𝐼 ) from SRUs using VoxLens with our enhance-

ments (𝑁=10) and non-SRUs without VoxLens (𝑁=10). 𝑆𝑅𝑈

is the screen-reader factor and 𝑉𝑇 is the visualization type

factor. Cramer’s 𝑉 is a measure of effect size [25].

𝑁 𝜒2 𝑝 Cramer’s 𝑉

𝑆𝑅𝑈 20 0.01 .903 .00
𝑉𝑇 20 9.33 < .05 .12
𝑆𝑅𝑈 ×𝑉𝑇 20 3.92 .141 .08
𝐴𝑔𝑒 20 0.24 .626 .02

After the tutorial session, each participant completed five study
tasks for each visualization type, totaling 5×3=15 study tasks. Each
task comprised three steps. Step 1 contained the question to explore;
step 2 displayed the question and visualization; step 3 presented
the question with four answer choices. We randomized the order
of the study tasks and the order of the multiple-choice responses.
We did not interact with the participants while they performed the
tasks. Finally, we asked them to fill out the NASA-TLX workload
questionnaire [34]. For SRUs, they took 45–60 minutes; for non-
SRUs, study sessions took from 20–35 minutes.

5.1.4 Design and Analysis. The experiment was a 2 × 3 mixed-
factorial design with the following factors and levels: (1) Screen-
Reader User (SRU), between-Ss.: {yes, no}, and (2) Visualization Type
(VT), within-Ss.: {single-series bar graph, multi-series line graph,
geospatial map}. We used the 𝑆𝑅𝑈 factor to empirically explore
the gap in information access between SRUs and non-SRUs. (We
did not compare our enhancements to the original VoxLens to
avoid making a strawman comparison.) Hence, our SRUs interacted
with visualizations using our enhancements, and non-screen-reader
users interacted with the visualizations as they usually would.

We used Accuracy of Extracted Information (AEI) and Interac-
tion Time (IT) as our dependent variables. In our analysis, 𝐴𝐸𝐼 was
coded as “1” for “accurate” when the user answered the question
correctly and “0” for “inaccurate.” Additionally, we calculated 𝐼𝑇

as the total task completion time. We used a mixed logistic re-
gression model [29] and a linear mixed model [27, 51] to analyze
𝐴𝐸𝐼 and 𝐼𝑇 , respectively. We used the above factors, their interac-
tions, and a covariate to control for Age in our statistical models.
We also included 𝑆𝑢𝑏 𝑗𝑒𝑐𝑡𝑟 as a random factor to account for re-
peated measures [27]. Therefore, our statistical model terms were:
𝑆𝑅𝑈 +𝑉𝑇 + 𝑆𝑅𝑈×𝑉𝑇 +𝐴𝑔𝑒 + 𝑆𝑢𝑏 𝑗𝑒𝑐𝑡𝑟 . We tested our participants
over three Visualization Type (𝑉𝑇 ) conditions, resulting in a total of
3×5=15 trials per participant. With 20 participants, we had a total
of 20×15=300 study trials.

5.1.5 Qualitative and Subjective Evaluation. To qualitatively assess
the usability and usefulness of our enhancements, we conducted
follow-up interviews with all SRUs (𝑁=10). Specifically, we asked
them about their overall experience, liked features, areas for im-
provement, and any issues they encountered during their interac-
tions. To assess the subjective ratings, we administered the NASA-
TLX workload questionnaire [34] with all participants (𝑁=20).

5.2 Quantitative Results

We present the results of our task-based user study assessing the
Accuracy of Extracted Information (𝐴𝐸𝐼 ) and Interaction Time (𝐼𝑇 )
for SRUs and non-SRUs with online data visualizations. Our goal
was to investigate the performance of our enhancements with users
and not to assess their cognitive or intellectual abilities.

Figure 3: Accuracy of Extracted Information (𝐴𝐸𝐼 ), as a per-

centage, for SRUs with VoxLens (𝑁=10) and non-SRUs with-

out VoxLens (𝑁=10) by Visualization Type (𝑉𝑇 ). The percent-

age represents the “accurate” answers (higher is better). Error

bars represent mean ±1 standard deviation.

Figure 4: Interaction Times (𝐼𝑇 ), in seconds, for SRUs using

our VoxLens enhancements (𝑁=10) and non-SRUs without

VoxLens (𝑁=10) by Visualization Type (𝑉𝑇 ). Lower is better

(faster). Error bars represent mean ±1 standard deviation.

5.2.1 Accuracy of Extracted Information (AEI). Our results do not
show a significant effect of Screen-Reader User (𝑆𝑅𝑈 ) on𝐴𝐸𝐼 overall
(𝑝 ≈ .906), indicating that𝐴𝐸𝐼 was not detectably different between
the two Screen-Reader User groups. In fact, using our enhancements,
SRUs extracted information 5.6% more accurately on average than
non-SRUs, although this was not statistically significant. However,
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Table 2: Statistical test results for Interaction Time (𝐼𝑇 ) from
SRUs using VoxLens with our enhancements (𝑁=10) and

non-SRUs without VoxLens (𝑁=10). 𝑆𝑅𝑈 is the screen-reader

factor and 𝑉𝑇 is the visualization type factor. Partial eta-

squared (𝜂2𝑝 ) is a measure of effect size [18].

𝑑 𝑓𝑛 𝑑 𝑓𝑑 𝐹 𝑝 𝜂2𝑝
𝑆𝑅𝑈 1 16.98 36.94 < .001 0.69
𝑉𝑇 2 275.34 6.14 < .05 0.04
𝑆𝑅𝑈 ×𝑉𝑇 2 275.15 2.46 .087 0.02
𝐴𝑔𝑒 1 16.95 8.21 < .05 0.33

in an evaluation prior to our enhancements [68], non-SRUs did
outperform screen-reader users by 62%. Therefore, such a non-
significant result is noteworthy because it “closed the gap.”

There was a significant effect of Visualization Type (𝑉𝑇 ) on 𝐴𝐸𝐼

overall (𝜒2(2, 𝑁=300)=9.35, 𝑝<.05, Cramer’s 𝑉=0.12). This result in-
dicates that𝐴𝐸𝐼 differs significantly between different visualization
types. Figure 3 show the 𝐴𝐸𝐼 percentages across different 𝑉𝑇 . For
both SRUs and non-SRUs, Single-Series Bar Graphs had the best per-
formance (92% and 98% 𝐴𝐸𝐼 , respectively), followed by Multi-Series
Line Graphs (88% and 84% 𝐴𝐸𝐼 , respectively) and Geographic Maps
(86% and 70% 𝐴𝐸𝐼 , respectively). Additionally, we investigated the
effects of Age and the SRU × VT interaction, but we did not find
significant effects on 𝐴𝐸𝐼 (see Table 1).

5.2.2 Interaction Time (IT). Interaction times were initially condi-
tionally lognormal, a common occurrence with temporal measures
[50]. Therefore, we applied a logarithmic transformation before
conducting our analysis, following standard practice for time mea-
sures [5, 38, 50]. Anderson-Darling goodness-of-fit tests of nor-
mality [3] confirmed that log-transformed interaction times were
conditionally normally distributed (𝑝 ≈ .117). For ease of under-
standing, we display plots of 𝐼𝑇 using the non-transformed values.

Screen-Reader User (𝑆𝑅𝑈 ) had a significant main effect on Inter-
action Time (IT) (𝐹 (1,18)=36.94, 𝑝<.001, 𝜂2𝑝=0.69). Specifically, the
average 𝐼𝑇 for SRUs was 42.4 seconds (𝑆𝐷=21.2). For non-SRUs, it
was 22.0 seconds (𝑆𝐷=16.5). The average 𝐼𝑇 for SRUs was 92.8%
higher than non-SRUs. We also found a significant main effect of Vi-
sualization Type (VT) (𝐹 (2,275.3)=6.14, 𝑝<.05, 𝜂2𝑝=0.04) on 𝐼𝑇 . These
results indicate that 𝐼𝑇 significantly differed among visualization
types (𝑉𝑇 ). We also examined the interaction between SRU × VT,
but did not find a significant effect (see Figure 4 and Table 2). For
SRUs, Geospatial Map had the maximum interaction time; for non-
SRUs, it was the Multi-Series Line Graph. Single-Series Bar Graph
had the minimum interaction time for both groups.

Age had a significant effect on 𝐼𝑇 (𝐹 (1,16.9)=8.21, 𝑝<.05,𝜂2𝑝 =0.33),
indicating that 𝐼𝑇 differed significantly across the ages of our partic-
ipants. Participants over 50 years old had 44.0% higher interaction
times than those under the age of 50.

5.3 Qualitative Results

Through follow-up interviews with all of our SRUs (𝑁=10), we
assessed the usability and usefulness of our enhancements. Specifi-
cally, we asked them about the features they liked and for any areas

of improvement. Additionally, we observed their interactions to
identify system errors and user workarounds.

5.3.1 Liked Features. Nine out of 10 SRUs identified the “inter-
active dialogue” feature as one of the features they liked. Eight
participants appreciated that our enhancements were “intuitive”
and “easy to use.” Three participants highlighted the adaptiveness of
our enhancements, stating that VoxLens “adjusts to your question,”
and that it is “suitable for people of all ages and backgrounds.” Two
participants found our enhancements innovative, something they
had “never seen before.” One participant liked the quick responses.

5.3.2 Areas of Improvement. Our participants recognized five areas
of improvement: (1) adding a repeat command (would enable users
to re-hear the response from the previous query); (2) building a
“playground” environment (would enable users to learn more about
the tool by trying out different commands and features); (3)making
the response more succinct; (4) enabling responses to be explored in
text form (would append the auditory response as text on the web
page, enabling them to copy it); and (5) increasing the query input
time (would enable users to issue longer queries without feeling
rushed). Based on these findings, we have started the development
work needed to improve VoxLens even further.

5.3.3 System Errors. From our analysis of participants’ interaction
logs, we recognized system errors stemming from the limitations
of the keyword matching algorithm and voice recognition—two
fundamental components of VoxLens. Our system does not process
the user’s query when our algorithm does not find a keyword
match—an unfortunate and known limitation of voice assistants [16,
59, 73]. For example, “tell me the three countries doing amazing in
vaccinating people” was not recognized by our system but “tell me
the top three countries by vaccination percentages” was correctly
processed. Future work can utilize Natural Language Processing
models trained to handle such nuanced scenarios.

5.3.4 User Workarounds. Our participants employed workarounds
to extract information due to the limitations mentioned above.
Specifically, when our system could not process a user’s query in-
volving a comparison between data points, our participants asked
for the value of each data point separately and computed the com-
parison mentally. Although the users successfully extracted the
information, they issued multiple commands instead of a single
command, consequently increasing their interaction time. We aim
to address these areas of improvement and system errors to reduce
the number of workarounds.

5.4 Subjective Workload Ratings

We collected subjective workload ratings for both user groups using
the NASA Task Load Index questionnaire (NASA-TLX) [34]. The
NASA-TLX questionnaire records users’ perceived task workload
on six scales: mental demand, physical demand, temporal demand,
performance, effort, and frustration. For all scales, lower is better,
as it corresponds to lesser perceived workload. We performed the
nonparametric Aligned Rank Transform procedure [23, 79] to sta-
tistically analyze the effects of SRU (levels: yes, no). We did not find
a significant effect of SRU on any of the six dimensions, suggesting
comparable workload levels.
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6 DISCUSSION

We generated taxonomies of the information sought by SRUs for
their holistic and drilled-down explorations of online data visualiza-
tions using the findings from our role-playing and longitudinal user
studies. Utilizing our taxonomies, we extended the capabilities of
VoxLens [70], enabling granular information extraction from sim-
ple and complex data visualizations. We assessed our enhancements
through a task-based user study. Our findings show that using our
VoxLens enhancements, our SRUswere 5.6%more accurate, on aver-
age, than our non-SRUs. Furthermore, our enhancements improved
their interaction time by 6.3%.

6.1 Substantial Improvement in Accuracy

Sharif et al. [68] reported that SRUs are 62% less accurate than non-
SRUs at extracting information from online data visualizations. The
original VoxLens [70] reduced this gap, resulting in SRUs extracting
information only 15% less accurately than non-SRUs. With our
enhancements, SRUs extracted information 6% more accurately
than non-SRUs, constituting a 164% improvement over SRUs who
did not use VoxLens, and a 19% improvement over SRUs who used
the original VoxLens. These findings emphasize that tools such as
VoxLens that empower SRUs in extracting information granularly
and cater to their individual needs can help reduce the disparity
caused by inaccessible visualizations between the two user groups.

6.2 Continuous Reduction of Interaction Time

Prior work has reported that the average interaction time for SRUs
(without VoxLens) was 84.6 seconds [68]. VoxLens [70] improved
these interaction times by 36%, reducing the average time to 54.1
seconds. Now with our VoxLens enhancements, the average inter-
action time for participants is 42.4 seconds, a 50% and 22% improve-
ment, respectively. Although our enhancements show an improve-
ment in interaction times compared to VoxLens, our findings show
that SRUs spent 93% more time interacting with the visualizations
than non-SRUs, accentuating the disparity between the two user
groups’ interaction times. These findings can motivate accessible
data visualization solutions that use traditional methods, such as
keyboard-based navigation, to incorporate the consideration of
interaction times in their design. Several factors contribute to the
difference in interaction times between SRUs and non-SRUs [7, 70],
including the duration of the auditory responses. The findings from
our follow-up interviews identify features that could further reduce
these interaction times (e.g., a “repeat” command). The implications
of these findings can help guide existing and future voice assistants
for SRUs to improve information extraction.

6.3 A Future of Personalized Designs

A recurring observation in our studies was that each SRU exhibited
a distinct way of interactingwith data visualizations. Since VoxLens
only identified the most common keywords, it underperformed pro-
cessing variations in the queries issued by our participants, forcing
them to employ workarounds. Although participants successfully
extracted the information using workarounds (accuracy was not
affected), their performance resulted in higher interaction times.
Therefore, we recommend using personalized designs [60, 66] by

identifying usage patterns and individualized preferences of users
to improve overall performance.

6.4 Recommendations for Researchers

In addition to providing generalizable knowledge for visualiza-
tion creators to improve the accessibility of visualizations, our
taxonomies highlight the variations in SRUs’ drilled-down inter-
actions across different visualization and data types. Therefore,
we recommend conducting studies with SRUs to understand their
interactions with other visualization and data types, such as 3-D
data visualizations. Additionally, we suggest researchers utilize our
taxonomies to construct alternative textual descriptions for image-
based visualizations to provide SRUs with relevant information.

7 LIMITATIONS & FUTUREWORK

Our exploration was limited to single-series bar graphs, multi-
series line graphs, and geospatial maps. Future work can utilize our
methodology to understand and improve SRUs’ experiences with
other complex data visualizations such as three-dimensional graphs
and stacked bar charts. Additionally, future work can employ our
methodology to investigate the interaction of SRUs with physical
interfaces such as tactile maps. Furthermore, our enhancements
were limited in parsing users’ input commands due to restrictions
from the keyword-matching algorithm and the Web Speech API’s
voice recognition. Future work can employ advanced Natural Lan-
guage Processing and Conversational Question and Answering
algorithms to handle complex and nuanced input queries.

8 CONCLUSION

In this work, we conducted role-playing and longitudinal user stud-
ies with SRUs to understand their holistic and drilled-down infor-
mation extraction needs from simple and complex online data visu-
alizations, including multi-series line graphs and geospatial maps.
We used our findings to generate taxonomies of the information
sought by SRUs in their interactions with online data visualizations.
Then, utilizing these taxonomies, we enhanced the capabilities of
VoxLens to enable them to extract information from complex data
visualizations in a granular fashion. We assessed the performance
of our enhancements using a mixed-methods approach through a
task-based user study with SRUs and non-SRUs. Our enhancements
improved the accuracy of extracted information and interaction
times of SRUs compared to the original VoxLens. Additionally,
using our enhancements, SRUs “closed the gap” compared to non-
SRUs in the accuracy of the information they extracted from online
data visualizations. Closing this gap such that the accuracy of ex-
tracted information from online data visualizations is not detectably
different between SRUs and non-SRUs represents a major advance-
ment in the accessibility of online data visualizations.
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A TAXONOMY OF HOLISTIC INFORMATION

Table 3: Taxonomy of the holistic information screen-reader users seek when exploring online data visualizations. Information

types within each category are in descending order based on their sought frequency. For each information type, the “Query”

column shows some of the questions that our participants asked to extract that information. Each information type was

applicable to all the visualization types used in our studies (single-series bar graphs, multi-series line graphs, and geospatial

maps).

Category Information Type Query

Summary Statistics

Extremum

What country has the highest number?

What month was the stock market doing the best?

Which country had the lowest overall in 2020?

Average

What is the national average?

What is the rough average of data in North America?

What is the average of the top ten countries?

Axis Ranges

Can you tell me what is the x-axis?

What is the y-axis?

What month does it start at and what month does it end?

Factor Levels

What countries are included in this graph?

How many companies are in the graph?

What are the states in this graph?

Median

What’s the median?

Tell me the median score

What is the exact median?

Sum

What is the total for each year?

Can you tell me the total amount for 2020?

How about the sum of all states?

Understanding Trends

Overall Trend

How many companies have gone down in price?

Could I have some type of sonification of the graph?

Is the United States currently going up?

Best-Fit Line
What is the best fit line for the United States?

Which line of best fit has the highest slope and lowest slope?

Correlation Coefficient Can you tell me the correlation coefficient?
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B TAXONOMY OF DRILLED-DOWN INFORMATION

Table 4: Taxonomy of the drilled-down information screen-reader users seek when exploring online data visualizations to

extract and compare data points. Information types within each category are in descending order based on their sought

frequency. For each information type, the “Query” column shows some of the questions that our participants asked to extract

that information. Each information type under the Ranking category was applicable to all the visualization types used in our

studies (single-series bar graphs, multi-series line graphs, and geospatial maps). Under the Categorization category, Regional,
Political, Climate-Related, Population-Related, and Spoken-Language-Related were applicable to geospatial maps, whereas

Factor-Levels-Related was only applicable to multi-series line graphs.

Category Information Type Query

Categorization

Regional (Geospatial)

Is there a difference between the east and west, or the north and south?

Is there a continent that has a higher life expectancy?

Tell me the values of the Southern states as opposed to the Northwest.

Factor-Levels-Related (Multi-series)

How is California doing now, 10 years ago, and 20 years ago?

How was Texas between 2010 and 2015?

Can we filter out the data to only Apple and Walgreens?

Political (Geospatial)

How do the trends during the Democratic presidential campaigns compare
to the trends during Republican presidential campaigns?

Do socialist countries have higher rates?

When Republicans were in power, did they increase compared to when
Democrats were in power?

Climate-Related (Geospatial)
Do warmer climate states have higher values?

How are colder places compared to warmer places?

Population-Related (Geospatial)

Can you compare these two states by population?

Do the states with larger population have higher traffic rates?

Spoken-Language-Related (Geospatial)
Can we compare Spanish speaking countries to the English speaking coun-
tries?

Ranking

Top

Which countries are in the top 5%?

What are the five top countries in Western Europe?

I’d like to see them all in order from the highest to the lowest.

Bottom

What are the bottom 10 companies in the graph?

What about the second and third lowest?

Can we organize from lowest to the highest?

Surrounding Average

Which ones are in the middle?

What are the three countries that are closest to the average?

What’s the distribution, the countries around the average.

31


	Abstract
	1 Introduction
	2 Related Work
	2.1 Need for Accessible Data Visualizations
	2.2 Accessibility Recommendations
	2.3 Solutions for Accessible Data Visualizations

	3 Taxonomy Development
	3.1 Visualizations Selection
	3.2 Overview of VoxLens
	3.3 Role-Playing User Study
	3.4 Longitudinal Study
	3.5 Data Analysis
	3.6 Quantitative Results
	3.7 Qualitative Results

	4 Enhancements to VoxLens
	4.1 Our Additions to VoxLens
	4.2 Factor-Level Categorization (Multi-Series)
	4.3 Regional Categorization (Geospatial Maps)
	4.4 Improvements for Ranking
	4.5 Additional Features

	5 Task-Based User Study
	5.1 Method
	5.2 Quantitative Results
	5.3 Qualitative Results
	5.4 Subjective Workload Ratings

	6 Discussion
	6.1 Substantial Improvement in Accuracy
	6.2 Continuous Reduction of Interaction Time
	6.3 A Future of Personalized Designs
	6.4 Recommendations for Researchers

	7 Limitations & Future Work
	8 Conclusion
	Acknowledgments
	References
	A Taxonomy of Holistic Information
	B Taxonomy of Drilled-Down Information

