
Beyond the Input Stream: Making Text Entry Evaluations
More Flexible with Transcription Sequences
Mingrui “Ray” Zhang
The Information School

DUB Group
University of Washington
Seattle, WA, USA 98195

mingrui@uw.edu

Jacob O. Wobbrock
The Information School

DUB Group
University of Washington
Seattle, WA, USA 98195

wobbrock@uw.edu

ABSTRACT
Method-independent text entry evaluation tools are often
used to conduct text entry experiments and compute
performance metrics, like words per minute and error rates.
The input stream paradigm of Soukoreff & MacKenzie
(2001, 2003) still remains prevalent, which presents a string
for transcription and uses a strictly serial character
representation for encoding the text entry process. Although
an advance over prior paradigms, the input stream paradigm
is unable to support many modern text entry features. To
address these limitations, we present transcription
sequences: for each new input, a snapshot of the entire
transcribed string unto that point is captured. By comparing
adjacent strings within a transcription sequence, we can
compute all prior metrics, reduce artificial constraints on text
entry evaluations, and introduce new metrics. We conducted
a study with 18 participants who typed 1620 phrases using a
laptop keyboard, on-screen keyboard, and smartphone
keyboard using features such as auto-correction, word
prediction, and copy/paste. We also evaluated non-keyboard
methods Dasher, gesture typing, and T9. Our results show
that modern text entry methods and features can be
accommodated, prior metrics can be correctly computed,
and new metrics can reveal insights. We validated our
algorithms using ground truth based on cursor positioning,
confirming 100% accuracy. We also provide a new tool,
TextTest++, to facilitate web-based evaluations.
CCS Concepts
• Human-centered computing~Text input
• Human-centered computing~Laboratory experiments
• Human-centered computing~Empirical studies in HCI

Keywords
Text entry evaluation; text entry metrics; words per minute;
error rates; presented string; transcribed string; input stream;
transcription sequence.

INTRODUCTION
Text entry remains fundamental on most computing
platforms, from desktops to tablets to game consoles to
smartphones. Increasingly, the need for text entry extends to
new platforms, such as interactive tables [4], smartwatches
[28], and augmented reality [29]. As a result, researchers,
developers, and product innovators still regularly create new
text entry methods.

When seeking to quantify the performance of their new
methods, creators can benefit from pre-existing testbeds,
rather than having to build their own evaluation tools. Such
pre-existing testbeds must be “method independent,”
working without any feature-specific knowledge of the text
entry methods they evaluate. Therefore, such tools receive
text and compute metrics (e.g., words per minute [12],
various error rates [22], and more) without knowing the
mechanisms by which that text is produced. (We refer to this
as the “black box” consideration, and discuss it below).

To compute method-independent metrics, evaluation
testbeds must artificially constrain the text entry evaluation
process. Measuring text entry error rates presents a particular
challenge, and is a major reason for artificial constraints,
because we must infer a user’s intention in order to detect
deviations from it [3,13,27]. The prevalent evaluation
paradigm addressing this need is that of Soukoreff &
MacKenzie [21,22], which, in each text entry trial, presents
a string that a participant transcribes (Figure 1). The
accompanying model encoding a participant’s text entry
process is called the input stream (IS), which is a strictly
sequential record of each character entry or BACKSPACE.
Unfortunately, the IS model cannot accommodate many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
UIST '19, October 20–23, 2019, New Orleans, LA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6816-2/19/10…$15.00
https://doi.org/10.1145/3332165.3347922

Figure 1. A typical text entry transcription task, shown in the
Windows-based TextTest evaluation tool [27]. A presented
string is displayed above a textbox that receives the string
entered by the participant.

mailto:Permissions@acm.org
https://doi.org/10.1145/3332165.3347922

modern text entry behaviors, including using the mouse or
arrow keys to position the cursor, text highlighting and
replacement, auto-correction, word prediction, undo, and
copy/paste, to name a few. Traditionally, the only means of
error correction in the IS paradigm is BACKSPACE, and only
then from the end of the currently entered text.

In this work, we present a new underlying model that
supersedes the IS model for general-purpose method-
independent character-level text entry evaluation.
Specifically, we present an approach that replaces the input
stream with transcription sequences, or “T-sequences” for
short. In brief, a T-sequence is a sequence of snapshots of the
entire transcribed string after each text-changing action is
taken by the user. Every pair of successive snapshots are then
compared to compute character-level text entry metrics. We
show that, unlike the IS paradigm, the T-sequence paradigm
can handle the modern text entry features that have been
disallowed thus far. We validated our measurement
algorithms using ground truth cursor-position information,
confirming 100% accuracy. We also show that T-sequences
not only accommodate prior metrics from the IS paradigm,
but also enable new metrics. Finally, we offer a web-based
successor to the TextTest desktop application [27] (Figure 1)
called TextTest++, 1 which encapsulates our approach and
enables text entry innovators to study their inventions on any
platform or device capable of running a web browser.

The contributions of this work are: (1) The detailed
elucidation of a new general-purpose method-independent
model of the text entry process based on T-sequences,
superseding the IS model; (2) New algorithms for computing
text entry metrics, both extant and novel; (3) Empirical
results from a study of 18 participants confirming the ability
of our model to handle modern text entry behaviors; (4) An
evaluation of T-sequences with non-keyboard techniques
Dasher [25], gesture typing [8,30], and T9 [11]; and (5) The
web-based TextTest++ evaluation testbed capable of
conducting and analyzing text entry studies. This work will
be useful to text entry method creators wishing to evaluate
their new methods without imposing undue constraints.

BACKGROUND AND RELATED WORK
To appreciate the current work, it is important to understand
the history of text entry evaluation and the challenges faced.
We divide this section into three parts. The first offers a
general background on method-independent text entry
evaluations, situating this work among its predecessors. The
second offers a more detailed look at calculating error
metrics in the input stream paradigm of Soukoreff &
MacKenzie [21,22]. The third describes other error-related
text entry metrics that have arisen in the literature.

Method-Independent Text Entry Evaluation
In the 1990s, method-independent text entry transcription
experiments were highly constrained for the purpose of error

1 Available at http://depts.washington.edu/acelab/proj/texttestpp/

measurement. Some studies simply ignored errors [10].
Other studies prohibited erroneous characters from
appearing [23]. Yet other studies disabled all error correction
[15]. These latter two approaches meant that single-character
mistakes could result in long error “chunks” [16], forcing
participants to resynchronize with the presented string.

In 2001, seminal work by Soukoreff & MacKenzie [21]
began to loosen these constraints by using the Levenshtein
minimum string distance algorithm [9] to calculate errors
based on the edit distance between two strings.2 BACKSPACE
was now allowable as the sole means of error correction, and
transcribed characters no longer had to “line up” with the
presented characters directly above them in order to avoid
being counted as errors. Participants could enter text freely
without having to resynchronize after an inserted or omitted
character. Soukoreff & MacKenzie’s influential 2003 paper
[22] showed how to calculate error rates in this paradigm.
(We elaborate on these calculations in the next subsection.)

The underlying model in Soukoreff & MacKenzie’s work
[21,22], and much that followed (e.g., [13,27]), was that of a
text entry input stream (IS), where character entries and
BACKSPACEs (<) were recorded sequentially, like so:

thr<e quck<<ick brwn<<on<wn

The resulting transcribed string from the IS above is “the
quick brown,” with six BACKSPACEs encoded as error
corrections during entry. The IS not only contains all
information necessary to extract the final transcribed string,
it also contains all dynamic information about the text entry
process that created it. From this information, Soukoreff &
MacKenzie [22] defined three separate error rates: (i)
uncorrected errors, for those remaining in the final
transcribed string; (ii) corrected errors, for any characters
backspaced during entry; and (iii) total errors, for their sum.
Because the IS model is strictly serial, only able to append
edits to its right-hand side, numerous editing restrictions are
imposed in this paradigm: (1) BACKSPACE is the only error
correction mechanism allowed; (2) the text cursor must
always remain at the end of the string entered thus far—no
mouse or arrow keys can be used to move the text cursor; (3)
selecting-and-replacing text is not allowed; and (4) auto-
correction is not feasible. Although researchers can develop
custom analyses and evaluation tools for individual text
entry methods based on method-specific knowledge,
method-independent evaluations based on the IS model
cannot accommodate many modern text entry behaviors.
Our work remedies these limitations, and offers a method-
independent evaluation paradigm and platform-independent
evaluation testbed.

Error Rates in the Input Stream Paradigm
As mentioned above, Soukoreff & MacKenzie [21,22]
enabled much less constrained text entry evaluations than
what had come before, while still being able to calculate

2 The edit distance is the minimum number of character insertions,
deletions, or substitutions required to turn one string into another.

http://depts.washington.edu/acelab/proj/texttestpp/

error rates. Their paradigm relied on the building of an IS
containing entered characters and BACKSPACEs. As an
example, consider the following presented phrase (P) and
final transcribed phrase (T):

P: the quick brown fox
T: the quick brqn fox

Soukoreff & MacKenzie utilized the minimum string
distance (MSD) [21] to align P and T and compute the
minimum number of insertions, deletions, or substitutions
necessary to equate them. However, by only considering P
and T, all dynamic in-process information was lost.
Therefore, Soukoreff & MacKenzie used the IS to classify
each character into one of four classes [22]: Correct (C),
Incorrect and Not Fixed (INF), Incorrect and Fixed (IF), and
Fixes (F). For example:

IS:

All characters in T belong to the C or INF classes. As stated,
C contains the correct characters in T, and INF is computed
using the aforementioned MSD statistic:

C = MAX(|P|, |T|) – MSD(P, T) (1)
INF = MSD(P, T) (2)

The F class contains editing keystrokes, which, in Soukoreff
& MacKenzie’s IS paradigm, is only BACKSPACE. Finally,
IF contains any characters that are erased, whether they were
initially correct or not. Both F and IF are counted by making
a backwards scan over the IS.

With these classifications in place, three crucial error rate
metrics can be calculated [22]: the uncorrected error rate
(UER), the corrected error rate (CER), and their sum, the
total error rate (TER), as follows:

UER = INF / (C + INF + IF) (3)
CER = IF / (C + INF + IF) (4)
TER = (INF + IF) / (C + INF + IF) (5)

As noted, although this work was a great advance over prior
paradigms, the IS paradigm still had a major limitation,
namely that all editing was sequential and only could occur
at the end of the currently entered text. This limitation rules
out numerous features, like using the mouse or arrow keys
to position the cursor, copy/paste, undo, and auto-correction.

Other Error-Related Metrics in Text Entry
Researchers have developed additional error-related metrics
in text entry research, most based within the IS paradigm.
One project looked at character-level error rates in
particular. MacKenzie & Soukoreff [13] formed optimal
alignments between P and T that represented the various
ways the minimum string distance could be achieved. For

example, there are two optimal alignments for P = “optimal”
and T = “optiacl”, each reflecting MSD = 2:

P1: optimal
T1: optiacl

P2: optima-l
T2: opti-acl

In the alignment pairs above, substitution errors occur at
character mismatches; omission errors occur where T has a
‘-’; and insertion errors occur where P has a ‘-’. By
weighting these errors by the number of alignments in which
they occur, individual substitution, omission, and insertion
error rates can be calculated for each character.

Character-level analyses were extended to the IS model by
Wobbrock & Myers [27]. They created an extensive set of
character-level error rates and ratios concerning
substitutions, omissions, and insertions.

Other error-related metrics such as cost per correction [2,5]
and word error rate [6] have been introduced. However,
these metrics also rely on the sequential IS paradigm, and
therefore are similarly constrained.

Word-level metrics have been utilized in some recent text
entry studies [29,31]. However, these studies only compared
the final transcribed string (T) with the presented string (P),
not examining the dynamic text entry process (i.e., no
corrected error rates). Similarly, some studies [24,28] used a
character error rate, which just uses MSD(P, T), again
revealing nothing about the dynamic text entry process.

We are not the first to log snapshots of successive
transcribed strings rather than just keypresses, or to provide
a web-based evaluation tool. The capable WebTEM tool by
Arif & Mazalek [1] seems to employ a similar logging
paradigm to ours; however, their paper does not explore any
properties of transcription sequences or describe any
algorithms that operate on them, reporting only that,
“WebTEM detects all input based on the events in the input
area” (p. 417). No information is given about how WebTEM
computes error rates or other metrics.

Ruan et al. [19] also logged successive transcriptions;
however, they utilized method-specific knowledge for
analysis and did not formalize general algorithms for
operating on transcription sequences, as we do here.
A METHOD-INDEPENDENT ABSTRACTION OF TEXT
ENTRY EVALUATION
As discussed above, any pre-existing text entry evaluation
testbed must, by definition, operate without any method-
specific knowledge of the text entry method it evaluates. As
the specific features of the text entry method are unknown,
the method can be considered a black box (Figure 2). An
abstraction containing three parts is therefore implied:
(1) the user’s actions on the text entry method, (2) the black
box text entry method itself, and (3) the resulting text output
that enters the method-independent evaluation testbed. In
short, (1) acts on (2) to produce (3).

Figure 2. An abstraction of the method-independent text entry
evaluation process. A user takes actions on a black box text
entry method, which generates text as output, which is received
by an evaluation testbed for logging and analysis.

After each input action that alters the current transcription,
rather than appending a character (or BACKSPACE) to the end
of an input stream, the entire transcription at that moment is
captured. This transcription, denoted Ti, is one entry in a
sequence of transcriptions, or “T-sequence,” captured after
each action. Below is an example for entering “computer”.

Transcription (Ti) Action (Ai)
T0: <null> A0: <begin>
T1: c A1: insert c
T2: co A2: insert o
.
T8: computer A8: insert r
T9: computerr A9: insert r
T10: computer A10: delete r

In the example above, the last “r” is typed twice by mistake
and corrected. Each transcription Ti for i > 0 beyond the null
transcription (T0) is the result of a corresponding action Ai.
An action should be thought of more broadly than just a
concrete physical movement like “typing a key” or “making
a stroke gesture;” rather, it is any action that transforms Ti-1
into Ti. The next subsection provides an abstraction of
actions. We build on this abstraction when analyzing T-
sequences to extract text entry metrics.

An Abstraction of Actions
In our era of ubiquitous computing, there are any number of
actions that might change text: typing a key, touching a
screen, making a gesture, rotating a watch bezel, or typing
CTRL + BACKSPACE on Windows to delete an entire word.
Our black box abstraction only considers before-and-after
text transcriptions resulting from each action. It only knows
what the method-independent changes to text are, not the
method-specific mechanisms by which the user brought
about those changes. (Of course, the same was true of the
input stream paradigm, but it could only handle single
character serial entry and removal actions.) Formally, we
classify each action Ai that turns transcription Ti-1 into Ti as
one of three classic types [13,27], based only on the changes
to successive strings, not from any method-specific insights.

Insertion. An insertion is an action that adds one or more
characters anywhere within or to either end of the current
text, without removing any of that text. An insertion action
is parameterized with two values: a zero-based start index
where the insertion occurs (index zero is before the first
character), and the string to be inserted. For example:

Ti-1: All oads
Ti: All roads

In this example, action Ai would be an insertion annotated
with (4, “r”), meaning it starts at zero-based index 4 and the
inserted string is “r”.

Deletion. A deletion is an action that removes a substring
anywhere within or at either end of the current text, without
modifying other parts of that text. A deletion action is
parameterized with two values: a zero-based start index at
which the deletion occurs, and the number of characters
forward from that point that are deleted. For example:

Ti-1: All roads
Ti: All ads

Above, action Ai would be a deletion annotated with (4, 2),
meaning it starts at zero-based index 4, and two characters
are deleted (“ro”).

Substitution. A substitution is an action that composes a
deletion and an insertion into one action. In a substitution, a
substring is removed simultaneously as a new string, not
necessarily of the same length, is inserted. A substitution
action is parameterized with three values: a zero-based start
index at which the deletion occurs, the number of characters
forward from that point that are deleted, and the new string
to be inserted. For example:

Ti-1: All road lead to Rome
Ti: All paths lead to Rome

In this example, action Ai would be a substitution annotated
with (4, 4, “paths”), meaning it starts at zero-based index 4,
deletes four characters (“road”), and inserts “paths”.

For insertions or deletions, changes must happen in only one
contiguous place in the text. If changes happen in multiple
non-contiguous places simultaneously, we consider the
change a substitution. For example, if Ti-1 = “all roads”
becomes Ti = “ball broads” by inserting a “b” before both
“all” and “roads”, we consider the change a single
substitution. Other special cases like transportations, where
chunks of text are moved to another place (e.g., via drag-
and-drop, a method-specific action), are also substitutions.

With this level of abstraction established, we are now ready
to describe the transcription sequence paradigm and our
algorithms for extracting text entry metrics from it.

THE TRANSCRIPTION SEQUENCE PARADIGM
We formalize the transcription sequence, or “T-sequence,”
paradigm using examples, and show how we infer actions
from T-sequence changes. We also show how we can extract
the old input stream (IS) from T-sequences that permit it.
Character Classes
Within the T-sequence paradigm, we reuse three of the four
Soukoreff & MacKenzie character classes [22]: Correct (C),
Incorrect and Not Fixed (INF), and Incorrect and Fixed (IF).
We discard Fixes (F) because our black box abstraction and

action definitions neither need nor permit method-specific
information on the nature of fixes. To recap:

C – Correct characters in the final transcribed text, T.
INF – Minimum string distance (MSD) between P and T.
IF – All deleted characters in the entire sequence, T0 to T.

By using these three classes, we can continue to calculate the
uncorrected (UER), corrected (CER), and total (TER) error
rates, Eqs. (3)-(5), above.

An Example of a Complete Transcription Sequence
Consider the following T-sequence representing the entry of
P = “All roads lead to Rome”. Note that whatever
hypothetical text entry method is being used here, it has
capabilities that enable it to go beyond just single-letter
entry. In the Action column, “I” is insert, “D” is delete, and
“S” is substitute.

Transcription (Ti) Action (Ai)
T0: <null> A0: <begin>
T1: A A1: I(0, “A”)
T2: All A2: I(1, “ll”)
T3: All Rome A3: I(3, “_Rome”)
T4: All roads A4: S(4, 4, “roads”)
T5: All roads l A5: I(9, “_l”)
T6: All roads let A6: I(11, “et”)
T7: All roads le A7: D(12, 1)
T8: All roads lead to A8: I(12, “ad to”)
T9: All roads lead to rome A9: I(17, “_rome”)
T10: All roads lead to Rome A10: S(18, 4, “Rome”)

Note that all of “rome” was replaced by “Rome” with the
final action (A10), perhaps by a whole-word paste operation,
auto-correction, or a spell-checker menu selection. The
above example yields character classes as follows:

• C = {“All roads lead to Rome”}
• INF = { }
• IF = {“Rome”, “t”, “rome”}

Using Eqs. (3)-(5), the uncorrected error rate (UER) is
0.00%, the corrected error rate (CER) is 29.0%, and the total
error rate (TER) is therefore 29.0%.

Inferring Actions from a Transcription Sequence
Consistent with our black box abstraction and our goal to
improve method-independent approaches to text entry
evaluation, we do not have ground truth information as to the
inputs performed by the user or the actions that transform
one transcription (Ti-1) into the next (Ti). We simply see the
sequence of transcribed strings, and infer actions from
successive transcriptions. For example:

Ti-1: Thai
Ti: Thanks Ai: ???

In this example, the user might have used auto-correction, in
which case Ai is S(0, 4, “Thanks”). Or, the user might have
selected the “i” and pasted “nks”, which would be
S(3, 1, “nks”). To know the truth of Ai, one would have to

build a textbox capable of receiving method-specific signals
and know how to interpret them.

Instead, it is possible to infer actions from changes between
consecutive Ti-1 and Ti. The rationale is that in most
character-level input methods, characters only change over
a contiguous range, not at multiple simultaneous disjoint
indices; thus, it is sufficient to get the character change
information. Doing so works on any platform, as all textbox
widgets provide a property to inspect their text. We can then
build a testbed for text entry evaluation that remains
independent of any specific text entry method’s features.

To infer the most likely actions taken given Ti-1 and Ti, we
created an algorithm called INFER-ACTION. The algorithm
finds the minimum modification necessary to turn
transcription Ti-1 into Ti. In the example above, the algorithm
would favor S(3, 1, “nks”) over S(0, 4, “Thanks”) because
only one character, the “i”, is changed in the former.

Our INFER-ACTION algorithm generally works as follows:
Given the two strings Ti-1 and Ti, it first compares them from
their beginnings, stopping when it finds a mismatch at index
p1. Then it compares the strings from the end, again stopping
when it finds a mismatch, now at p2. Based on the
relationship of p1 and p2, the algorithm determines whether
the change is an insertion, deletion, or substitution. For
example, if p1 equals the length of Ti-1, p2 equals the length
of Ti, and Ti is longer than Ti-1, the action Ai inserted (p2 – p1)
characters at the end of Ti-1.

Note that our INFER-ACTION algorithm is triggered only
when there are changes in the text, i.e., when Ti-1 becomes
Ti. If a user presses the CAPS LOCK key, drag-selects text
with the mouse, or moves the text cursor with the arrow keys
(all of which are method-specific actions), our algorithm
would not consider a change, as the entered text remains
unchanged. Evaluators wishing to go beyond quantifying
general text entry performance to understanding method-
specific behaviors (e.g., the number of times CAPS LOCK was
pressed on a keyboard) would need to build custom testbeds
to capture such metrics, as they have always had to do.

To verify the correctness of our INFER-ACTION algorithm,
we obtained ground truth in our study (explained below) by
monitoring the text cursor movements with the JavaScript
textbox properties selectionStart and selectionEnd.
This information is sufficient for ground truth because when
text changes, the text cursor appears at the end of the latest
change. Our results show that INFER-ACTION, working only
with T-sequence string pairs as described above, correctly
inferred 100% of all actions in our study. But INFER-ACTION
is not perfect. For example, the replacement of “rome” with
“Rome” in the example above would be inferred as a
substitution of only one letter, i.e., S(18, 1, “R”).

Recovering the Input Stream from Transcription Sequences
Although in the new T-sequence paradigm, method-specific
keystrokes like BACKSPACE are no longer separately
distinguished, the input stream (IS) can still be recovered if

it is known that users behaved as they did in the old IS
paradigm, i.e., if users entered text sequentially at the end of
the IS and BACKSPACE was their only form of error
correction. Specifically, when there is only one character
changed at the end of the IS with each action, we can simply
recover the action by examining the difference between
adjacent transcriptions. Note that substitution actions cannot
directly be performed in the IS paradigm, only insertions and
deletions at the end of the currently entered text. The entire
IS can be rebuilt, as in the following example:

Transcription (Ti) Action (Ai)
T0: <null> A0: <begin>
T1: t A1: I(0, “t”)
T2: th A2: I(1, “h”)
T3: thw A3: I(2, “w”)
T4: th A4: D(2, 1)
T5: the A5: I(2, “e”)
IS: thw<e

Now that we have presented T-sequences, we show how they
can be used to formulate the Incorrect and Fixed (IF) class
and its separation into two subclasses, IFc and IFe.

EXTENSIONS TO THE INCORRECT-AND-FIXED CLASS
In text entry transcription studies, a common error correction
behavior is to extensively use BACKSPACE, which often leads
to deleting already-correct characters [20]. Consider this
input stream:

quack<<<<uick

Above, “uack” is erased by four BACKSPACEs, and “uick” is
added. However, the “u” was correct despite being
backspaced. Similarly, the “ck” were correct despite being
backspaced. Should they be counted as errors? To address
this question, Soukoreff & MacKenzie [20] created new IFc
and IFe subclasses of their Incorrect and Fixed (IF) class.
IFc and IFe respectively stood for “incorrect-and-fixed
correct characters” and “incorrect-and-fixed errors.” This
separation of IF into these two new subclasses enabled more
accurate error rate calculations.

However, because IFc and IFe were based on the IS
paradigm, prior work [20] assumed BACKSPACE was the
only way to correct errors. In the more flexible T-sequence
paradigm, a new algorithm is needed to separate IF into IFc
and IFe. Therefore, we use a modified version of the
Needleman-Wunsch algorithm [17]. As before, we assume
no method-specific knowledge of the actions performing the
correction of text.

Modified Needleman-Wunsch Algorithm for IFc and IFe
The Needleman-Wunsch algorithm [17] is a dynamic
programming algorithm used to align biological sequences.
The algorithm is more flexible than the algorithm used in the
calculation of the minimum string distance (MSD) [21], i.e.,
the Levensthein string alignment algorithm [9].

In the Needleman-Wunsch algorithm, there are three types
of character comparisons: match, mismatch, and gap, each
of which are assigned scores during the alignment. Match

means two characters are the same; mismatch means they are
different; gap means one letter in one string lines up with a
gap in the other string. For example, consider the alignment
of “dynamic” and “plastic”:

dyna-mic
-plastic

In this example, a ‘–’ means a gap, of which there are two.
There are also three matches and three mismatches.

We modified the original Needleman-Wunsch algorithm to
not favor aligning string beginnings and endings by
penalizing start and end gaps that occur after matches have
been made while there are still characters left to match. This
modification was necessary because in text entry
transcription tasks, users try to align with the presented
string (P). For example, if P = “true treasure” and
T = “treasure”, the unmodified Needleman-Wunsch
algorithm would produce this:

true treasure
tr-e----asure

However, our modified algorithm produces this result:

true treasure
-----treasure

We also added a gap penalty to the algorithm, which assigns
different penalties to the opening or extending of a gap. The
purpose of this penalty is to promote the formation of
connected gaps in the alignment, i.e., favoring long
contiguous gaps over disjointed short gaps. Consider
aligning “Massachusetts” and “Massetts”. If the penalty is
the same for opening a new gap as it is for extending an
existing one, then the result will be:

Massachusetts
Ma-s----setts

But if the penalty for opening a new gap is higher than for
extending an existing one, the result will be:

Massachusetts
Mas-----setts

In our version of the Needleman-Wunsch algorithm, we set
the score for match as +3, mismatch as -2, opening a new
gap as -2, and extending an existing gap as -1.
Detecting IFc and IFe Characters
Our solution to finding correct (IFc) and erroneous (IFe)
characters within the Incorrect and Fixed (IF) class [20] uses
our modified Needleman-Wunsch algorithm [17].
Specifically, given a T-sequence, for each action Ai that is
delete or substitute, we perform an alignment between Ti-1
and P, the presented string; we then find the corresponding
part Δ in P that aligns with the deleted characters in Ti-1. In
the deleted substring, the characters that match Δ are in IFc,
and other characters are in IFe. An example illustrates:

P: All roads lead to Rome
Ti-1: All toads
Ti: All Ai: D(4, 5)

The optimal alignment of P and Ti-1 is:

All roads lead to Rome
All toads-------------

Now, the part of P that aligns with the deleted characters
“toads” is Δ = “roads”. The “r” and “t” do not match, and are
classified as errors in IFe. The “oads” suffix matches and is
therefore classified as having correct characters in IFc.
NEW METRICS BASED ON TRANSCRIPTION SEQUENCES
To recap: thus far, we have shown how T-sequences can
enable the calculation of error rates from the input stream
(IS) paradigm of Soukoreff & MacKenzie [21,22]. These
error rates are defined in Eqs. (3)-(5), above. We have also
shown how to separate the Incorrect and Fixed (IF) class into
two parts, one for characters that were erased and correct
(IFc), and one for characters that were erased and erroneous
(IFe) [20]. It should be clear by now that the T-sequence
paradigm can produce the traditional error rate metrics from
the IS paradigm. It should also be clear that the T-sequence
paradigm can handle text input behaviors that occur outside
the IS paradigm, e.g., insertions, deletions, and substitutions
within the transcribed text, the simultaneous entry or
removal of multiple characters, and more.

Going further, the T-sequence paradigm can produce more
than just the traditional error rates; it also gives rise to new
metrics not formerly obtainable from the IS paradigm.

The new metrics that follow pertain to text entry
transcription tasks with a presented string P and transcribed
string T, just like for the traditional error rate metrics. Note
that |T| indicates the length of the final transcribed string. We
begin with some basic count metrics, upon which we build.

Basic Count Metrics
Total Changed Characters (TCC) refers to the number of
characters that change during the text entry process,
including all characters that are inserted or deleted.

TCC = |T| + 2 × IF (6)

IF is added twice because any deleted characters were first
inserted, constituting two changes per IF character.

Action Count (AC) refers to the number of actions taken
during the text entry process. As described above, these
actions are inferred from a T-sequence using INFER-ACTION.
We also define counts for specific actions: the Insertion
Action Count (IAC), Deletion Action Count (DAC), and
Substitution Action Count (SAC).

More specifically, Correction Action Count (CAC) gives
the number of corrective actions, which are delete and
substitute actions (i.e., CAC = DAC + SAC). Similarly,
Entry Action Count (EAC) gives the number of insert and
substitute actions (i.e., EAC = IAC + SAC), as both make
new entries.

New Metrics
Characters per Action (CPA) shows the average number of
characters changed per action:

CPA = TCC / AC (7)

Characters per Correction (CPC) and Characters per Entry
(CPE) convey how many characters are changed, on
average, per correction or entry, respectively:

CPC = IF / CAC (8)
CPE = (|T| + IF) / EAC (9)

Action Efficiency (AE) conveys the number of characters
one action can change in a given time period, e.g., per
second. It is therefore the “text-changing speed” of actions.

AE = TCC / Total time (10)

More specifically, Correction Efficiency (CE) and Entry
Efficiency (EE) indicate the “text-correcting speed” of
actions and the “text-entering speed” of actions,
respectively. Correction time refers to the total time of delete
and substitute actions, and Entry time refers to the total time
of insert and substitute actions.

CE = IF / Correction time (11)
EE = (|T| + IF) / Entry time (12)

Using the above metrics, we can categorize text entry
methods into four types based on the effort to enter and
correct text: (i) Easy entry, easy correction; (ii) Easy entry,
hard correction; (iii) Hard entry, easy correction; and
(iv) Hard entry, hard correction. Entry and correction
difficulty is indicated by how much text can be added or
deleted in one action, and by how fast it is to add or delete
text. Therefore, the above CPE and EE metrics together are
entry difficulty metrics; the CPC and CE metrics together
are correction difficulty metrics. Following those, CPA and
AE are overall difficulty metrics.
THE NEW EVALUATION TESTBED TEXTTEST++
The original TextTest tool [27] has been used to conduct
numerous text entry studies (e.g., [7,18,26]) and produce
measures based on the input stream (IS) paradigm of
Soukoreff & MacKenzie [21,22]. Inspired by TextTest, a
Windows-based desktop application, we implemented
TextTest++, a web-based testbed capable of running,
logging, and analyzing text entry studies (Figure 3). By
being web-based, TextTest++ is platform-independent,
capable of being utilized on any device that offers a web
browser. TextTest++ computes traditional metrics, including
words per minute (WPM) and the error rates in Eqs. (3)-(5).
It contains the algorithms described in this work, and
produces all of the new metrics in Eqs. (6)-(12).

Figure 3 shows the main user interface for TextTest++. The
program is written in JavaScript and logs each test in JSON
format, which contains all of the T-sequences and inferred
actions. A CSV file is also generated containing all
traditional and new metrics described in this paper.

Figure 3. TextTest++ is a new web-based text entry evaluation
testbed that produces the traditional metrics from the IS
paradigm and the new metrics from the T-sequence paradigm.

EXERCISING OUR ALGORITHMS, METRICS AND TOOL
We conducted an experiment to evaluate our algorithms,
metrics, and the TextTest++ testbed. To put these through
their paces, we first tested three keyboard-based text entry
methods: a laptop keyboard, an on-screen accessibility
keyboard, and a smartphone keyboard. Our questions were:

1. Will the T-sequence paradigm yield the same results as
the IS paradigm for transcriptions where the latter’s
experimental constraints happen to be upheld?

2. How well does the T-sequence paradigm handle
modern text entry behaviors that might arise? How
often do such behaviors arise?

3. What insights can our new metrics from the T-
sequence paradigm provide?

Participants
We recruited 18 participants (15 female, 3 male) from our
local university to partake in our study. Recruiting was done
via flyers, emails, word-of-mouth, snowball sampling, and
convenience sampling. Participants’ ages ranged from 21 –
27. All participants were right-handed. They all indicated
many years of experience typing on laptop keyboards and
texting on smartphones. Participants were compensated $10
USD for 30 minutes.

Apparatus
We compared three keyboards: a laptop keyboard
(“Laptop”), an on-screen desktop accessibility keyboard
(“On-Screen”), and a smartphone touch keyboard (“Phone”).

The Laptop keyboard was a Microsoft Surface Pro 4
typecover 3 measuring 11.60" × 8.54" × 0.20". Typing on
such a keyboard is usually done serially, making it suitable
for analysis with the IS paradigm—provided no arrow keys,

3 https://bit.ly/2LQCC7Q
4 That’s a lot of restrictions! Alleviating all of them (and more) is

the precise benefit achieved by moving from the input stream
model to the transcription sequence model.

no mouse, no copy/paste, no undo, and no word predictions
are used.4 Unlike in prior studies based on the IS paradigm,
participants were free to employ such features.

The On-Screen desktop accessibility keyboard was operated
using a Microsoft Wireless Mobile Mouse 4000 and the
built-in Windows 10 On-Screen Keyboard. The keyboard
measured 6.00" × 1.75". We chose this keyboard because by
entering all text with the mouse, participants might use the
mouse for other text entry behaviors, e.g., to reposition the
text cursor, or to drag-select over multiple characters. The
keyboard did not have word prediction enabled.

The Phone touch keyboard ran on a Google Pixel
smartphone measuring 2.74" × 5.66" × 0.33". The keyboard
was SwiftKey,5 a third-party smartphone keyboard equipped
with opt-out auto-correction, word completion, a word
prediction list, and, of course, the ability to reposition the
text cursor with a tap or drag on the screen. The size of the
SwiftKey keyboard itself was 2.74" × 2.60".

Our new TextTest++ tool was used throughout the
experiment (Figure 3). The textbox in TextTest++ did not
offer spell-check underlining. Timing for each phrase was
from the first entered character to the last [12].

Procedure
For each participant, we randomly selected 30 phrases from
a published text entry phrase set [14]. The ordering of
phrases was randomized for each participant and method.
Participants used each method in a fully counterbalanced
order. At the start of using each text entry method,
participants were given five warm-up phrases not included
in the 30, which were the same for all participants and
methods. Before the test phrases began, participants were
told to proceed “as naturally as you can, while at the same
time, keeping up your speed and accuracy.” They were
allowed to use the mouse in the Laptop condition, but not
allowed to use the physical keyboard in the On-Screen
keyboard condition. In the Phone condition, participants
were told to use two-thumb typing. Participants were given
5 minutes of rest between each text entry method.

Design & Analysis
This experiment was a single-factor within-subjects design
with three levels of text entry method: Laptop, On-Screen,
and Phone. These levels were fully counterbalanced with
3! = 6 orders spread over 18 participants. Therefore, in all,
we collected 18 participants × 3 methods × 30 phrases =
1620 text entry phrases.

Unlike most text entry experiments in which comparing the
text entry methods is of primary interest, in this study, the
methods were simply vehicles by which we could put our
algorithms, metrics, and testbed through their paces.

5 https://swiftkey.com/en/keyboard/android/

https://bit.ly/2LQCC7Q
https://swiftkey.com/en/keyboard/android/

Therefore, we favor descriptive statistics over inferential
statistics. (Indeed, we expect statistically significant
differences among our text entry methods, but focusing on
those differences would distract from our purposes here.)

RESULTS
In this section, we report the results of our study, validating
our work’s ability to produce traditional speed and error rate
metrics, while going further to produce our new metrics.
Please refer to Table 1 for the numeric results.

Words per Minute
We calculate words per minute (WPM) by subtracting the
first character timestamp from the last character timestamp,
being careful to define the length of the final transcribed
string as one less than its character count (i.e., |T| – 1) [12].
Uncorrected, Corrected and Total Error Rates
All uncorrected error rates (UER) were below 2%, indicating
high accuracy of the final transcribed strings. Corrected error
rates (CER) were clearly highest for the Phone, which was
the most error-prone during entry.

Comparison to the Input Stream Paradigm
To compare our T-sequence paradigm to the IS paradigm, we
extracted 50 random trials from the Laptop condition that
happened to exhibit the strictly sequential editing process
required by the IS paradigm. To find these compliant trials,
we looked through T-sequences to find where only the last
character in each step of the sequence was modified. This
requirement was met by 98% of Laptop trials, 94% of On-
Screen keyboard trials, but only 2% of Phone trials.

By translating TextTest++’s JSON files into the XML log
file format required by the original TextTest program [27],
we could use the log file analysis feature in the latter to
produce the C, INF, and IF character classes. The counts
produced by TextTest were identical to those produced by
TextTest++, showing that TextTest++ and the T-sequence
paradigm can subsume the IS paradigm correctly.

Separating IF into IFc and IFe
Recall that we also want to separate Incorrect and Fixed (IF)
characters, i.e., all erased characters, into IFc and IFe—
those that were initially correct and initially erroneous,
respectively [20]. Interestingly, for the Laptop and Phone
methods, IFc > IFe, indicating that more initially correct
characters were erased than erroneous ones. Such a result is
consistent with observations of “pathologic error correction”
[20], and also follows the use of the auto-correction feature
on the Phone.

VALIDATING THE CORRECTNESS OF INFER-ACTION
Recall that we logged text cursor position changes to obtain
ground truth actions for each text entry method. We can
compare these ground truth actions to those inferred from
our INFER-ACTION algorithm to see how well our algorithm
performed (i.e., when comparing Ti-1 to Ti). Over our study’s
entire 1620 phrases, we found no differences between the
results of INFER-ACTION and the ground truth information
gleaned from text cursor position changes.

Furthermore, to ensure that INFER-ACTION correctly handles
a variety of text entry methods, we conducted a follow-on
study of three more text entry methods, none of which were
keyboard-based: Dasher [25], gesture typing [8,30], and T9
[11]. Dasher is a pointing-based continuous-motion zooming
interface. Gesture-typing enables stroke-gestures with a
finger or stylus atop a virtual keyboard, with gestures
corresponding to entire words based on their shapes and the
letter arrangements beneath them. T9 is a predictive text
method for 12-key numeric keypads, where sequences of
key-presses are progressively disambiguated to form the
most likely words.

For Dasher, we used Dasher 5.0 with cursor speed set at 3.2.
For gesture typing, we used SwiftKey in swiping mode. For
T9, we used Smart Keyboard Pro. Dasher ran on the
Microsoft Surface Pro laptop; the other two methods ran on
the Google Pixel smartphone. Under the same configuration
as the main experiment, 6 participants (2 female, 4 male,
ages 23 – 26) each transcribed text for 10 minutes with each
method. The condition order was fully counterbalanced.
Before the formal study, each participant learned about each
method and took ~20 minutes total to practice. Participants
were paid $15 USD.

We collected 58 phrases with Dasher, 202 phrases with
gesture typing, and 111 phrases with T9. Among the total
371 phrases, results generated from INFER-ACTION and
results using ground truth cursor movement were exactly the
same. This result indicates that INFER-ACTION works well
across quite different text entry methods, including those
that enter entire words at once.

DISCUSSION
Our experiment produced several findings. As we suspected,
the different text entry methods resulted in different user
behaviors. For example, with the Laptop keyboard,
BACKSPACE was almost exclusively used for error
correction, but with the On-Screen keyboard, mouse-based
error correction with cursor repositioning was often used, a
behavior formerly prohibited by the input stream (IS)
paradigm. Even further, one participant (P6) used copy/paste
in two phrases in the On-Screen keyboard condition. When
P6 typed the phrase “the dreamers of dreams,” she drag-
selected the first “dream”, copied it, and then pasted it at end
of the phrase, finally typing an “s”. This behavior, too, was
prohibited in the IS paradigm, but now can be supported.

Examining Characters per Action (CPA) and Action
Efficiency (AE) together creates a picture of input difficulty.
The Laptop and On-Screen keyboards had CPAs of 1.000
and 1.002, respectively, but the Laptop’s AE is much higher
than that of the mouse-driven On-Screen keyboard: 5.894 vs.
1.586 actions per second. This difference explains the faster
entry speed of the Laptop keyboard. The Phone had the
largest CPA and AE, indicating that it is even easier to act
upon text than with the Laptop keyboard. This ease arises,
for example, when one types only the initial characters of a
word, and then word completion finishes the rest.

We now turn to entry and correction difficulty. Characters
per Entry (CPE) and Characters per Correction (CPC) are
nearly ~1.00 for the Laptop and On-Screen keyboards. But
interestingly, Entry Efficiency (EE) is about twice as high as
Correction Efficiency (CE) for both keyboards, indicating
that deleting a character takes about twice as long as entering
it in the first place.

Of note is that participants deleted more correct characters
than erroneous ones with the Laptop keyboard (IFc > IFe).
With auto-correct active on the Phone keyboard, it is no
surprise that this occurred, but that it occurred on the Laptop
keyboard supports informal observations of “pathologic
error correction” from prior work [20]. The EE of the Laptop
keyboard was quite high (6.111), so perhaps participants did
not mind if they had to re-type correct characters after
backspacing through them to reach an incorrect one. The
situation was different with the On-Screen keyboard, whose
EE was only 1.629, and whose IFc < IFe (0.33 vs. 0.73).

Limitations
Indeed, the T-sequence model has limitations: (1) Because
T-sequences focus on providing general metrics across
different text entry methods, gaining insights about how a
text input method does its work is not possible with the
model, just as it was not possible with the IS model.
Evaluators wishing to examine particular features of a text
entry method must still build a custom evaluation tool.
(2) Some text entry methods such as T9 produce temporary
characters during input, with those temporary characters
often appearing in-place. If such characters are actually
committed into the textbox, then additional characters will
be counted in IF. This problem, however, does not arise if
these temporary characters are not actually committed until
they are resolved; for example, temporary characters might
appear in a separate list from which the user makes a
selection. (3) The metrics associated with the T-sequence
model are still character-level metrics, even though the
model itself and its associated actions accommodate word-
level behaviors such as those used in gesture typing. For
word- or phrase-level input methods such as voice typing or

gesture typing, INFER-ACTION still produces correct
character-level metrics, as was validated in our second study,
but the relevance of these metrics to word-level methods
might be less. (4) In our experiment, INFER-ACTION worked
flawlessly, but the text entry behaviors of participants in real
life might differ from participants’ behaviors in a lab-based
transcription study. And we know INFER-ACTION is not
perfect. (Recall the “rome” and “Rome” example, above).

CONCLUSION
Although the input stream (IS) paradigm of text entry
evaluation has been highly successful, modern text entry
methods require more flexible evaluation paradigms. To
achieve this, we presented a method-independent paradigm
based on transcription sequences, or T-sequences, which
contain transcription snapshots after every text-changing
action occurs. We built an abstraction of actions and showed
how to infer these actions from transcription string pairs. We
also showed how the traditional character classes used in
error rate measurement [20,22] can be calculated in the T-
sequence paradigm. Furthermore, we presented new metrics
arising from this paradigm. Our study demonstrated that T-
sequences can supersede the IS paradigm and offer new
insights not formerly possible, while greatly lessening the
constraints on the evaluation and supporting many modern
text entry behaviors. We offer our new method-independent
web-based tool, TextTest++, to researchers and practitioners
in the hope that text entry evaluations will be made easier,
more flexible, more realistic, and more informative.

ACKNOWLEDGEMENTS
This work was supported in part by the University of
Washington Information School. Any opinions, findings,
conclusions or recommendations expressed in our work are
those of the authors and do not necessarily reflect those of
any supporter.

REFERENCES
[1] Ahmed Sabbir Arif and Ali Mazalek. 2016. WebTEM:

A web application to record text entry metrics.
Proceedings of ISS 2016. New York: ACM Press,
415–420. DOI: 10.1145/2992154.2996791

Input Method Words per
Minute (WPM)

Uncorrected
Error Rate

(UER)

Corrected Error
Rate (CER)

Total Error
Rate

(TER)

Incorrect and
Fixed – Correct

(IFc)

Incorrect and
Fixed – Errors

(IFe)
Laptop 65.35 ± 28.19 0.003 ± 0.003 0.046 ± 0.031 0.049 ± 0.305 1.17 ± 0.83 0.39 ± 0.41

On-Screen 17.85 ± 2.22 0.004 ± 0.003 0.033 ± 0.015 0.037 ± 0.016 0.33 ± 0.19 0.73 ± 0.36
Phone 33.71 ± 7.92 0.013 ± 0.008 0.388 ± 0.059 0.401 ± 0.056 16.38 ± 3.25 3.34 ± 2.78

Input Method
Characters per

Action
(CPA)

Characters per
Correction

(CPC)

Characters per
Entry
(CPE)

Action
Efficiency (AE)

Correction
Efficiency (CE)

Entry
Efficiency (EE)

Laptop 1.00 ± 0.00 1.003 ± 0.00 1.00 ± 0.00 5.89 ± 2.47 2.98 ± 0.91 6.11 ± 2.60
On-Screen 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.59 ± 0.20 0.90 ± 0.14 1.63 ± 0.21

Phone 1.89 ± 0.07 2.96 ± 0.44 1.70 ± 0.14 6.55 ± 2.08 6.53 ± 4.19 7.22 ± 1.80

Table 1. Means and standard deviations for speed, error rates, IFc and IFe counts, and our new metrics arising in the
T-sequence paradigm. CPA, CPC, and CPE are counts. AE, CE, and EE are counts per second. See Eqs. (7)-(12).

[2] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2010.
Predicting the cost of error correction in character-
based text entry technologies. Proceedings of CHI
2010. New York: ACM Press, 5–14. DOI:
10.1145/1753326.1753329

[3] Abigail Evans and Jacob O. Wobbrock. 2012. Taming
wild behavior: The Input Observer for obtaining text
entry and mouse pointing measures from everyday
computer use. Proceedings of CHI 2012. New York:
ACM Press, 1947–1956. DOI:
10.1145/2207676.2208338

[4] Leah Findlater, Jacob O. Wobbrock and Daniel
Wigdor. 2011. Typing on flat glass: Examining ten-
finger expert typing patterns on touch surfaces.
Proceedings of CHI 2011. New York: ACM Press,
2453–2462. DOI: 10.1145/1978942.1979301

[5] Jun Gong and Peter Tarasewich. 2006. A new error
metric for text entry method evaluation. Proceedings
of CHI 2006. New York: ACM Press, 471–474. DOI:
10.1145/1124772.1124843

[6] Dietrich Klakow and Jochen Peters. 2002. Testing the
correlation of word error rate and perplexity. Speech
Communication 38 (1–2), 19–28. DOI:
10.1016/S0167-6393(01)00041-3

[7] Thomas Költringer, Poika Isokoski and Thomas
Grechenig. 2007. TwoStick: Writing with a game
controller. Proceedings of Graphics Interface 2007.
Toronto: Canadian Information Processing Society,
103–110. DOI: 10.1145/1268517.1268536

[8] Per-Ola Kristensson and Shumin Zhai. 2004.
SHARK2: A large vocabulary shorthand writing
system for pen-based computers. Proceedings UIST
2004. New York: ACM Press, 43–52. DOI:
10.1145/1029632.1029640

[9] Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10 (8), 707–710.

[10] James R. Lewis. 1999. Input rates and user preference
for three small-screen input methods: Standard
keyboard, predictive keyboard, and handwriting.
Proceedings of the Human Factors and Ergonomics
Society 43rd Annual Meeting. Santa Monica, CA:
Human Factors and Ergonomics Society, 425–428.
DOI: 10.1177/154193129904300507

[11] Nuance, LLC. 2019. T9 – The global standard for
mobile text input. Retrieved July 12, 2019 from
https://bit.ly/32kl4GN

[12] I. Scott MacKenzie. 2015. A note on calculating text
entry speed. Retrieved July 12, 2019 from
https://www.yorku.ca/mack/RN-TextEntrySpeed.html

[13] I. Scott MacKenzie and R. William Soukoreff. 2002. A
character-level error analysis technique for evaluating
text entry methods. Proceedings of NordiCHI 2002.

New York: ACM Press, 243–246. DOI:
10.1145/572020.572056

[14] I. Scott MacKenzie and R. William Soukoreff. 2003.
Phrase sets for evaluating text entry techniques.
Extended Abstracts of CHI 2003. New York: ACM
Press, 754–755. DOI: 10.1145/765891.765971

[15] I. Scott MacKenzie and Shawn X. Zhang. 1999. The
design and evaluation of a high-performance soft
keyboard. Proceedings of CHI 1999. New York: ACM
Press, 25–31. DOI: 10.1145/302979.302983

[16] Edgar Matias, I. Scott MacKenzie, and William
Buxton. 1996. One-handed touch typing on a
QWERTY keyboard. Human-Computer Interaction 11
(1), 1–27. DOI: 10.1207/s15327051hci1101_1

[17] Saul B. Needleman and Christian D. Wunsch. 1970. A
general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of
Molecular Biology 48 (3), 443–453. DOI:
10.1016/0022-2836(70)90057-4

[18] Tao Ni, Doug Bowman, and Chris North. 2011.
AirStroke: Bringing unistroke text entry to freehand
gesture interfaces. Proceedings of CHI 2011. New
York: ACM Press, 2473–2476. DOI:
10.1145/1978942.1979303

[19] Sherry Ruan, Jacob O. Wobbrock, Kenny Liou,
Andrew Ng, and James A. Landay. 2017. Comparing
speech and keyboard text entry for short messages in
two languages on touchscreen phones. Proceedings of
IMWUT 1 (4). New York: ACM Press. Article No.
159. DOI: 10.1145/3161187

[20] R. William Soukoreff and I. Scott MacKenzie. 2004.
Recent developments in text-entry error rate
measurement. Extended Abstracts of CHI 2004. New
York: ACM Press, 1425–1428. DOI:
10.1145/985921.986081

[21] R. William Soukoreff and I. Scott MacKenzie. 2001.
Measuring errors in text entry tasks: An application of
the Levenshtein string distance statistic. Extended
Abstracts of CHI 2001. New York: ACM Press, 319–
320. DOI: 10.1145/634067.634256

[22] R. William Soukoreff and I. Scott MacKenzie. 2003.
Metrics for text entry research: An evaluation of MSD
and KSPC, and a new unified error metric.
Proceedings of CHI 2003. New York: ACM Press,
113–120. DOI: 10.1145/642611.642632

[23] Dan Venolia and Forrest Neiberg. 1994. T-Cube: A
fast, self-disclosing pen-based alphabet. Conference
Companion of CHI 1994. New York: ACM Press,
265–270. DOI: 10.1145/191666.191761

[24] Keith Vertanen, Haythem Memmi, Justin Emge,
Shyam Reyal, and Per-Ola Kristensson. 2015.
VelociTap: Investigating fast mobile text entry using
sentence-based decoding of touchscreen keyboard

input. Proceedings of CHI 2015. New York: ACM
Press, 659–668. DOI: 10.1145/2702123.2702135

[25] David J. Ward, Alan F. Blackwell and David J. C.
MacKay. 2000. Dasher—a data entry interface using
continuous gestures and language models. Proceedings
of UIST 2000. New York: ACM Press, 129–137. DOI:
10.1145/354401.354427

[26] Andrew D. Wilson and Maneesh Agrawala. 2006. Text
entry using a dual joystick game controller.
Proceedings of CHI 2006. New York: ACM Press,
475–478. DOI: 10.1145/1124772.1124844

[27] Jacob O. Wobbrock and Brad A. Myers. 2006.
Analyzing the input stream for character-level errors in
unconstrained text entry evaluations. ACM
Transactions on Computer-Human Interaction 13 (4),
458–489. DOI: 10.1145/1188816.1188819

[28] Xin Yi, Chun Yu, Weijie Xu, Xiaojun Bi and
Yuanchun Shi. 2017. COMPASS: Rotational keyboard

on non-touch smartwatches. Proceedings of CHI 2017.
New York: ACM Press, 705–715. DOI:
10.1145/3025453.3025454

[29] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun
and Yuanchun Shi. 2015. ATK: Enabling ten-finger
freehand typing in air based on 3D hand tracking data.
Proceedings of UIST 2015. New York: ACM Press,
539–548. DOI: 10.1145/2807442.2807504

[30] Shumin Zhai and Per-Ola Kristensson. 2012. The
word-gesture keyboard: Reimagining keyboard
interaction. Communications of the ACM 55 (9), 91–
101. DOI: 10.1145/2330667.2330689

[31] Suwen Zhu, Tianyao Luo, Xiaojun Bi and Shumin
Zhai. 2018. Typing on an invisible keyboard.
Proceedings of CHI 2018. New York: ACM Press.
Paper No. 439. DOI: 10.1145/3173574.3174013

	Beyond the Input Stream: Making Text Entry Evaluations More Flexible with Transcription Sequences
	Abstract
	CCS Concepts
	Keywords

	Introduction
	Background and Related Work
	Method-Independent Text Entry Evaluation
	Error Rates in the Input Stream Paradigm
	Other Error-Related Metrics in Text Entry

	A Method-Independent Abstraction of Text Entry Evaluation
	An Abstraction of Actions

	The Transcription Sequence Paradigm
	Character Classes
	An Example of a Complete Transcription Sequence
	Inferring Actions from a Transcription Sequence
	Recovering the Input Stream from Transcription Sequences

	Extensions to The Incorrect-And-Fixed Class
	Modified Needleman-Wunsch Algorithm for IFc and IFe
	Detecting IFc and IFe Characters

	New Metrics Based on Transcription Sequences
	Basic Count Metrics
	New Metrics

	The New Evaluation Testbed TextTest++
	Exercising Our Algorithms, Metrics And Tool
	Participants
	Apparatus
	Procedure
	Design & Analysis

	Results
	Words per Minute
	Uncorrected, Corrected and Total Error Rates
	Comparison to the Input Stream Paradigm
	Separating IF into IFc and IFe

	Validating The Correctness of Infer-Action
	Discussion
	Limitations

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create high quality Adobe PDF documents suitable for a delightful viewing experience and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

