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Abstract 
Automated evaluation of specific graphic designs like presenta-
tion slides is an open problem. We present SlideAudit, a dataset 
for automated slide evaluation. We collaborated with design ex-
perts to develop a thorough taxonomy of slide design flaws. Our 
dataset comprises 2400 slides collected and synthesized from multi-
ple sources, including a subset intentionally modified with specific 
design problems. We then fully annotated them using our taxonomy 
through strictly trained crowdsourcing from Prolific. To evaluate 
whether AI is capable of identifying design flaws, we compared 
multiple large language models under different prompting strate-
gies, and with an existing design critique pipeline. We show that AI 
models struggle to accurately identify slide design flaws, with F1 
scores ranging from 0.331 to 0.655. Notably, prompting techniques 
leveraging our taxonomy achieved the highest performance. We 
further conducted a remediation study to assess AI’s potential for 
improving slides. Among 82.0% of slides that showed significant im-
provement, 87.8% of them were improved more with our taxonomy, 
further demonstrating its utility. 

CCS Concepts 
• Human-centered computing → Systems and tools for inter-
action design; Empirical studies in HCI. 
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1 Introduction 
Creating visually effective graphics such as presentation slides 
remains a complex design task. It demands careful attention to 
layout structure, visual hierarchy, color usage, and communica-
tive clarity—all of which significantly influence how information 
is perceived by an audience. While recent advances in AI have 
enabled automated slide generation [1, 4, 9, 54], identifying and 
improving design issues in existing slides remains a challenging 
and underexplored problem. In practice, users often work with ex-
isting templates or partially completed slides, iteratively refining 
them rather than generating complete decks from scratch. Yet, di-
agnosing and correcting design flaws (e.g., issues affecting clarity, 
aesthetics, or communication) continues to rely heavily on human 
judgment, with limited automated support available. 

To investigate this open challenge, we must first understand the 
scope of potential design problems in presentation slides. While 
extensive research exists on design critique and automated design 
assessments [2, 13, 36], there remains a critical gap in the systematic 
categorization of design flaws, specifically in presentation slides. 
We developed SlideAudit, a dataset of slides annotated according 
to a rigorously defined taxonomy of slide design flaws. We first 
conducted a formative design study with 17 experts to iteratively 
derive and validate the taxonomy of design flaws. We then assem-
bled an expansive dataset of 2400 slides from multiple sources, 
including an existing slide corpus, publicly-shared Google Slides 
presentations, and slide decks generated by AI systems. To model 
realistic variation in slide quality, we synthetically introduced con-
trolled manipulations related to object positioning, layout patterns, 
typography, and color distributions. In total, we used a combina-
tion of 600 originally collected slides and 1800 synthesized slides. 
Using strictly qualified crowdworkers recruited through Prolific, 1 

we annotated each slide according to our proposed taxonomy. 
We conducted three evaluations to examine both our dataset’s 

practical utility and the feasibility of leveraging large language 
models (LLMs) to automatically detect and remediate slide flaws. 
First, we evaluated LLM-based detection of design flaws using four 
prompting strategies [5]: (1) baseline with no additional guidance, 

1Prolific is a crowdsourcing platform (https://www.prolific.com/) 
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(2) high-level categorical knowledge augmentation, (3) comprehen-
sive taxonomy descriptions paired with examples, and (4) computa-
tionally augmented prompts. Second, we compared SlideAudit with 
prior design critique frameworks, CrowdCrit [36] and UICrit [13]. 
We applied design principles derived in CrowdCrit and generated 
design critiques to the same evaluation process to show differences 
between CrowdCrit- and SlideAudit-based LLM variants. We also 
directly adapted and evaluated UICrit’s evaluation pipeline with 
SlideAudit data, applying its few-shot and visual prompting ap-
proaches to identify slide flaws, allowing a different type of compar-
ison with our method. Third, we conducted a follow-up participant 
study examining the effectiveness of LLM-generated remediation 
plans, comparing remediation quality when taxonomy-informed 
diagnostics were provided versus absent. 

Our results show that LLMs alone struggle to consistently iden-
tify slide design flaws, achieving varied performance (F1: 0.476 – 
0.655). However, explicitly including our taxonomy improved model 
accuracy in all tests. In the remediation evaluation with human 
raters, 82.0% of slides showed significant improvement from at least 
one generated plan. Among these improved slides, the taxonomy-
informed approach generated better remediation plans in 87.8% of 
cases when compared to the baseline. Notably, providing the tax-
onomy also enabled the correct identification of defect-free slides, 
reducing unproductive remediation. 

In summary, this work contributes: 
• A rigorously-developed taxonomy of slide design flaws de-
rived from iterative expert collaboration; 

• SlideAudit, a richly-annotated dataset of 2400 slides system-
atically annotated with flaw information; 

• Evaluations demonstrating the benefit of incorporating the 
taxonomy into AI-driven slide critique and remediation. 

2 Related Work 
Our research builds on related work in automated design critiques 
and evaluations, datasets related to visual understanding, and cre-
ativity support for blind and low-vision users. We address each of 
these areas in turn, below. 

2.1 Design Evaluations 
Traditional graphic design evaluations typically rely on expert cri-
tique informed by theories and principles of visual perception. In-
fluential frameworks such as the Gestalt principles [56] describe 
how people perceptually group visual elements according to factors 
like proximity, similarity, continuity, and closure. Violations to the 
principles would affect the presentation qualities of graphic designs. 
Principles from visual hierarchy and perception [19, 35, 39, 50, 55] 
further guide critiques by helping evaluators assess clarity, effec-
tive information communication, and aesthetic composition. In 
practice, designers frequently apply these frameworks through 
structured heuristic evaluations [37, 38, 40], expert reviews [20], 
crowdsourcing [36, 62, 63], and design checklists informed by estab-
lished guidelines [17, 26, 41]. Despite offering valuable qualitative 
insights and actionable suggestions, these conventional approaches 
rely heavily on evaluator expertise, iterative manual effort, and 
visual discernment. For blind professionals needing to produce vi-
sually effective materials, these traditional evaluation approaches 

pose substantial accessibility challenges, typically requiring them to 
rely extensively on sighted colleagues or peers for critical feedback 
and improvement. 

2.2 Automated Visual Design Evaluation 
Automated visual evaluation methods emerged predominantly from 
rule-based heuristics and predictive models trained on manually 
labeled domain-specific datasets [15, 16, 31, 44, 61]. However, the 
applicability of these earlier approaches was limited due to narrow 
evaluation scopes and poor cross-domain generalizability. Recent 
research thus introduced richer datasets containing diverse visual 
attributes, layouts, and human-usage patterns for user interface 
(UI) and slide design domains [10, 16, 27, 33, 58, 60]. For slides 
specifically, the SpaSe [22] and WiSE [23] datasets provided manu-
ally annotated segmentation masks from presentation slides. Other 
datasets focused on annotating slide elements for tasks, such as 
visual question-answering or retrieval [53]; moreover, multimodal 
slide datasets provided structural element labeling [29, 30, 32]. Peng 
et al.’s DreamStruct [46] provides synthetic structured graphic in-
puts, facilitating deeper visual understanding tasks for presenta-
tions and UIs. Collectively, these datasets contributed foundational 
resources for automated methods capable of general-purpose visual 
understanding and downstream evaluation tasks. Building on these 
prior dataset contributions, we introduce a structured approach 
leveraging LLMs called SlideAudit to automatically identify and 
categorize visual design flaws specifically from raw slide images. 

Recent advances in large language models LLMs have opened 
novel possibilities for design and evaluation tasks, moving beyond 
manually engineered heuristics [28, 49, 58, 66]. Duan et al. [13, 14], 
for instance, leveraged LLMs to produce flexible UI critiques and 
feedback enabled by few-shot and visual prompting techniques. 
Similarly, Wu et al. developed UIClip [59], a multimodal vision-
language approach quantifying UI design quality to enhance LLM-
assisted UI code generation. Extending these successes into broader 
design critiques, researchers have demonstrated LLM effectiveness 
across other complex tasks, such as accessibility assessment [52], 
programming error diagnostics [64], academic reviewing [34], and 
reasoning about agentic action’s outcomes [68]. Such work indi-
cates strong capabilities of LLMs in contextual task comprehension, 
structured reasoning, and actionable critique generation. 

Motivated by these advances, we explore the feasibility of em-
ploying LLMs for automatically evaluating visual design flaws 
specifically on presentation slides, which has not been explored in 
prior literature. Specifically, SlideAudit investigates whether sys-
tematically categorizing design flaw types improves LLM accuracy 
in identifying and remedying flaws in raw slide graphics. 

3 Taxonomy of Slide Design Flaws 
Although some slide design issues such as low contrast or misalign-
ment may be readily apparent, systematically categorizing these 
flaws into clear and mutually exclusive groups remains challenging. 
Existing approaches often document surface-level issues without 
fully addressing underlying perceptual principles. To enable struc-
tured and theoretically grounded assessment of visual slide quality, 
we iteratively conducted a development study informed by litera-
ture, designers, and an expert in visual communication design. 
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Figure 1: The SlideAudit pipeline, covering taxonomy design, slide dataset creation, annotation, and evaluation stages. 

3.1 Review of Prior Taxonomies 
Prior work has established several graphic design guidelines [42, 45] 
and taxonomies for visual design evaluation [13, 36], including 
CrowdCrit [36] for general graphic design and UICrit [13] for user 
interface evaluation. DesignChecker [24] also employed a struc-
tured set of issue types for web design assessment. These frame-
works provide valuable foundations for understanding design qual-
ity across various media. 

However, presentation slides introduce distinct design consid-
erations that are not fully addressed by existing taxonomies. As 
Dourish and Button [12] noted, design practices are locally situ-
ated, and the domain of slide design reflects this: slides operate 
as sequential, time-based narratives that must maintain coherence 
across slides, support temporal unfolding through transitions and 
animations, and balance live presentation needs with asynchronous 
readability. These characteristics raise challenges that differ mean-
ingfully from static graphic design or interactive user interfaces, 
requiring dedicated criteria for structured evaluation. 

Additionally, while prior frameworks such as CrowdCrit offer 
rich insights (e.g., 70 open-ended critique statements grouped into 
approximately 33 themes), these were not intended as a finalized 
or mutually exclusive taxonomy. Instead, they served to scaffold 
human evaluators through flexible guidance. Existing frameworks 
also tend to emphasize breadth and interpretive richness, rather 
than compactness or automation. As such, there remains a need 
for a more systematically defined and domain-specific taxonomy 
that reflects slide-specific concerns while offering a clear structure 
for both human and automated evaluation. Building on these in-
sights, we aim to develop a slide-specific taxonomy that is compact, 
mutually exclusive, and grounded in design theory—capable of ad-
dressing the unique demands of presentation slides and supporting 
both human and automated evaluation. 

3.2 Method 
We conducted a multi-phase study (Figure 1) incorporating expert 
evaluation and critical reflection, as described below. 

3.2.1 Participants. We recruited 16 students from different design 
majors to assess visual design flaws in slides. The participant group 
consisted of 7 senior undergraduate students and 9 students earning 
their Master’s degrees. Their majors included design and visual 
communication, with specific program names omitted to main-
tain anonymity. All participants had extensive experience creating 

and evaluating presentation slides. Pre-study responses indicated 
that participants regularly engage in slide design critique across 
diverse contexts, including academic peer reviews, professional 
workplace settings, collaborative projects, and informal assistance 
to colleagues. Their critique experience ranged from improving vi-
sual hierarchy and readability to developing brand-consistent slide 
templates and refining presentation materials for job interviews 
and client pitches. 

Additionally, we engaged one visual communication design fac-
ulty member with over 30 years of experience in design and visual 
communication. The faculty member contributed to the study, as 
described below, after reviewing student responses. 

3.2.2 Apparatus. The study was guided by a detailed document 
that helped participants explore and refine the design flaw tax-
onomy. The document was structured to progressively introduce 
participants to the categories, starting with broad groupings and 
narrowing down to more specific subcategories. This approach 
helped participants build a conceptual understanding of the tax-
onomy before applying it to real-world examples. Additionally, 
participants were encouraged to critically evaluate the taxonomy, 
suggesting new categories and identifying ambiguities. 

3.2.3 Procedure. The study followed a multi-stage procedure de-
signed to engage participants with the classification system while 
collecting their feedback. The stages were: 

• Progressive Exploration of Categories: Participants were intro-
duced to the design flaw categories through a structured, hi-
erarchical presentation. They began with general categories 
and moved to more specific subcategories. This gradual un-
folding helped participants grasp the overall structure of the 
taxonomy and understand its distinctions. 

• Application to Concrete Examples: After becoming familiar 
with the taxonomy, participants analyzed slides with pre-
annotated flaws. This hands-on phase helped solidify their 
understanding of how to recognize and categorize common 
design issues. 

• Critical Challenge Phase: As participants gained confidence 
with the taxonomy framework, they engaged in adversar-
ial thinking. They were tasked with identifying or creating 
slides containing subtle design issues that might challenge 
automated detection systems. This phase pushed partici-
pants to consider nuanced design problems beyond obvious 
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violations, including “cleverly hidden flaws” and potential 
“false-positive traps.” 

• Reflective Evaluation: Finally, participants reflected on the 
taxonomy, assessing its strengths and weaknesses. They pro-
vided feedback on missing categories, unclear definitions, 
and areas for improvement. 

• Expert Analysis: The faculty expert participated in a synchro-
nous session to review the taxonomy and student feedback. 
In addition to suggesting refinements, the expert guided a 
shift in framing from identifying surface-level design issues 
to incorporating audience-centered and perceptual princi-
ples rooted in design theory. 

3.2.4 Analysis. We conducted a thematic analysis [8] of participant 
responses. Two researchers independently coded the qualitative 
data using an initial codebook derived from preliminary taxon-
omy categories. Inter-rater reliability was quantified using Cohen’s 
kappa, with a result of 𝜅 = 0.66 (indicating substantial agreement 
between coders). Throughout two iterative coding cycles, the re-
searchers discussed and resolved definitional ambiguities and any 
coding disagreements until consensus (full agreement between 
coders) was reached on all codes. The final analysis consolidated 
the agreed-upon codes into higher-level themes aligned with the 
study’s goals, directly informing the refined taxonomy structure. 

3.3 Results 
To initiate the taxonomy development process, the research team 
conducted three internal workshops to brainstorm and document 
common slide design issues. While surface-level flaws such as mis-
aligned text or low contrast are readily recognized, the team aimed 
to formalize these and less obvious problems into a structured 
taxonomy. This effort resulted in an initial draft that included 14 
categories across three high-level groups: Layout and Organization, 
Text Formatting, and Multimedia. 

Over the course of the study, participant feedback led to signifi-
cant improvements in both the content and framing of the taxon-
omy. First, category names and descriptions were refined for clarity, 
with several vague terms replaced by more precise language. For 
example, participants flagged ambiguous terms like “Visual Over-
load or Underuse” and recommended splitting or rephrasing them 
to improve interpretability and granularity. 

Beyond categorical refinement, a more significant shift occurred 
in how flaws were conceptualized. Instead of solely capturing er-
rors introduced by slide creators, the revised taxonomy integrates 
visual perception principles to account for how audiences interpret 
slide content. In particular, our expert’s feedback connected Gestalt 
principles [56] to our taxonomy. For example, “Cluttered Layout” 
relates directly to the Proximity principle, as it disrupts the viewer’s 
ability to perceive which elements belong together. “Misaligned 
Elements” violates the Continuity principle by breaking the natural 
flow that our eyes want to follow. “Inconsistent or Distracting Text 
Styling” contradicts the Similarity principle, where related text ele-
ments should share visual attributes to signal their relationships. 
“Insufficient Contrast” undermines Figure-Ground perception, mak-
ing it difficult to differentiate foreground content from background 
elements. Using a linguistic metaphor [57], the initial taxonomy 

focused on lexical and syntactic correctness, while the revised ver-
sion incorporates semantic and pragmatic dimensions—that is, how 
visual structure contributes to meaning and context. 

The final taxonomy, presented in Figure 2, comprises 27 detailed 
flaw categories grouped under five high-level dimensions: Com-
position & Layout, Typography, Color, Imagery, and Animation & 
Interaction. Compared to the initial version, the refined taxonomy 
incorporates feedback that led to new categories (e.g., Illegible Type-
face Usage, Lack of Visual Hierarchy), clearer boundaries between 
overlapping issues (e.g., Cluttered Layout vs. Excessive Text Den-
sity), and terminology grounded in visual design theory [35, 39, 55]. 
Note that in our evaluation, we picked 19 categories instead of all 
27 (“Eval” column in Figure 2) because the unselected categories 
represent flaws across slides or dynamic ones like animation. They 
are, therefore, out of our current research scope. 

4 Compiling a Dataset of Slide Design Flaws 
To operationalize the developed taxonomy, we collected and an-
notated a dataset of presentation slides based explicitly on our 
design flaw categories. Although existing slide datasets offer useful 
resources for visual analyses, none currently provide structured an-
notations indicating specific visual design problems. Our annotated 
dataset therefore uniquely supports the structured evaluation of 
automated systems designed to detect concrete design flaws. The 
dataset is released and open-sourced for the community.2 

4.1 Data Collection 
To construct the SlideAudit dataset, we curated and augmented 
a corpus of 2400 presentation slides. These slides originate from 
three distinct sources, each selected to represent a different mode 
of slide creation and use: (1) a publicly available government slide 
deck dataset, (2) publicly shared slide decks from Google Slides, 
and (3) slides synthesized by Google Gemini using AI-generated 
prompts designed to elicit various layouts and content structures. 
From each source, we selected 200 slides, resulting in a total of 600 
source slides. 

To expand the dataset and create a controlled setting for evaluat-
ing design flaws, we automatically altered each original slide using 
three distinct alterations. These included changes to (1) within-
object alignments, (2) between-object layouts, and (3) typography 
attributes such as font size and weights. These alterations were 
designed to introduce visual and structural flaws that commonly 
appear in real-world slides but may not be reliably present in unal-
tered slides. 

More specifically, the within-object alignment alterations were 
achieved by targeting the internal structure of individual elements. 
These included changing text alignment (e.g., shifting from left-
aligned to centered or right-aligned), and disrupting the internal 
coherence of elements such as charts, tables, and grids. We applied 
localized alterations such as rotations or slight displacements of 
subcomponents to intentionally break perceived alignment and 
internal order, thereby violating visual expectations of consistency 
and grid conformance. In contrast, between-object layout alterations 
operated at the inter-object level, modifying the spatial relation-
ships between entire elements. These included resizing objects to 

2https://github.com/zhuohaouw/SlideAudit 

https://2https://github.com/zhuohaouw/SlideAudit
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Figure 2: The SlideAudit taxonomy of slide design flaws, organized by category, with explanations, Gestalt principle violations, 
iteration status (New: surfaced after design study; Improved: iterated our design study; Same: from original taxonomy version), 
evaluation inclusion (whether it is included in our evaluation study scope), and bounding box applicability. 
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Figure 3: The SlideAudit annotation interface. Annotators 
navigate slides, identify design flaws using the taxonomy 
categories on the right, and mark as complete when finished. 

introduce disproportionate scaling, repositioning elements to dis-
turb visual flow, and intentionally creating overlaps to simulate 
crowding. The goal was to disrupt the overall layout structure— 
breaking whitespace balance, violating margin conventions, and 
degrading the perceived hierarchy and compositional stability of 
the slide. Lastly, typography alterations involved altering font prop-
erties such as size, weight, and spacing. These changes introduced 
readability and emphasis issues commonly observed in poor slide 
design, such as overly small or inconsistent text, or imbalanced 
visual weight across the slide. We include alteration examples in 
Appendix A. 

The idea and choice of alterations were informed by preliminary 
reviews of prior literature [59] and by informal consultations with 
expert designers. Our goal was to simulate common but impactful 
design issues that may degrade readability, emphasis, or profes-
sional appearance. Importantly, alterations were applied to both 
visually optimal and already suboptimal slides, ensuring the dataset 
contains a range of quality levels. Each of the 600 original slides 
was altered using all three alteration strategies, resulting in 2400 
distinct slides. 

We avoided stochastic or arbitrary perturbations; instead, each 
alteration was implemented through predefined templates or rule-
based scripts that ensured repeatability and internal consistency. 
For example, position changes involved shifting key objects, like 
slide titles, out of alignment, while layout changes disrupted com-
mon grid structures or slide symmetry. These systematic modifi-
cations made it possible to evaluate both human and automated 
identification of slide design flaws. 

4.2 Dataset Annotation 
We annotated all 2400 slides (600 original slides and 1800 altered 
slides) in the SlideAudit dataset using our design flaw taxonomy 
through a structured crowdsourcing process. This section outlines 

our annotation methodology, quality control procedures, and agree-
ment analysis. 

4.2.1 Method. 

Participants. We recruited participants from Prolific, a crowd-
sourcing platform that generally produces much higher quality 
results than other platforms like Amazon’s Mechanical Turk. We 
required participants to (1) have prior experience with design or 
slide creation, and (2) hold at least a bachelor’s degree. To ensure 
annotation quality, we embedded a qualification step—a tutorial, 
practice, and a quiz—before participants could access the main task. 
In total, 145 participants completed the annotation tasks and were 
approved for inclusion. An additional 15 participants completed 
the tasks but were rejected based on quality control, and 122 partic-
ipants began but exited before completion of the tutorial section or 
passing the quiz. The approved participants completed the tasks for 
78.7 minutes on average (𝜎 = 29.0). For the participants who com-
pleted all tasks and gave their consent to report their demographics, 
61.38% have undergraduate degrees, 31.72% have graduate degrees, 
and 6.9% have doctoral degrees. Their ages ranged from 18 to 73 
years (𝜇 = 33.6, 𝜎 = 10.9), with 44.1% females and 55.9% males. 

Apparatus. We developed two custom tools to support the anno-
tation process: 

• Qualification Quiz Interface: This tool served as both a tuto-
rial and a screening mechanism. The survey via Qualtrics 
introduced our taxonomy in a scaffolded manner, presented 
examples of similar and potentially confusing design flaw 
types, and trained users on drawing bounding boxes to locate 
those flaws. Participants were required to pass a multiple-
choice quiz identifying obvious design flaws in 10 sample 
slides. Only those who correctly answered all questions re-
ceived a password granting access to the annotation task. 

• Custom Web Annotation Tool: We developed a web-based 
annotation interface (Figure 3) to collect structured labels 
and localized bounding boxes for flaw categories. Partici-
pants used the tool to: (1) select relevant flaw labels from the 
taxonomy, and (2) optionally draw bounding boxes to spa-
tially locate flaws. Bounding boxes were enabled only for a 
predefined subset of nine taxonomy categories (see Column 
“BBox” in Figure 2), selected based on their clear spatial local-
ization within the slide (e.g., misaligned elements, illegible 
typefaces). We intentionally omitted bounding box annota-
tions for the remaining categories, as these typically involved 
holistic or relational issues (e.g., lack of visual hierarchy) that 
cannot be meaningfully confined to specific spatial regions. 
The annotation interface supported canvas-based interac-
tion, zooming controls, and integrated definitions of each 
flaw category from our taxonomy. 

Procedure. Each approved participant was assigned 50 slides for 
annotation. For each slide, participants reviewed the full-slide image 
and were asked to select any applicable flaw categories; for certain 
categories (e.g., overlapping objects, low contrast text), they also 
drew bounding boxes indicating the affected regions. 

Participants were instructed to annotate only what they could 
confidently identify. We designed the interface to prioritize accuracy 
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Figure 4: Distribution of the number of design flaws per slide 
in the SlideAudit dataset (N=2400) 

over speed and provided instructions discouraging over-labeling. 
The bounding box option was only available for object-level cat-
egories and disabled for global or stylistic ones (e.g., poor visual 
hierarchy). 

As a quality control step, we sampled 10 slides from each partic-
ipant’s submission and used an LLM-based pipeline to flag suspi-
cious entries (e.g., no annotations applied, all categories selected 
indiscriminately, or incoherent bounding boxes). Six participants’ 
submissions failing this check were manually reviewed and rejected. 
Finally, each slide in the dataset received annotations from three 
independent annotators. 

4.2.2 Analysis. We aggregated the categorical annotations using a 
majority vote scheme: if at least two of three annotators selected 
a given flaw label for a slide, we marked that label as genuinely 
present. Labels selected by all three annotators were flagged as 
“strong agreement” cases. 

To assess inter-rater reliability across the three annotators per 
slide, we computed Fleiss’ 𝜅 , which resulted in a score of 0.26, indi-
cating fair agreement. While this score reflects moderate variability, 
it aligns with prior work UICrit (Fleiss’ 𝜅 = 0.29) in design evalua-
tion where subjectivity and interpretation are expected. 

For bounding boxes, we collected annotations for nine categories 
where design flaws could be spatially identified. A bounding box 
was retained if at least two annotators provided overlapping regions 
for the same category. 

4.3 Dataset Summary 
We summarize the statistics of the SlideAudit dataset across all 
2,400 annotated slides. Among them, 28.7% of slides were labeled 
with zero flaws, 35.5% with one flaw, 28.2% with two or three flaws, 
and 7.6% with four or more flaws (Figure 4). The most extreme cases 
included three slides with nine annotated flaws. On average, each 
slide contained 1.37 flaws (𝑆𝐷 = 1.38). 

Across the four high-level categories, Composition & Layout was 
the most frequently occurring flaw type, appearing in 70.5% of all 
slides, followed by Typography (43.0%), Color (13.7%), and Imagery 
(9.6%). The relatively low frequency of Imagery-related flaws may 
be due to the increased cognitive demand required to interpret 
visual content and assess its relevance, leading annotators to focus 
more heavily on spatial and structural issues. 

Figure 5: Frequency of slide design flaws across original slides 
and three alteration types in the SlideAudit dataset. Each flaw 
is represented by four bars indicating its occurrence in the 
original slides and in three slide alterations. Each alteration 
group consists of 600 slides. 

At the category level, Occluded Content (15.5%) and Inappropri-
ate Font Sizing (15.2%) were the most frequently identified flaws, 
while Inconsistent Visual Style appeared least often, occurring in 
only 0.75% of slides. To better understand how different types of 
slide alterations contributed to these design issues, we analyzed the 
distribution of flaw categories across alteration types (Figure 5). As 
expected, typography-related alterations led to substantially higher 
frequencies of flaws such as improper font sizing, inconsistent text 
styling, poor color usage, low contrast, and mismatched color com-
binations. Similarly, layout and alignment alterations were strongly 
associated with increased occurrences of flaws like occluded con-
tent, unbalanced space or margin distribution, content overflow, 
and misaligned elements. 

5 Evaluation 
We conducted three different evaluation studies: (1) Performance 
evaluation on how LLMs identify design flaws, (2) an evaluation 
using an existing design critique framework, and (3) a remediation 
study to show whether our taxonomy helps LLMs fix problematic 
slides better. 

5.1 Performance Evaluation 
To assess how effectively current LLMs can identify design flaws 
in slides, we conducted a systematic evaluation across three model 
providers, four prompting strategies, and two input modalities, 
aiming to benchmark LLM performance under varied prompting 
conditions and input representations. 
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5.1.1 Models and Input Variants. We selected three leading com-
mercial LLMs representative of the current state of the market: 
GPT-4o (gpt-4o-2024-08-06) by OpenAI [43], Claude 3.7 Sonnet 
(claude-3-7-sonnet-latest) by Anthropic [3], and Gemini 2.0 Flash 
by Google [9]. Each model was evaluated with two types of input: 
(1) Raw slide-as-image only, and (2) slide-as-image with a structured 
object description. This representation included a list of visible ob-
jects with their types (e.g., text box, image), spatial coordinates, and 
object-level IDs, supplementing visual information. 

5.1.2 Prompting Strategies. We developed four prompting strate-
gies to test the models under increasingly informative conditions: 

(1) Baseline Prompting (Zero-Shot): This variant involved a direct 
query to the model using only the image (and optionally, 
object structure) with minimal instruction (Appendix B in 
supplemental materials). This prompt did not contain any 
reference to the taxonomy as a control condition to evaluate 
how well models could surface slide design issues without 
any guiding knowledge. 

(2) High-Level Category Prompting: This variant augmented the 
baseline with four top-level taxonomy categories. These were 
presented as areas of focus, prompting the model to con-
sider each when evaluating the slide. This approach tested 
whether lightweight categorical scaffolding could help mod-
els surface a more structured range of issues. 

(3) Full Taxonomy Prompting: We then injected our complete 
taxonomy into the prompt, including all 19 categories with 
their corresponding definitions. The prompt also instructed 
the model to identify all applicable categories from the taxon-
omy and provide a brief explanation for each. This tested the 
model’s ability to map perceived flaws directly to taxonomy 
definitions. 

(4) Taxonomy + Computational Augmentation: The fourth vari-
ant included the full taxonomy along with three additional 
computational signals designed to approximate how visual 
saliency, contrast, and perceptual grouping might inform 
human judgments of slide quality: 
• Visual Saliency Map: Generated using the Unified Model of 
Saliency and Importance (UMSI++) [16, 27], this heatmap 
indicated the predicted visual attention distribution on the 
slide. It provided the model with a potential approximation 
of visual hierarchy. 

• Computational Grouping: We applied a computational model 
of Gestalt principles based on persistent homology [7], 
which outputs a segmentation of perceptual groups. This 
context was included to help the model consider whether 
slide elements adhered to or violated perceptual organiza-
tion norms such as proximity and alignment. 

• Color Metrics: We calculated a slide-level colorfulness score 
[21] and, for each text-containing object, the WCAG 2.1 
contrast ratio [48] between foreground and background 
colors. These metrics, similar to those used in accessibility 
checkers [11], helped ground model judgments of read-
ability and visual noise. 

5.1.3 Evaluation Method. We discuss how we selected a subset 
of slides for evaluation, how we mapped free-text outputs to our 

taxonomy in baseline and category prompting, and how we tested 
the reliability of consistency across different LLM runs. 

Selecting an Evaluation Set: For each slide, we queried each 
model across all prompting variants and both input types, yield-
ing 24 conditions per slide. To manage the evaluation scope while 
maintaining representative coverage, we applied stratified random 
sampling to the full 2400 slides. Slides were grouped into three 
strata based on the number of annotated flaws: slides with (1) 0–1 
issues, (2) 2–3 issues, and (3) 4 or more issues. We randomly sam-
pled 50 slides from the first group (“good” slides), 100 from the 
second (“moderate”), and 50 from the third (“highly flawed”). This 
resulted in a final evaluation set of 200 slides, each tested under all 
24 model–prompt–input combinations. Besides asking LLMs to iden-
tify flaws, we explicitly instructed the models not to over-interpret 
or fabricate issues if a slide appeared well-structured, to mitigate 
over-detection. 

Mapping Free-Text Response to Taxonomy: For the first two 
prompting variants, where the full taxonomy was not provided, 
we obtained model outputs as free-text responses. To standard-
ize comparisons across variants, we employed a separate “result 
comparator” LLM to categorize these free-text-identified flaws ac-
cording to the defined taxonomy. To verify the reliability of this 
automated comparator approach, we manually coded a randomly 
selected subset of 36 free-text responses (1% of all free-text out-
puts), independently mapping each response onto the taxonomy 
categories. This reliability check yielded substantial human–LLM 
agreement (Cohen’s 𝜅 = 0.68). Upon further qualitative analysis, 
we observed that disagreements arose predominantly from ambigu-
ously described design flaws in free-text responses (e.g., stating “an 
image placement is awkward” without specifying the underlying 
flaw) or out-of-scope issues unrelated to design flaws (e.g., grammar 
errors). These types of disagreements minimally impact the accu-
rate identification and categorization of clearly articulated design 
issues. Therefore, we believe that the task of taxonomy-mapping 
from free-text responses is well-defined and that the comparator 
LLM achieves robust performance. However, given the subjective 
nature of this approach, larger-scale validation through human 
annotators may be required in future work. 

Reliability Test: Given the nature of the subjective design eval-
uation task, we also tested the consistency of different LLM runs. 
After we got the 24 conditions’ results, we ran the best-performing 
LLM (GPT-4o) three times on the same set. We performed an anal-
ysis of variance based on mixed logistic regression [18, 51] on 
the three runs and found no detectable difference in predictions, 
𝜒2 (2, 𝑁 =11, 400) = 1.46, 𝑝 = .48. Given the large amount of data an-
alyzed, any meaningful difference in output would likely have been 
detected; therefore, we found the model output to be consistent 
across the various runs. 

After we did a full performance evaluation on the test set of 200 
slides, we picked the best-performing LLM variant (model, input 
configuration, and prompting technique) to evaluate the whole set 
of 2400 slides. 

Ad-hoc Analysis of Taxonomy Coverage: To further assess 
the coverage of our taxonomy, we conducted an ad-hoc analysis 
of the raw outputs generated by the LLMs across all prompting 
conditions. We manually inspected cases where the model flagged 
potential issues but no existing taxonomy label was assigned. This 
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Table 1: F1 scores of three models across four augmentation strategies and two input types. GPT-4o shows the strongest 
performance overall. 

Model Baseline Category Taxonomy Tax. + Comp. Augment. 
Raw Image W/ Obj. Desc. Raw Image W/ Obj. Desc. Raw Image W/ Obj. Desc. Raw Image W/ Obj. Desc. 

claude-3-7 0.492 0.519 0.518 0.514 0.589 0.612 0.568 0.583 
gemini-2.0-flash 0.515 0.531 0.543 0.554 0.587 0.604 0.568 0.597 
gpt-4o 0.476 0.476 0.586 0.584 0.634 0.655 0.616 0.631 

Table 2: Precision, Recall, and F1 scores comparing baseline and taxonomy-based approaches. 

Model Precision Recall F1 
Baseline Taxonomy Δ Baseline Taxonomy Δ Baseline Taxonomy Δ 

Claude 0.533 0.629 +0.096 0.575 0.600 +0.025 0.519 0.612 +0.093 
Gemini 0.540 0.646 +0.106 0.528 0.586 +0.058 0.531 0.604 +0.073 
GPT 0.455 0.668 +0.213 0.500 0.645 +0.145 0.476 0.655 +0.179 

review did not reveal any novel issue types outside our defined cat-
egories, suggesting that the current taxonomy sufficiently captures 
the range of slide design flaws surfaced in our experiments. 

5.1.4 Evaluation Metrics. We report macro-averaged precision, re-
call, and F1 scores across the 19 flaw categories, with a focus on 
F1 score. We treat each category equally. In the meantime, most 
slides contain only a small subset of possible flaws, resulting in a 
highly imbalanced label distribution where the majority of category 
labels are negative (i.e., no flaw present). In this context, F1 score 
serves as a balanced metric, capturing both the model’s ability to 
detect real issues (recall) and to avoid over-identifying problems 
that are not present (precision). We compute the macro F1 score of 
𝐶 = 19 categories using the arithmetic mean value of F1 scores per 
category: 

Macro F1 = 
1 
𝐶 

𝐶∑︁ 

𝑖=1 

𝐹 1𝑖 (1) 

5.1.5 Results. Evaluation Set: Across all 24 model–prompt–input 
configurations, macro F1 scores ranged from 0.476 to 0.655 (Ta-
ble 1). The best-performing variant was GPT-4o using image input 
with structured object description and full taxonomy prompting, 
achieving a macro F1 score of 0.655. 

Performance consistently improved as the level of prompt guid-
ance increased. From the baseline (zero-shot) condition to high-level 
category prompting and then to full taxonomy prompting, all three 
LLMs showed gains in both precision and recall. Table 2 reports 
the deltas between baseline and taxonomy conditions, with GPT-4o 
showing the largest F1 improvement of +0.179, followed by Claude 
(+0.093) and Gemini (+0.073). This trend highlights the value of 
structured, domain-specific prompting when directing LLMs to 
perform slide critique tasks. 

On the other hand, the fourth prompting strategy (full taxonomy 
with computational augmentation) did not lead to further improve-
ments. In some cases, performance slightly decreased compared 
to full taxonomy alone. A possible explanation is that providing 

additional saliency, color, and Gestalt-based signals may have in-
advertently caused LLMs to over-focus on those specific aspects, 
leading to false positives. This aligns with known tendencies of 
LLMs to over-interpret provided context, suggesting the need for 
more controlled or targeted augmentation strategies when combin-
ing symbolic and perceptual inputs. 

Additionally, evaluating the comparator LLM indicated a propen-
sity to frequently include ambiguous or out-of-scope flaws. Al-
though the comparator LLM was implemented specifically to map 
such responses into our defined categories, effectively standardizing 
and enhancing baseline and high-level prompting outputs, perfor-
mance of these variants still fell behind the explicit full-taxonomy 
prompting approach. This reinforces the value of maintaining an 
explicit, clearly defined taxonomy: even with post hoc enhancement 
to categorize ambiguous responses, initial precision in prompting 
directly with the comprehensive taxonomy remains advantageous. 

Full Dataset: When applying the best-performing configuration 
(GPT-4o, image + object description, full taxonomy) to the full 
dataset of 2400 slides, the resulting category-level scores were: 
Macro-averaged Precision = 0.579, Recall = 0.577, and F1 = 0.578. 
The slight decrease compared to the evaluation subset may be 
attributed to differences in slide distribution, as the test set was 
stratified to ensure representation across a range of flaw densities. 

Overall, the results demonstrate that while prompting strategies 
and structured input improve model behavior, the task of iden-
tifying slide design flaws remains highly interpretive. LLMs can 
be made to exhibit reasonable consistency but still fall short of 
matching human-annotated results. 

Bounding Boxes: Besides identifying flaws in slides, it is also 
important to ground these flaws in the image, if possible. However, 
grounding bounding boxes in such design evaluation tasks is ex-
tremely challenging [13]. We further evaluated LLM’s ability to 
localize those issues by generating bounding boxes. Specifically, 
we assessed bounding box quality by computing the intersection-
over-union (IoU) between the predicted box and the ground truth 
box for each correctly identified flaw (true positives only). False 
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Figure 6: Using SlideAudit data in UICrit pipeline. Few-shot examples were generated using CLIP similarity and GPT-4o was 
prompted with design critique examples to provide comments on problematic slides. The result is evaluated using the same 
result comparator AI. 

positive detections were excluded from this analysis, as no ground 
truth bounding boxes existed for comparison. 

Using the best-performing configuration (GPT-4o with image 
+ object description + full taxonomy), we observed an average 
IoU of 0.248 across all valid predictions. In prior related work, a 
similar task reported a best IoU score of 0.222 [13] among different 
prompting methods, which is close to what we evaluated. These 
data highlighted that generating accurate bounding boxes remains 
a notable challenge. Despite improvements in identifying category-
level flaws, grounding those issues spatially on slides requires finer-
grained visual reasoning that LLMs currently struggle to perform. 
This limitation suggests a need for better multimodal grounding 
strategies or complementary vision modules to support explainable 
design evaluation tasks. 

5.2 Evaluating with Prior Design Critique 
Frameworks 

Prior work has provided comparable materials in design critiques. 
CrowdCrit [36] proposed seven design principles as a high-level 
taxonomy for design critiques of graphics. UICrit [13] described 
an LLM-based pipeline for automated UI evaluation. It generated 
natural language critiques for mobile user interfaces using few-
shot learning with curated examples from an expert-annotated 
dataset. To compare SlideAudit with these prior design critique 
works, we conducted two additional evaluations: (1) We evaluated 
two additional LLM variants similar to our evaluations in section 
5.1 to compare SlideAudit’s and CrowdCrit’s taxonomies; (2) we 
adapted UICrit’s automated evaluation pipeline to our setting by 
using SlideAudit’s dataset. 

5.2.1 Method. We introduce the two comparisons with prior work 
separately below: 

Comparing with CrowdCrit’s Taxonomy: We incorporated 
CrowdCrit’s seven high-level principles [36] and a set of 70 design 
critique statements into our performance evaluation pipeline. We 
constructed two additional prompting variants for this purpose. 
In the first variant, we augmented the baseline prompt in section 
5.1 with the seven CrowdCrit principles—Layout, Readability, Sim-
plicity, Emphasis, Balance, Consistency, and Appropriateness—each 
paired with a brief description to guide the model’s interpreta-
tion. In the second variant, we included 70 critique statements 

that we generated to reflect the types of feedback represented in 
CrowdCrit, since the original paper did not release the full set of 
human-authored critiques. In this comparison, we used the best-
performing LLM variant in the above experiment (GPT-4o with 
object descriptions). These generated critiques were formatted as 
natural language input to help the model identify relevant design 
issues. Both prompting conditions followed the same structure and 
evaluation procedures as our SlideAudit category- and taxonomy-
based methods, enabling consistent comparisons across approaches. 

Evaluating with UICrit’s Pipeline: In our adaptation, we 
treated slides as a form of static visual interface and applied the 
UICrit pipeline (Figure 6) directly to our slide dataset. We took the 
same 200 subset and used OpenAI’s CLIP model [47] to compute 
visual similarity scores between each target slide and the mobile 
UI screenshots in the UICrit and RICO datasets [10]. For each slide, 
we selected the eight most visually similar UI examples. These 
critiques were concatenated to form a prompt, which was then 
similarly provided to the best-performing LLM (GPT-4o with object 
descriptions) to generate a design critique for the target slide. This 
process mirrors UICrit’s few-shot and visual-prompting approach. 
Unlike our taxonomy-guided evaluations, this comparison was lim-
ited to textual critique generation. We did not include bounding 
box evaluations. 

To enable standardized evaluation, we applied the same result 
comparator AI used in our aforementioned study to match the gen-
erated critiques with categories in our slide flaw taxonomy. Doing 
so allowed us to measure how well the adapted UICrit pipeline 
aligned with our annotation framework and to evaluate whether 
knowledge learned from UI critique tasks could generalize to the 
domain of slide design evaluation. 

5.2.2 Results. We report on the evaluation results of each compar-
ison below (Table 3): 

CrowdCrit Taxonomy Evaluation: When prompted with the 
seven high-level principles, the best-performing LLM achieved a 
macro F1 score of 0.577—slightly below the performance of our 
taxonomy-guided prompting (F1 = 0.586). When prompted with the 
70 generated critique statements simulating CrowdCrit’s feedback 
style, the performance dropped substantially, with a macro F1 score 
of 0.331 (Table 3). 
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Table 3: Macro F1 Scores for Evaluation with Prior Design 
Critique Frameworks 

Evaluation Variant Macro F1 

CrowdCrit (7 Principles) 0.577 
CrowdCrit (Generated 70 Critiques) 0.331 
UICrit Pipeline 0.477 

This result suggests that while CrowdCrit’s high-level principles 
can guide LLMs to surface relevant slide issues, their broad and 
human-centered framing may be less effective than our targeted, 
category-driven taxonomy for automated evaluation. The lower 
performance of the critique-statement variant likely stems from 
the increased prompt length and semantic variability, which may 
have led to over-generation of issues and higher false positive rates. 
Together, these findings underscore the value of SlideAudit’s com-
pact, machine-actionable taxonomy for benchmarking automated 
slide critique systems. 

UICrit Pipeline Evaluation: The pipeline adapting the UICrit 
dataset and framework achieved a macro F1 score of 0.477 (Table 3). 
Compared to the performance benchmarks in our earlier evaluation 
(Section 5.1), these F1 score result is comparable to the baseline 
(zero-shot) prompting levels, but fall notably short of the best-
performing taxonomy-guided configurations. 

This outcome suggests that while LLM-based design critique 
methods developed for user interface evaluation can generate plau-
sible feedback on slides, their ability to identify slide-specific flaws 
remains limited when applied out-of-domain. The UICrit frame-
work was trained and tuned for mobile UI layouts and heuristics, 
which may not directly translate to the spatial and communicative 
conventions of presentation slides. 

While this experiment offers preliminary evidence of low cross-
media transferability, a deeper analysis of error types, critique 
phrasing, and semantic mismatches is needed to fully understand 
the gap. We encourage future investigations in this domain. 

5.3 Slide Remediation Study 
Now that we have evaluated whether LLMs can identify design 
flaws from presentation slides, we want to further investigate how 
effectively LLMs can generate actionable slide improvement strate-
gies. Particularly, we want to evaluate whether our taxonomy mean-
ingfully enhances this ability. We conducted a slide remediation 
study to answer this. 

5.3.1 Method. We randomly sampled 50 slides from the previously 
described 200-slide evaluation set. For each slide, we selected two 
sets of flaw outputs generated by GPT-4o: (1) baseline zero-shot 
prompting and (2) full taxonomy-informed prompting. These two 
conditions represent opposite ends of the diagnostic quality spec-
trum. 

Each identified flaw set was subsequently provided as input to 
GPT-4o to produce a step-by-step improvement plan (three exam-
ples are provided in Appendix C). To validate the appropriateness 
and coherence of the GPT-generated proposals, we manually as-
sessed a randomly selected subset (20 plans from 10 slides, covering 

both prompting conditions). All manually inspected plans were 
deemed clearly understandable and directly aligned with the corre-
sponding diagnostic inputs. 

We then recruited three participants who did not have prior 
knowledge in the taxonomy that we developed. They were only 
told to evaluate two comparable “fix plans” on a series of prob-
lematic slides with given guidelines. All three participants were 
Master’s degree students from HCI and Design programs in our 
institution with extensive slide design experiences. To mitigate 
possible ordering bias in participant evaluations, we used a counter-
balanced within-subjects design. Both improvement plans for each 
slide were presented side by side in random order, accompanied by 
the original slide. Three participants independently reviewed all 
100 improvement plan variants (50 slides × 2 prompting conditions). 
Evaluation tasks required approximately two hours per participant. 

Participants assessed each plan step on two dimensions: 
• Flaw Accuracy: Validity of the identified flaw motivating 
this step. 
– Accurate Flaw 
– Partially Accurate Flaw 
– Incorrect or Over-detection (False Positive) 
– Non-critical Flaw 
– Undetected Flaw (False Negative) 

• Plan Executability: Appropriateness and practicality of the 
suggested solution. 
– Implementable Solution 
– Partially Implementable Solution 
– Generic or Ineffective Solution 
– Unnecessary Solution 
– Undetected Absent Solution 

Participants also provided two holistic evaluations per slide: 
• Improvement: Whether each individual plan significantly 
improved the original slide (binary rating: true or false for 
each of the two plans). 

• Preference: Overall preferred plan, explicitly conditioned 
on improvement ratings: 
– N/A: Neither plan improved the slide (improvement = false 
for both). 

– Plan 1 or Plan 2: Exactly one plan improved the slide; 
automatically preferred. 

– Plan 1, Plan 2, or Equal: Both plans improved the slide, 
preference explicitly rated by the participant. 

Responses were aggregated using majority voting across partici-
pants to determine the final step-level labels and holistic judgments. 
Agreement among raters at step-level analysis indicated moderate 
consistency, with Fleiss’ 𝜅 = 0.57 for flaw accuracy and 𝜅 = 0.52 for 
plan executability, with an overall combined step-level agreement 
of 𝜅 = 0.56. For holistic preference ratings, participant agreement 
was substantial, with a Fleiss’ Kappa of 𝜅 = 0.61. 

5.3.2 Results. In total, 82.0% (41 out of 50) of slides were judged as 
significantly improved by at least one of the two generated improve-
ment plans. Note that even when slides’ design flaws were not fully 
identified by LLMs, the identified parts and generated plans could 
still give participants a positive feeling that slides can be improved 
with the plans. Among the improved slides, participants preferred 
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Figure 7: Comparison of fix plan quality between base-
line and taxonomy-guided approaches. Taxonomy guidance 
yields more accurate flaw identifications and implementable 
solutions, with fewer false positives and unnecessary fixes. 

the taxonomy-informed plan in 87.8% (36 out of 41) of cases, while 
9.8% (4 out of 41) exhibited no preference between the two ap-
proaches. Additionally, a special case occurred for one slide initially 
containing no substantial flaws, where the taxonomy-informed plan 
correctly produced no remediation steps and participants explicitly 
preferred this accurate response. These findings support the prac-
tical utility of taxonomy-informed prompting in guiding effective 
and contextually appropriate slide-improvement strategies. 

As shown in Figure 7, the taxonomy-informed prompting im-
proved both flaw identification accuracy and the executability of 
suggested solutions. Under the taxonomy-informed condition, the 
proportion of accurately identified flaws increased from 28.9% (base-
line) to 59.0%. Conversely, false-positive identification (incorrect 
or over-detection) dropped markedly from 34.6% to 9.6%, and non-
critical flaw detections decreased from 13.8% to 7.2%. Together, 
these changes demonstrate improvements in diagnostic precision. 

For proposed fixes, the percentage of implementable solutions 
increased substantially from 27.7% (baseline) to 63.9%. Critically, 
taxonomy-informed prompting reduced unnecessary solutions from 
45.3% to 16.9%, and generic or ineffective solution proposals de-
creased markedly from 7.5% to 2.4%. As unnecessary or generic rec-
ommendations can significantly degrade user experiences, these re-
ductions reflect meaningful improvements toward context-specific 
and practical remediation guidance. 

The improved diagnostic precision and higher executability of so-
lutions have important implications in real-world assistive technol-
ogy contexts, where presenting unnecessary or inaccurate sugges-
tions may overload users and diminish trust. Taxonomy-informed 
plans proved more concise, actionable, and closely aligned with 
actual slide flaws, highlighting the practical value of integrating 
domain-specific guidance into LLM prompting strategies. 

6 Discussion 
We discuss the broader implications, dataset utility, limitations, and 
future work of SlideAudit. 

6.1 Taxonomy Implications and Dataset Utility 
SlideAudit is grounded in a rigorously developed taxonomy that 
reframes design flaws not simply as visual errors, but as perceptual 
and communicative breakdowns, shaping what viewers notice, how 
they interpret information, and how effectively a slide conveys 
its message. We see this taxonomy as a foundation for assistive 
systems that support, rather than override, human creativity. This 
approach may be particularly valuable for blind and visually im-
paired users, who have the same creative goals and could benefit 
from automated design evaluation and improvement when systems 
are designed with their needs in mind. Our aim is not to use AI 
to enforce rigid aesthetic standards, but to provide meaningful, 
context-sensitive feedback that helps users express their ideas more 
clearly and effectively. 

In parallel, SlideAudit offers a unique foundation for computa-
tional understanding of slide design. By combining a principled 
taxonomy, synthetically altered data, and rigorously executed an-
notations, it enables both benchmarking and training of models for 
design critique. Our evaluations highlight its value in testing LLM 
capabilities, adapting related frameworks, and exploring AI-assisted 
remediation. As the first dataset of its kind focused on visual clar-
ity and communication effectiveness, SlideAudit supports broader 
research in accessibility, slide automation, and AI-driven visual 
feedback. It also has a potentially broader application to sighted 
slide creators as well who have the needs to examine slide aesthetics 
before presentation. 

6.2 Limitations and Future Work 
Despite its contributions, our work has limitations. First, slide de-
sign evaluation remains inherently subjective, as design judgments 
often depend on context, intended audiences, and specific presen-
tation goals. Although our taxonomy demonstrated effectiveness, 
evaluations indicated the need for novel LLM interaction paradigms 
designed specifically to subjective tasks like design and aesthetic 
assessments. For example, future LLM interactions could more ef-
fectively align with individual users’ preferences by learning from 
limited examples or visual queries provided by the user. Conse-
quently, our taxonomy offers a valuable foundation for grounding 
user preferences, enabling the future development of customized 
LLMs that provide personalized design evaluation and guidance. 
Given the same reason for the annotation task’s subjectivity, an-
notating fine-grained design flaws required carefully trained an-
notators, making large-scale annotation resource-intensive. As dis-
cussed earlier, our dataset was built with strict quality control to 
ensure consistency, but future scaling may require more efficient 
semi-automated workflows. Additionally, while we drew slides 
from diverse sources—including real-world presentations and AI-
generated content—potential biases in style, structure, or quality 
may still exist. These limitations offer opportunities for expanding 
source diversity and refining annotation protocols in future work. 

Second, our evaluations did not isolate how specific compu-
tational augmentations affect detection performance across cate-
gories. Also, our remediation study was small in scale and relied 
upon participant judgment rather than real plan execution. Ad-
ditionally, our taxonomy and annotations were limited to flaws 
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observable within individual static slides. We did not address inter-
active elements, slide-to-slide transitions, or consistency across a 
full deck—dimensions that are crucial in real-world authoring but 
outside the scope of this work. 

Third, our evaluation involving UICrit was preliminary; we em-
ployed its evaluation pipeline primarily for comparative accuracy 
assessments without a deeper, qualitative exploration. Future work 
can be conducted to further compare UI and slide design issue 
detection. For example, we can apply the same few-shot retrieval 
methods in our own SlideAudit dataset in contrast to using UICrit’s 
dataset to see how the results would change. We can also compare 
SlideAudit with DesignChecker [24] on its usefulness of locating 
and fixing web design issues. 

Other future directions include training specialized models on 
SlideAudit to improve performance over current LLM baselines, 
which remain limited (𝐹 1 < 0.7). Classification of design issues is 
the first and critical step for automated evaluation. And beyond 
classification, models could also be developed for localized feedback 
and automatic remediation planning. Most importantly, we aim to 
integrate this work and use other open-ended critique frameworks 
into assistive authoring systems for blind and visually impaired 
users who need to create presentation-ready slides independently. 
Such tools, when integrated with existing assistive technologies 
[6, 24, 25, 65, 67, 69, 70], could help users independently identify 
and resolve visual design issues, enabling the creation of slides that 
are not only functionally complete but also visually effective and 
professionally presentable. 

7 Conclusion 
As generative AI continues to influence digital content creation, the 
need for robust, automated tools that support high-quality visual 
design has become increasingly important. Effective visual commu-
nication through presentation slides remains a nuanced challenge, 
requiring attention to both aesthetic and functional aspects of de-
sign. In this work, we introduced SlideAudit, the first structured 
dataset and taxonomy explicitly created to support automated eval-
uation of design flaws in presentation slides. By systematically 
modeling common design issues and establishing a principled an-
notation and benchmarking pipeline, this work lays the foundation 
for future research in AI-driven design critique and remediation. 
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A Alteration Examples 
We provide three examples (Figure 8, 9, 10) from the dataset to 
showcase different alterations. 

B Prompts 
We provide different prompts used in SlideAudit evaluations. Each 
complete prompt used in our evaluation is a combination of the 
following prompt parts. 

B.1 Input Formats 

You will be provided with an image of a 
presentation slide with bounding boxes 
drawn around various elements. 

Analyze this slide for design flaws based on 
the guidance provided. 

If you identify a design flaw , specify its 
issue (flaw) name , explanation , and the 
location using normalized coordinates 
(0-1 scale where 0,0 is top -left and 1,1 
is bottom -right). 

You will be provided with two pieces of 
information: 

1. An image of a presentation slide with 
bounding boxes drawn around elements and 
labeled with IDs 

2. HTML representation of the slide 's 
objects with their properties and 
corresponding IDs 

When identifying issues , specify its issue 
name , explanation , and the location 
using normalized coordinates (0-1 scale 
where 0,0 is top -left and 1,1 is bottom -

right). 

B.2 Evaluation Prompts 

Please examine the provided slide and 
identify any design flaws or 
deficiencies that negatively impact its 
effectiveness. 

Please examine the provided slide and 
identify any design flaws or 
deficiencies that negatively impact its 
effectiveness. 

Consider all aspects of the slide design 
including layout , typography , color , 
visual elements , etc. 

IMPORTANT: 
- Never identify font -related issues (size , 

family , weight , color , etc.) based on 
missing properties in the HTML 
representation. 

- Always verify these properties visually 
from the image. The HTML representation 
is incomplete and should not be used as 
the source of truth for visual 
properties. 

- Do not force -find issues when there are 
none. If a slide is well -designed and 
has no issues , return an empty array. 

You MUST provide your response following the 
output format. Remember , if you cannot 

find any issues , return an empty array. 

Please examine the provided slide and 
determine if the following specific 
design issues or flaws are present. 

Remember to verify all visual properties 
from the image , not from the HTML 
representation. 

IMPORTANT: 
- For any font -related properties (size , 

family , weight , color , etc.), verify 
them visually from the image. 

- Do not identify issues just because of 
missing properties in the HTML 
representation. 

- Do not overthink and force -find issues 
when there are none. If this specific 
issue is not present , set issue_present 
to false. We do not want you to over -

identify issues causing false positives. 
- If you cannot find any issues , return an 

empty array. 

Potential Categories: 
COMPOSITION & LAYOUT RELATED ISSUES: 
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Figure 8: SlideAudit dataset alteration example 1. 

Figure 9: SlideAudit dataset alteration example 2. 

- "Poor Visual Hierarchy" - Elements lack 
clear importance levels , making it 
hard to identify the main point. This 
is not common , because for humans , it 
is easy to identify the main point. Do 
not be strict on this one. 

- "Cluttered Layout" - Too many elements 
crowded together , overwhelming the 
viewer. Distinguish with Excessive 
Text Volume , which is about too much 
text in text boxes. This is for 
general layout. 
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Figure 10: SlideAudit dataset alteration example 3. 

- "Unbalanced Space Distribution or 
Gapping" - Uneven use of space , with 
crowded areas alongside empty ones. 
This is less common , choose with 
caution. Because some space 
distribution is intentional. 

- "Object Alignment Issues" - Elements not 
properly aligned with each other. 

- "Content Overflow/Cut -off" - Text or 
content extends beyond visible 
boundaries. This is a common issue. 
This is when an object is out of the 
slide boundary , or a text box is cut -

off too early into lines that are not 
supposed to be cut -off. 

- "Occluded Content" - This is very common 
. Choose when some element is blocking 
the view of other elements , even it's 
just a small part of the element. 

TYPOGRAPHY ISSUES: 
- "Poor Text Hierarchy" - No clear 

distinction between headings , 
subheadings , and body text. This is 
not common , because for humans , it is 
easy to identify the main point. Do 
not be strict on this one. 

- "Illegible Typeface Selection or Usage" 
- Font choice is too decorative or 
complex to read easily. 

- "Improper Font Sizing" - Text size is 
small somewhere or large somewhere 
else. Do not choose if the overall 
text size is small or large. Choose 
when there is inconsistent text size 
across the slide. 

- "Excessive Text Volume" - Too much text 
instead of concise points. Distinguish 
with Cluttered Layout. This is less 

common , choose with caution. Because 
for humans , they are reading the text 
in their laptop screen. 

- "Improper Text Styling" - Inconsistent 
or random use of bold , italics , or 
other formatting. Again , this is only 
for inconsistent text styling over the 
slide. If they are consistent overall 

, even if they are ugly , do not choose 
this. 

- "Improper Line/Character Spacing" - Text 
spacing is too tight or too loose. 

Distinguish with excessive text volume 
. A text box can have few text lines 
but still have proper spacing. 

COLOR ISSUES: 
- "Insufficient Color Contrast for 

Readability" - Text and background 
colors too similar. Not very common. 
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- "Excessive or Inconsistent Color Usage" 
- Too many colors used without clear 
purpose. 

- "Inappropriate or Mismatched Color 
Combinations" - Colors clash or create 
visual strain. 

IMAGERY & VISUALIZATION ISSUES: 
- "Irrelevant Visual Content" - Images don 

't support or relate to the content 
message. Choose with caution because 
people annotated it usually do not pay 
attention to visual content. 

- "Poor Image Quality/Editing" - Images 
are blurry , pixelated , or poorly 
edited. 

- "Improper Image Sizing" - Images sizes 
are either too big or too small. 

- "Inconsistent Visual Style Usage" - ( 
This is extremely rare , do not choose 
this unless you are 100 percent sure) 
Mixing different visual styles across 
elements. 

{... full_taxonomy_prompting} 

Additionally , I will provide you with some 
computational data of this slide for 
more context. 

Remember , they are just references , and 
most times , these contexts are not 
relevant to the issues you are looking 
for. 

I'll provide you with 
(1) a gaze map visualization picture that 

shows where viewers are most likely to 
focus their attention when viewing 

this slide , 
(2) two lists of proximity -based groupings 

and similarity -based groupings of the 
slide 's elements , and 

(3) some color metrics for this slide ( 
colorfulness , text element contrast 
ratio). 

Here is the grouping analysis data. The 
two lists are groups of close elements 
' IDs. Each group must have at least 2 
elements. An empty list means no 

groupings are found , which is normal: 

{gaze_data} 

Here is the color data (remember , they are 
not useful for finding issues , just 

for your reference): 
{color_data} 

B.3 Result Comparison 

You are tasked with analyzing how AI-

generated image categories relate to a 
set of 19 predefined categories for 
presentation design issues. 

INPUT: 
1. PREDEFINED CATEGORIES: 

- There are 19 standard categories for 
presentation analysis: 

{Same categories from full taxonomy 
prompting} 

2. AI-GENERATED RESULTS: 
- These are issues independently 

identified by an AI system: 
{ai_generated_results} 

INSTRUCTIONS: 
1. For each of the 19 predefined categories 

above , determine: 
- Whether any AI-identified issues fit 

this predefined category 
- Which specific AI-identified issues best 

match this predefined category 

2. For each AI-identified issue , find the 
BEST matching predefined category. 

If the AI-identified issue does not fit 
any predefined category , IGNORE it. 

3. Create a comprehensive analysis showing 
how each predefined category relates to 
the AI-identified issues. 

IMPORTANT NOTES: 
- If an AI-generated category could 

potentially fit multiple predefined 
categories , assign it to the BEST 
matching one. 

- If an AI-generated category does not fit 
any predefined category , ignore it. 
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- The "present" field should be true ONLY if 
there is at least one AI-generated 

category that fits this predefined 
category. 

- Ensure your mappings are logical and 
consistent. 

C Slide Remediation Examples 
We also include examples from the slide remediation study, in-
cluding generated fix plans in detailed text for a same slide using 
different LLM variants. 

C.1 Example 1 
The original slide is shown in Figure 11(1). 

Baseline fix plan: 

[ 
{ 

"category ": "Text Overlap", 
"issue": "The main question text 

overlaps with the subsequent list 
of questions , making it difficult 
to read both sections clearly.", 

"fix_plan ": "Separate the main 
question and the list of questions 
by increasing the vertical space 

between them. Adjust the positions 
and ensure that each section has 

sufficient spacing.", 
"expected_improvements ": "Improved 

readability and clarity by 
preventing text overlap ." 

}, 
{ 

"category ": "Distracting Header 
Background", 

"issue": "The background color of the 
header is bright , which might 
distract readers from the main 
content.", 

"fix_plan ": "Change the background 
color of the header to a neutral 
or softer tone that contrasts less 
with the text.", 

"expected_improvements ": "Reduced 
distraction and better focus on 
the main content , enhancing 
overall readability ." 

} 
] 

Taxonomy -based LLM fix plan: 

[ 
{ 

"category ": "Cluttered Layout", 
"issue": "The main title overlaps with 

the body text , making the layout 
appear crowded and difficult to 
read.", 

"problem_description ": "When text 
elements overlap , it creates a 
visually overwhelming and 
confusing experience for the 
viewer. It becomes difficult to 
discern text hierarchy , making it 
harder to understand the main and 
supporting points.", 

"fix_plan ": "1. Increase the spacing 
between the main title and body 
text. \n2. Adjust the size of the 
main title font if necessary to 
create more space. \n3. Consider 
repositioning the main title to 
the top left corner and reducing 
its font size slightly .\n4. Ensure 
there is enough padding around 

the text elements to avoid overlap 
.", 

"expected_improvements ": "The slide 
will appear cleaner and more 
organized. Text hierarchy will be 
clearer , and viewers will be able 
to distinguish between the main 
title and supporting content , 
improving readability ." 

}, 
{ 

"issue": "The body text is partially 
hid

"category ": "Occluded Content", 

den behind the main title , 
making it difficult to read.", 

"problem_description ": "When body text 
is occluded , it disrupts the flow 
of information , leading to a poor 
understanding of the content. 

Important details may be missed , 
reducing the effectiveness of the 
presentation .", 
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Figure 11: Three example slides from the remediation study. 

"fix_plan ": "1. Move the body text 
below the main title to prevent 
overlap .\n2. Ensure the body text 
has a clear , distinct area on the 
slide by allocating sufficient 
width and height .\n3. If necessary 
, reduce the font size of the body 
text or break it into bullet 

points to enhance clarity.", 
"expected_improvements ": "The content 

will become more accessible and 
easier to read , ensuring the 
audience can fully engage with and 
understand all the information 

presented ." 
} 

] 

C.2 Example 2 
The original slide is shown in Figure 11(2). 

Baseline fix plan: 

[ 
{ 

"category ": "Text Overlapping with 
Image", 

"issue": "The text \" Virtual Reality 
Gaming \" overlaps with the image , 
making it difficult to read and 
diminishing the visual appeal of 
the slide.", 

"fix_plan ": "Move the text box 
containing 'Virtual Reality Gaming 
' to the right , where it doesn 't 
overlap with the image. Adjust the 
font size if necessary to 

maintain balance and readability 
.", 

"expected_improvements ": "This will 
increase readability and enhance 
the overall aesthetic of the slide 
by ensuring all elements are 

clearly visible and properly 
aligned ." 

}, 
{ 

"category ": "Text Alignment and Size", 
"issue": "The main text box containing 

bullet points starts too far to 
the right , leaving excessive space 
between the image and text.", 

"fix_plan ": "Shift the main text box 
to the left , closer to the image. 
Ensure there is consistent padding 
between the text and the image to 
achieve a balanced look. Adjust 

the text box width to ensure all 
content fits properly.", 

"expected_improvements ": "The slide 
will appear more balanced , with 
improved flow between the image 
and text. This will make the 
content more engaging and easier 
to follow ." 

} 
] 

Taxonomy -based LLM fix plan: 
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[ 
{ 

"category ": "Content Overflow/Cut -off 
", 

"issue": "The text ' Virtual Reality 
Gaming ' is partially cut off by 
the left edge of the slide.", 

"problem_description ": "When text is 
cut off , it makes the content 
difficult to read and 
unprofessional , negatively 
impacting the slide 's 
effectiveness and readability .", 

"fix_plan ": [ 
"1. Select the text box containing ' 

Virtual Reality Gaming '.", 
"2. Move the text box to the right 

by adjusting the x-position from 
0.0 to a small positive value ( 

e.g., 0.05) to ensure it is 
fully visible.", 

"3. Ensure the text box width or 
font size is adjusted if 
necessary to maintain 
readability ." 

], 
"expected_improvements ": "The text 

will be fully visible , enhancing 
readability and professionalism ." 

}, 
{ 

"category ": "Occluded Content", 
"issue": "The image is overlapping and 

partially occludes the text ' 
Virtual Reality Gaming '.", 

"problem_description ": "Overlapping 
elements can make text unreadable 
and cluttered , which detracts from 
the aesthetic appeal and clarity 

of the slide.", 
"fix_plan ": [ 

"1. Select the image element.", 
"2. Adjust the x-position of the 

image from 0.025 to a larger 
value (e.g., 0.1) to move it 
slightly to the right.", 

"3. Re-check the position of the 
text box to ensure no overlap 
occurs. If overlap still happens 
, adjust either the image or 
text box positions further.", 

"4. Optionally , resize the image if 
space is limited , ensuring it 
does not compromise the overall 
layout ." 

], 
"expected_improvements ": "The text 

will no longer be occluded by the 
image , improving readability and 
the slide 's overall visual balance 
." 

} 
] 

C.3 Example 3 
The original slide is shown in Figure 11(3). 

Baseline fix plan: 

[ 
{ 

"category ": "Spelling Errors", 
"issue": "The text contains 

misspellings such as 'Prototfiping 
' instead of 'Prototyping ' and ' 
fiour ' instead of 'your '.", 

"fix_plan ": "Review and correct all 
text for spelling errors. Use a 
spell checker or proofreading tool 
to ensure accuracy.", 

"expected_improvements ": "Improved 
readability and professionalism of 
the slide , resulting in clearer 

communication of key points ." 
}, 
{ 

"category ": "Empty Text Boxes", 
"issue": "Some text boxes are empty , 

indicating possible missing 
content or placeholders .", 

"fix_plan ": "Identify the purpose of 
each text box and fill them with 
appropriate content or remove 
those that are not needed.", 

"expected_improvements ": "A complete 
and polished slide presentation 
with no unintentional gaps in 
content ." 

}, 
{ 

"category ": "Floating Dots or Small 
Elements", 
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"issue": "There are very small image 
elements resembling dots that may 
distract viewers.", 

"fix_plan ": "Remove or consolidate 
these small elements to maintain 
focus on essential content.", 

"expected_improvements ": "A cleaner 
and more aesthetically pleasing 
slide without unnecessary 
distractions ." 

}, 
{ 

"category ": "Misalignment of Text 
Blocks", 

"issue": "Text blocks are not well 
aligned , impacting readability and 
aesthetics .", 

"fix_plan ": "Align all text boxes 
uniformly. Use alignment guides or 
a grid to ensure consistent 

spacing.", 
"expected_improvements ": "Enhanced 

visual balance and easier 
navigation through the slide 's 
content ." 

} 
] 

Taxonomy -based LLM fix plan: 

[ 
{ 

"category ": "Object Alignment Issues", 
"issue": "Text headings are not 

properly aligned vertically with 
their associated text boxes.", 

"problem_description ": "Misaligned 
headings create a disorganized 
appearance and make it difficult 
for viewers to navigate and 
comprehend the content smoothly.", 

"fix_plan ": [ 
"Open the slide in a presentation 

editing tool.", 
"Select the text heading 'WHAT IT IS 

'.", 
"Align the heading centrally at the 

top of the associated text box 
.", 

"Repeat for 'IMPORTANCES ' and 'TYPES 
', ensuring vertical alignment 
with their corresponding text 
boxes.", 

"Use consistent spacing and 
alignment guides if available in 
the software ." 

], 
"expected_improvements ": "Aligning 

headings will create a more 
coherent and professional 
appearance , improving readability 
and making it easier for the 
audience to follow the information 
." 

}, 
{ 

"category ": "Content Overflow/Cut -off 
", 

"issue": "Text content 'IMPORTANCES ' 
is cut off within the text box.", 

"problem_description ": "Cut -off text 
can cause confusion and prevent 
the message from being fully 
conveyed , reducing the 
effectiveness of the presentation 
.", 

"fix_plan ": [ 
"Select the text box containing ' 

IMPORTANCES '.", 
"Resize the text box to fit all the 

content; increase the height if 
necessary.", 

"Alternatively , adjust the font size 
or line spacing to ensure all 

content is visible without 
overcrowding the text box." 

], 
"expected_improvements ": "Ensuring all 

text is visible will enhance 
understanding and maintain 
audience engagement by allowing 
the full message to be presented 
clearly ." 

}, 
{ 

"category ": "Occluded Content", 
"issue": "Decorative elements overlap 

with the text heading ' 
Understanding Prototyping '.", 
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"problem_description ": "Overlapping 
elements can distract the audience 
and make the heading difficult to 
read , detracting from the overall 
visual impact.", 

"fix_plan ": [ 
"Select the decorative elements ( 

arrows).", 
"Move or resize these elements so 

they do not interfere with the 
text.", 

"Ensure sufficient space is left 
around the heading for clear 
visibility .", 

"Consider changing the layering of 
elements if necessary , sending 
decorative elements to the back 
." 

], 
"expected_improvements ": "Removing the 

overlap will improve the slide 's 
aesthetic and readability , 
ensuring the main heading is clear 
and attention -grabbing ." 

} 
] 
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