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ABSTRACT 
End-user elicitation studies are a popular design method, but 
their data require substantial time and effort to analyze. In 
this paper, we present Crowdsensus, a crowd-powered tool 
that enables researchers to efficiently analyze the results of 
elicitation studies using subjective human judgment and 
automatic clustering algorithms. In addition to our own 
analysis, we asked six expert researchers with experience 
running and analyzing elicitation studies to analyze an end-
user elicitation dataset of 10 functions for operating a web-
browser, each with 43 voice commands elicited from end-
users for a total of 430 voice commands. We used 
Crowdsensus to gather similarity judgments of these same 
430 commands from 410 online crowd workers. The crowd 
outperformed the experts by arriving at the same results for 
seven of eight functions and resolving a function where the 
experts failed to agree. Also, using Crowdsensus was about 
four times faster than using experts.  

Author Keywords 
End-user elicitation study; agreement rate; online crowds; 
crowdsourcing; human computation; Mechanical Turk.  

INTRODUCTION 
End-user elicitation studies are a popular design method. 
They have been used to generate commands for command 
line interfaces [10], to design gesture interactions [20,26,32], 
and in virtual reality [15]. Wobbrock et al. [37,38] 
formalized a method to conduct gesture elicitation studies in 
the lab. The method works by presenting the effect of an 
interaction to participants and eliciting the action or symbol 
meant to invoke that effect. Once researchers have collected 
action or symbol proposals from end users, they resolve these 
into representative sets by grouping them based on 
similarity.  

By having end users propose interactions, elicitation studies 
aim to create interaction designs that are more intuitive, i.e., 
interactions that may be more discoverable, learnable, 
guessable, memorable, or comfortable. Larger and more 
diverse sets of participants can improve the intuitiveness of 
the final set of interaction designs [22].  

Despite the popularity of end-user elicitation studies, having 
been conducted in more than 60 published accounts (e.g., 
[23,25,27,32]), such studies are laborious to run and analyze, 
especially grouping elicited proposals based on their 
similarity. Although including a large and diverse group of 
end users in elicitation studies is desirable, this practice 
vastly increases the number of comparisons among proposals 
when analyzing the results of elicitation studies, increasing 
the workload. In this paper, we propose using a combination 
of online crowds and automatic clustering algorithms to 
determine the similarity of elicited proposals from elicitation 
studies, thereby eliminating the burden of manually 
comparing elicited proposals.  

To support efficient elicitation study analysis, we created 
Crowdsensus. Crowdsensus generates web interfaces that 
present crowd workers with interaction design proposals 
collected in an elicitation study and asks them to vote on their 
similarity. After collecting the votes, Crowdsensus employs 
automatic clustering algorithms to find agreement between 
proposals using the votes, thereby resolving the underlying 
set of proposals. We used the Crowdsensus system to explore 
the following three research questions:  

Q1. How can the crowd facilitate similarity judgments for 
agreement analysis in end-user elicitation studies? 

Q2. By using the crowd, what are the benefits, if any, in 
terms of cost and time compared to the status quo use of 
experts’ judgments? 

Q3. How does the quality of the results produced by the 
crowd compare to those produced by expert 
researchers? 

In pursuing answers to these questions, we address various 
challenges, including determining the design of the interface 
the crowd workers should interact with, the number of 
symbols that should be presented, the best phrasing of the 
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instructions, how to detect spam answers, and which 
clustering algorithms to employ.  

We deployed a study on Amazon’s Mechanical Turk 
platform to validate our approach. In the study, 410 crowd 
workers were asked to find the similarity among 43 proposed 
text representations of voice commands for 10 functions of a 
voice-activated web browser, for a total of 430 voice 
command proposals. We found that a crowd of non-expert 
workers, in combination with automatic clustering 
algorithms, was able to select the same commands for seven 
out of eight prompts (out of 10 total) for which a group of 
experts’ judgments converged. As for the two prompts (out 
of 10) for which the experts’ opinions diverged, the crowd 
successfully converged upon a command for one of them. 
Also, the crowd was about four times faster than the expert 
researchers. 

This work contributes a method to crowdsource the analysis 
of end-user elicitation studies, cutting effort and time. We 
also contribute the Crowdsensus system itself,1 a tool for 
researchers to utilize online crowds to find agreement in 
complex datasets (or analyze data from elicitation studies 
themselves). Crowdsensus can be used equally well to find 
agreement among gestures, icon sketches, text commands, or 
voice commands—any situation where symbolic inputs can 
be used to invoke commands. 

ELICITATION STUDIES: A BRIEF INTRODUCTION 
For context, we describe elicitation studies, how to conduct 
them, their benefits and drawbacks, as well as some 
terminology that appears throughout this paper.2 For 
illustrative purposes, we discuss the hypothetical example of 
a researcher attempting to design gesture controls for a 
smartphone file-explorer that requires interactions to 
perform the following functions: open a file, close a file, and 
delete a file. 

Why Run an Elicitation Study?  
The researcher’s goal is to design touch screen gestures for 
each of her file-explorer app’s functions that feel natural and 
intuitive to users. The researcher hopes that running an 
elicitation study will allow her to elicit intuitive gesture 
designs from her target population. Also, the gesture designs 
proposed by users might be ones that the researcher herself 
had not imagined. Such a study also allows her to identify 
synonyms and variations for gesture designs. 

How to Run an Elicitation Study?  
There are two parts to every elicitation study: data gathering 
and data analysis. In the first part, the researcher invites end 
users to her lab. She shows the participants the results of an 
action, known as a referent [37]. In this example, the 
referents shown are: opening a file, closing a file, and 
deleting a file. The researcher asks each participant to take 
an action that would cause each referent to occur. The 
proposed interaction designs in these studies are typically 
                                                        
1 http://depts.washington.edu/madlab/proj/crowdsensus/ 

referred to as symbols [37]. Symbols can be any form of 
interaction between a user and the technology they are using; 
typically, the researcher will specify to participants what 
forms of symbols the target technology can recognize. For 
example, the researcher might instruct participants to only 
propose symbols that are text strings for command line 
interfaces, audio clips for voice user interfaces, or sketches 
of icons for graphical user interfaces.  

Once the researcher has collected enough symbols for her 
referents, she moves on to the second part of the study: 
analyzing the symbols. For each referent, the researcher has 
a set of symbols—touch gestures in this example—collected 
from the participants. The researcher compares all of the 
symbols for a given referent to each other and groups them 
based on their similarity. After grouping the symbols, the 
researcher calculates an agreement score, which quantifies 
the consensus among participants. The original formula [37] 
for calculating agreement is: 

 (1) 

In Eq. 1, r is a referent in the set of all referents R. Pr is the 
set of all symbols proposed for referent r. Pi is a subset of 
similar symbols in Pr. Subsequent variations to this formula 
have been published but all are similar [9,33,34]. 

The researcher uses agreement calculations to determine if 
the largest set of similar symbols have sufficient membership 
to be a singularly good choice, or if multiple symbols should 
be used synonymously for the same referent. Another use of 
the agreement calculation is to resolve conflict in cases 
where the same symbol is proposed for multiple referents. In 
that case, the symbol usually is assigned to the referent for 
which that symbol has the highest agreement score.  

Challenges of Elicitation Studies  
As mentioned above, the more symbols that are elicited from 
more participants, the more representative of users’ behavior 
the ultimate gesture interactions for each function should be 
[22]. Nevertheless, as the number of symbols increases, the 
number of similarity comparisons the researcher has to do 
increases significantly. Unless the elicited symbols can be 
automatically compared, like integer comparisons (e.g., 
[37]), subjective human judgment (and labor) is needed to 
group symbols by similarity. For example, if three 
participants pinched their thumb and index finger together 
for “close a file” and two participants pinched their thumb 
and middle finger together instead, the researcher would 
have to decide whether these actions were two distinct 
gestures (because of the variation in finger used) or should 
be considered one similar proposal (touch the thumb to a 
finger). This decision might be influenced by other factors, 
such as the form of the other proposals in the gesture set, or 

2 Readers wishing to know more about end-user elicitation studies 
are encouraged to read some of the pivotal papers [21,22,37,38]. 



 
 

the limitations of the relevant technology platform (e.g., the 
ability to detect different fingers). Further, this process is 
time-consuming, as the researcher may have to watch videos 
(in the case of gestures) many times to assess the nature of a 
particular symbol and its similarity to other symbols. 

In addition to the subjective nature of the work required to 
analyze these studies, comparing symbols is taxing both in 
time and effort. In our example, if the researcher recruited 30 
participants, and each one of the participants proposed only 
two symbols (here, gestures) for each of the researcher’s 
three referents (here, app file functions), then for each 
referent, the researcher would have to compare 60 symbols 
to each other, for a total of 3600 comparisons per referent. 
That’s 10,800 comparisons for all three referents. The 
amount of time and effort required by the researcher is the 
main problem our work is addressing. We propose the use of 
online crowd workers in combination with automatic 
clustering algorithms to achieve the desired result of symbol 
grouping for referents. 

RELATED WORK 
Relevant prior work includes studies eliciting user input, 
methodological improvements to end-user elicitation 
studies, and the use of online crowds in HCI. 
End-User Elicitation Studies 
The practice of employing users to propose interaction 
designs is not new, with the earliest example dating back to 
1984 when Good et al. [10] had users propose command 
terms to design an intuitive command-line interface. 
Wobbrock et al. [35,36] formalized their gesture elicitation 
method using stylus gestures and, later, tabletop hand 
gestures, adding conflict resolution and agreement 
calculations. Many have replicated Wobbrock et al.’s 
methodology in HCI research; for example, Morris et al. [23] 
used it to elicit 357 speech and gesture interactions for TV-
based web browsing, Obaid et al. [25] used the method to 
elicit 385 body gestures for controlling humanoid robots, and 
Piumsomboon et al. [27] used it to explore 800 user-defined 
interactions for augmented reality. Our work aims to reduce 
the resources required to analyze the results of such studies 
while allowing researchers to conduct elicitation studies on 
a large scale.  
Improvements to Elicitation Methods 
Given the popularity of the end-user elicitation method, there 
has been a considerable body of work that contributed 
extensions to it, both in the elicitation step and in the 
agreement analysis step. Morris et al. [21] introduced 
principles to reduce legacy bias in end users when proposing 
symbols such as gestures. Vatavu and Wobbrock [33,34] 
added new agreement calculations, disagreement scores, and 
qualitative judgments; Morris [23] also proposed consensus 
metrics to supplement agreement scores. Other work [24,30] 

                                                        
3 Currently, Crowdsensus uses text-based symbols and referents. 
Future work will extend the tool to handle other forms of 

made contributions to gesture-specific analysis. Our work 
contributes a tool to reduce the time and effort required to 
analyze elicitation studies regardless of the type of symbols 
collected, whether the researchers are doing the analysis 
themselves or employing a crowd of online workers to 
provide the subjective similarity judgments for them. 
Online Crowds in HCI Research  
The use of an online crowd of workers, paid or unpaid, to 
accomplish tasks that are computationally difficult or 
impossible is a common practice [4,6,19]. Bragg and Weld 
[5] and Chilton et al. [7] created algorithms to enable crowd 
workers to generate taxonomy labels for items such as 
images. Tamuz et al. [33] and others [12,13,28] used crowds 
to cluster data using the triplet model, an approach different 
than ours. Our work aims to use crowd workers to provide 
subjective similarity judgments for agreement analysis in 
end-user elicitation studies, where the symbols the crowd is 
judging can be complex, like freehand gestures, icon 
sketches, or audio clips, not just strings of text. 

CROWDSENSUS: A SIMILARITY JUDGEMENT PLATFORM 
We developed a tool called Crowdsensus to capture and 
analyze symbol-similarity votes from online crowds. 
Crowdsensus generates custom web interfaces that facilitate 
the collection of similarity votes from online crowd workers. 
The interfaces are platform-agnostic and run on any device 
with a web browser.  

Importing Symbols 
After conducting an elicitation study, a Crowdsensus user 
uploads a set of symbols collected for a referent. Currently, 
this set takes the form of a comma separated value file 
(CSV).3 The symbols are stored in the Crowdsensus database 
to be used in generating similarity-judgment webpages for 
the uploaded data.  

Interface Designs for Similarity Judgments  
Crowdsensus first shows an instruction page that includes a 
training video on how to complete the task of similarity 
voting. Once crowd workers are familiar with the task, they 
click “Start.” The main screen shows a prompt asking them 
to select similar symbols. There is a “Help” button that brings 
up the instructions screen with the training video. At the 
bottom, a “Done” button takes the workers to the next task, 
and a progress bar indicates how far through the process they 
are. We designed three different approaches to present the 
symbols to the workers for comparison, described below.  

The Direct Comparison Interface “(1:1)” 
The first design presented direct comparisons between two 
symbols, i.e., a 1:1 comparison. With this approach, crowd 
workers see two proposed symbols for a given referent 
displayed side-by-side, with two buttons under them labeled 
“Yes” and “No.” 

interaction, such as audio clips, still images, and videos, to convey 
different interaction modalities. 



 
 

 
Figure 1. The three comparison interfaces in Crowdsensus. (A) The Direct Comparison interface. A prompt asks crowd workers to vote on the 
similarity of two commands. (B) The List Comparison interface. The worker selects from a list of symbols those he thinks are similar to the one 
highlighted in the middle of the screen. (C) A list of draggable symbols, with one dragged over the “create new group” drop zone. 

If the workers think the two symbols are similar, they click 
“Yes”; otherwise, they click “No.” Figure 1A shows a 
screenshot of the Direct Comparison interface. 

The List Comparison Interface “(1:N)” 
The second design was the comparison of a symbol to a list 
(Figure 1B), where one symbol for a given referent is being 
compared to a subset of the other symbols proposed for that 
same referent, i.e., a 1:N comparison. This design shows a 
symbol in a box in the middle of the screen and a checklist 
of other proposed symbols from which to select.  

The Grouping Interface “(N:N)”  
The final similarity judgment interface, the Grouping 
interface, presents all of the proposed symbols for a given 
referent inside draggable elements. Crowd workers compare 
all symbols to each other in a many-to-many approach, i.e., 
an N:N comparison. On the right-hand side of the screen, 
there is a “create a new group” drop zone. The workers have 
to drag-and-drop elements onto the drop zone to create a new 
group (Figure 1C). The workers repeat the operation, 
dragging-and-dropping symbols either onto established 
groups or to create new groups. On the right side of every 
group there is a count showing the number of symbols in that 
group. Clicking on a group will open a pop-up that displays 
all of the symbols belonging to that group. 

Preference for the List Comparison Interface “(1:N)” 
After thoroughly exploring the benefits and downsides of 
these three grouping interfaces, we eliminated the Direct 
Comparison interface (1:1) due to the large volume of tasks 
required to get adequate votes for analysis. For each referent 
there had to be N 2 1:1 comparisons, where N is the number 
of symbols for that referent. For instance, in the study we 
analyze in the next section, we gathered 43 symbols for 10 
referents, which would need 18,490 comparisons to get a 
single similarity vote for every pair of symbols. Also, it was 
hard to create vote validation mechanisms for this interface 
to eliminate spam voting. On the flip side, we eliminated the 
Grouping interface (N:N) because pilot testing showed it was 
too complex and frustrating for the workers when working 
with a large dataset. Future work with smaller datasets might 
reconsider this design. We therefore decided to make the List 
Comparison interface (1:N) the default interface for 

Crowdsensus. By providing a list of options, the 1:N 
interface provides more context for the user than the 1:1 
interface, but is less overwhelming than the N:N interface.  

Prompts for Similarity Judgments 
At the top of the List Comparison interface there is a crucial 
prompt instructing the crowd workers to vote on the 
similarity of the presented symbol to those appearing in the 
list. We tested four different phrasings of this prompt. The 
prompt was phrased with the following variations: “Select 
all commands that are (‘essentially the same as,’ 
‘substantially similar to,’ ‘similar to,’ ‘kinda similar to’) this 
one.” From pilot testing, we found that the phrase 
“essentially the same” and “substantially similar” yielded 
very strict, inflexible similarity voting from the crowd. 
Conversely, the phrase “kinda similar” gave very loose 
similarity votes, resulting in an agreement score of 1.00, 
meaning that the crowd voted all symbols to be “kinda the 
same.” We found that the best prompt to use was simply, 
“Select all commands that are similar to this one.” Such 
neutral phrasing struck a nice balance between promoting 
strict and permissive comparisons. 

Number of Symbols Presented 
In the List Comparison interface (1:N), the number of 
symbols listed could conceivably vary from as few as two 
symbols up to N, the entire set of symbols for a given 
referent. We tested out three different configurations of the 
number of symbols shown: 10 symbols, 20 symbols, and all 
43 symbols that we used in the study presented in this paper, 
below. In our pilot testing, we found that the number of 
symbols presented actually did not affect the crowd’s 
performance or our results, making it possible to present 
large sets of data in smaller subsets that fit on a single screen. 

Vote Validation 
To eliminate spam votes, we devised two procedures for vote 
validation: time thresholds and the identical symbol test.  

Time Threshold 
From pilot testing, we saw that the average time spent voting 
on a single List Comparison task with 43 symbols in the list 
was a little over 30 seconds. We decided to put a threshold 
of 15 seconds per task to accept valid data. Data coming from 



 
 

voters who did not spend at least 15 seconds looking at the 
symbols were disqualified and not recorded. 

Identical Symbol Test 
As stated, in the List Comparison interface, there was a list 
of symbols being compared to the primary symbol. That list 
included the primary symbol itself. Any answers submitted 
where the primary symbol itself was not selected were 
discarded, since a failure to self-match indicates the worker 
was not paying adequate attention to the task.  
EVALUATING CROWDSENSUS: DATA COLLECTION 
To answer our research questions around using online 
crowds to generate similarity judgments for agreement 
analysis in end-user elicitation studies, we created a set of 
referents and symbols. We then analyzed this data with two 
methods: manual analysis by elicitation study experts, and 
crowd-based analysis using Crowdsensus. 

Creating a Set of Referents and Symbols 
Typically, elicitation studies are carried out in a laboratory. 
For this study, we conducted an online elicitation study with 
workers on Amazon Mechanical Turk to create a set of 
symbols for evaluating Crowdsensus. We based the referents 
on Morris’s “Web on the Wall” study [23]. We asked 43 
crowd workers to type in text strings representing voice 
commands that they felt would be the most intuitive way to 
perform each of our 10 referents to interact with a voice-
controlled web browser at a distance (see Table 4). We chose 
to elicit the commands in the form of text strings rather than 
audio clips in order to simplify the format of data capture and 
storage. The set of referents and symbols generated by this 
study is available for other researchers to use and is included 
as Supplementary Materials accompanying this paper. 

Grouping of the Symbols by Elicitation Experts 
We requested groupings of these symbols by a set of 
elicitation experts (the status quo method by which such data 
are analyzed) to compare the experts’ output to that of the 
crowd via Crowdsensus. In addition, the first author of this 
paper analyzed the data as an expert would, using the 
protocol established by prior work [38]. For every one of the 
10 referents, the experts grouped the elicited symbols based 
on their similarity, and calculated the agreement score using 
Eq. 1, above. For each referent, the experts elected the group 
with the largest number of similar symbols to trigger the 
given referent. Aliasing a single referent to multiple symbol 
synonyms was not considered for this study. 

Our elicitation experts were considered experts because they 
had previously published research using elicitation studies. 
All experts had Ph.D. degrees and were external to our own 
university. Experts did all groupings before any output from 
Crowdsensus was available. Table 1 gives the experts’ 
demographic information. 

We sent each of the experts an Excel spreadsheet that 
included a separate tab for each of the 10 referents. Within 
each tab, 43 separate rows contained the text of the proposed 
symbols for that referent. We asked them to group the 

symbols for each referent by entering a group number in a 
column adjacent to each symbol, and to record how long it 
took them to complete the task using provided timing 
software. As compensation for their time, each expert 
received a $50 Amazon gift card. We chose this 
compensation level based on the amount of time it took the 
first author to analyze the same data (approximately 30 
minutes), estimating that faculty are compensated at 
approximately $100 / hour based on typical faculty salaries 
in the U.S. 

Grouping of the Symbols by the Crowd 
We recruited 410 workers from Amazon Mechanical Turk. 
The majority of them were between the age of 26 and 40. 
Sixty-three percent of the workers had bachelor’s degrees, 
and 85% of them considered English to be their primary 
language. Table 1 provides the workers’ demographic 
information. Workers on Mechanical Turk who accepted the 
human intelligence task (HIT) went to a webpage on our 
Crowdsensus server by following the link in the HIT itself. 
The page provided instructions, human subjects study 
approval details, and researchers’ contact information. 
Before starting the task, the workers had to fill out a brief, 
pre-task survey that collected demographic information, as 
well as details about their familiarity with voice-operated 
technologies. 

Demographic Experts Crowd 

Gender 
Male 6 (86%) 224 (55%) 
Female 1 (14%) 186 (45%) 
Other 0 0 

Age 

18-25 0 155 (38%) 
26-40 6 (86%) 214 (52%) 
41-55 1 (14%) 28 (7%) 
56 and over 0 13 (3%) 

Education 
level 

Less than high school 0 3 (1%) 
Graduated high school 0 65 (16%) 
Technical school 0 14 (3%) 
Associate degree 0 38 (9%) 
Bachelor’s degree 0 257 (63%) 
Advanced degree 7 (100%) 33 (8%) 

Country 
USA 6 (86%) 136 (33%) 
India 0 250 (61%) 
Other 1 (14%) 24 (6%) 

English is 
primary 
language 

Yes 4 (57%) 350 (85%) 

No 3 (53%) 60 (15%) 

Frequency 
of voice 
command 
use 

Never 1 (15%) 184 (45%) 
Daily 5 (70%) 88 (21%) 
Weekly 0 105 (26%) 
Monthly 1 (15%) 32 (8%) 

Table 1. Demographic information for the academic experts, plus the 
first author of this paper, and the crowd workers who analyzed our 
web-browser-voice-command elicitation data set. 

After completing the background survey, workers moved on 
to the page generated by the Crowdsensus tool. Pilot testing 
showed that workers would be able to finish 20 runs of the 
List Comparison interface (i.e., 1:N for N = 43 symbols) 
within about 15 minutes. Therefore, we compensated the 
workers $2.75 per HIT. We based our pricing on the 
recommendation of Silberman et al. [31], equaling a rate of 



 
 

$11/hour (our state’s minimum wage). After finishing the 20 
voting tasks, the participants moved on to a page that thanked 
them for participating and provided them with a unique code 
to enter back into the HIT page on Mechanical Turk. We 
used those unique codes to track which participants finished 
the HIT. 
EVALUATING CROWDSENSUS: CLUSTERING  
A crucial step after the crowd has provided votes indicating 
perceived similarity among symbols is to group these 
symbols. For a given referent, all pairs of symbols proposed 
for it have a level of similarity expressed by the number of 
“yes” votes given by the crowd in response to the prompt, 
“Select all commands that are similar to this one.” The more 
“yes” votes, the more similar the crowd felt two symbols 
were. In grouping like symbols, the challenge is to determine 
how many distinct symbols emerged for a given referent. 

This challenge amounts to a graph clustering problem where, 
for a single referent, the symbols are nodes in a fully-
connected graph with weighted edges between all nodes 
being the ratio of “yes” similarity votes to total votes (Figure 
2). The clustering problem is to form sets of nodes such that 
nodes within the same set have maximal similarity while 
nodes across different sets have minimal similarity. This 
problem is a version of the correlation clustering problem for 
general weighted graphs, which is of class APX-HARD [8].  

We wrote various optimization algorithms for this problem: 
hill climbing, shotgun hill climbing, simulated annealing, a 
genetic algorithm, and correlation clustering. We briefly 
describe the formulation of each algorithm and then present 
results of testing the algorithms on our crowd-supplied data. 

 
Figure 2. A small example of a fully-connected vote-weighted graph 
with five nodes. Weights are visible at the midpoints of the edges 
between nodes. The challenge of clustering is evident with nodes 2, 
3, and 4, as nodes 2 & 3 and 3 & 4 have strong affinity, but 2 & 4 do 
not. So should {2,3,4} be grouped? The same problem exists for 
nodes 0, 1, and 4, with 0 & 4 and 1 & 4 having strong affinity, but 0 & 
1 do not. So should {0,1,4} be grouped? Our actual data had 43 
nodes per referent, not just 5. 

Hill Climbing 
We implemented steepest-ascent hill climbing [30] (pp. 111-
112) as a baseline optimization algorithm. A solution state 
was represented as a set-of-sets, with each subset containing 
the nodes (symbols) deemed similar. Thus, if all symbols 
                                                        
4 Our one-sided binomial test examined whether there was a 
statistically significant proportion of “yes” votes out of all votes 
indicating similarity between two symbols at the α = .05 level. 

were deemed similar, the set-of-sets would contain one set of 
all nodes. If no symbols were deemed similar, the set-of-sets 
would contain a separate set each with only one node. 

A fitness function for the hill climber’s state was defined as 
follows. In the set-of-sets, for each pair of symbols within a 
set, if the “yes” votes (out of all votes) passed a one-sided 
binomial test,4 we added the percentage of “yes” votes to the 
fitness score. If, on the other hand, the binomial test failed, 
we subtracted one minus the percentage of “yes” votes from 
the fitness score. Conversely, for each pair of symbols across 
different sets, we did the opposite: passing the binomial test 
subtracted the percentage of “yes” votes from the fitness 
score, while failing the binomial test added one minus the 
percentage of “yes” votes to the fitness score. Defined in this 
way, the fitness score drove the climber towards states 
having more similar symbols grouped together and less 
similar symbols grouped separately. 

An essential component to any hill climber is formulating the 
possible moves to neighboring states. For our climber in a 
given state represented by a set-of-sets, neighboring states 
were created by taking each symbol and placing it in every 
other set, including the empty set. Thus, for a state with N 
sets containing a total of M items, N × M possible 
neighboring states were considered by the climber at each 
move. As a steepest-ascent hill climber, the move yielding 
the greatest fitness gain was always chosen. A concern with 
this approach, of course, is getting stuck on local maxima 
within the search space. 

Shotgun Hill Climbing 
We also implemented a variant of hill climbing called 
shotgun hill climbing [30] (pp. 112-113), which is equivalent 
to random-restart hill climbing. In shotgun hill climbing, 
multiple climbers are “shot” randomly into the search space 
and climb from wherever they land, thereby increasing the 
chances of at least one climber reaching the global 
maximum. We first utilized 1000 climbers but surprisingly 
found that five climbers performed just as well (and much 
faster), suggesting a search space with few local maxima. 
Our shotgun hill climber therefore used five climbers. 

Simulated Annealing 
A more sophisticated iterative improvement algorithm than 
hill climbing is simulated annealing [30] (pp. 113-114). In 
our implementation, a random move was chosen from among 
neighboring states. If that move was to a better state, it was 
always taken. If it was not, then unlike hill climbing, it still 
might have been taken depending on a probability that starts 
high and decreases over time, like the temperature of a 
cooling metal. Following Kirkpatrick et al. [18], we 
automatically set the initial and minimum temperatures via 
stochastic sampling of the search space. We set the cooling 
rate to 3% and enabled 100 possible moves per temperature. 



 
 

Genetic Algorithm 
Genetic algorithms have been used to form clusters within 
graphs [39]. We implemented a genetic algorithm [29] that 
began with 1000 randomly generated “organisms,” each 
encoding a set-of-sets solution state, and evolved them for up 
to 10,000 generations, mutating offspring by moving a 
random symbol into a random set, including the empty set. 
Offspring mutated on a decreasing schedule, with more 
mutations in early generations than in later generations. At 
each generation, 20% of the fittest organisms survived to 
populate the next generation. An exception rate of 5% was 
used to retain less-fit organisms for subsequent generations 
to avoid local maxima.  

Correlation Clustering 
Unlike general iterative improvement algorithms, correlation 
clustering is specific to the problem of clustering nodes in 
graphs that have “affinity,” while avoiding clustering nodes 
that have “aversion.” Correlation clustering was first 
formalized by Bansal et al. [3] for graphs with binary 
weighted edges represented as ⟨+,−⟩. Ailon et al. [2] 
introduced a correlation clustering approximation algorithm 
for general weighted graphs in which each edge had a 
positive weight w+ and a negative weight w–. However, our 
problem is different, as edges are not negatively weighted; 
all are positively weighted, some more than others. We 
implemented the KWIKCLUSTER approximation algorithm of 
Ailon et al. [1] (p. 23:13) but defined “affinity” as passing 
the one-sided binomial test described above, i.e., node pairs 
that did not pass this test were deemed to have “aversion.” 
As this algorithm is highly dependent on the selection of 
random nodes, we ran it with 1000 random restarts, taking 
the best outcome. 

Performance Results 
To assess the performance of each algorithm in grouping our 
symbols, we performed a simple experiment. We first used 
trial-and-error to find the settings for each algorithm that 
seemed to perform best within reasonable time limits. We 
then ran the grouping algorithms on all 43 symbols for each 
of our 10 referents. We did this 10 times and averaged the 
results. Thus, we were left with 5 algorithms × 10 referents 
= 50 fitness scores and execution times (Table 2). Ultimately, 
we selected shotgun hill climbing for Crowdsensus because 
of its high fitness scores and fast execution times. 

Solution Fitness Scores 
Our statistical analysis shows that fitness scores conformed 
to the assumptions of analysis of variance. A repeated 
measures ANOVA using the Greenhouse-Geisser correction 
[11] indicated no significant effect of the algorithms on 
fitness scores (F1.2, 10.7 = 2.32, n.s.). 
Algorithm Execution Times 
Algorithm execution times violated the normality 
assumption of ANOVA and were therefore analyzed with 
nonparametric tests. A Friedman test indicated a significant 
effect of algorithm on execution time (χ2(4,N=50) = 37.60, 
p < .0001). Post hoc Wilcoxon signed-rank tests corrected 

with Holm’s sequential Bonferroni procedure for multiple 
comparisons [14] indicated that all execution times were 
significantly different under this analysis (p < .02), except 
the genetic algorithm and hill climbing. 

On balance, given the parity in fitness scores and the desire 
for fast execution times, it seems everything but simulated 
annealing is a viable option. As noted, we chose shotgun hill 
climbing for its peak fitness score and reasonable execution 
time. It was noteworthy that hill climbing performed so well, 
indicating that the search space must be relatively smooth. 
Also, the fast speed of correlation clustering, even with 1000 
random restarts, was impressive. 

Algorithm Solution Fitness Execution Time (sec) 
Hill climbing 561.3 (141.8) 14.5 (6.1) 
Shotgun hill climbing 562.6 (141.1) 100.3 (47.7) 
Simulated annealing 562.6 (141.1) 282.0 (241.8) 
Genetic algorithm 560.5 (141.1) 17.1 (1.2) 
Correlation clustering 559.9 (144.3) 2.8 (1.8) 

Table 2. Means (and standard deviations) of the quality of the 
solutions produced by the symbol-clustering algorithms, and how 
long it took to produce them, in seconds. Higher fitness scores 
indicate better performance. Lower execution times are preferred. 

RESULTS: VALIDATING THE CROWDSENSUS APPROACH  
We used data from 410 crowd workers who provided votes 
that passed our validation tests out of 461 workers who began 
our study. The 51 workers whose data we did not use 
triggered our spam detectors. We used the shotgun hill 
climbing algorithm, described above, to cluster symbols 
based on the crowd’s votes. We scrutinize Crowdsensus by: 

1. Calculating the agreement score for each referent (see 
Eq. 1). We wanted to understand how much the crowd 
and the experts each thought the users who elicited the 
symbols were in agreement. 

2. Quantitatively measuring the similarity of the symbol 
groupings produced by the crowd and by the experts.  

3. Finding the definitive symbol for each referent. We 
wanted to see what symbols the crowd chose for each 
referent, which ones the experts’ judgments converged 
on, and what overlap there was between the experts and 
the crowd.  

4. Calculating the cost of using Crowdsensus to analyze the 
symbols, comparing this to the cost of using experts.  

5. Calculating the time it took the crowd to analyze the 
symbols, comparing this to the time for experts.  

Agreement Scores 
We calculated the agreement scores from the crowd and from 
the experts. Vatavu and Wobbrock [35] recommend using 
qualitative judgments with agreement scores and provided a 
guide for these judgements. According to their guide, low 
agreement scores are less than 0.1, medium scores are 
between 0.1 – 0.3, high scores are between 0.3 – 0.5, and 
very high agreement scores are above 0.5.  



 
 

Figure 3 shows how each of the experts, including the first 
author, and the crowd (via Crowdsensus) grouped the 
symbols for each referent. High or very high agreement 
scores indicated that whoever grouped the symbols thought 
the end users who provided these symbols exhibited some 
consensus. The experts tended to generate fewer groupings 
with larger numbers of symbols leading to high agreement 
scores, meaning the experts thought there was high similarity 
among the symbols for most referents. The crowd (plus 
clustering algorithm, i.e., Crowdsensus) had low agreement 
scores for five of the 10 referents, meaning the crowd was 
stricter than experts in its assessment of which symbols were 
similar to each other. This strictness led the crowd to make 
small groups of very similar symbols.  

 
Figure 3. The amount of agreement among symbols elicited for each 
of the 10 referents as grouped by the first author, the experts (E.1-6), 
and the crowd via Crowdsensus.  

Similarity of Groupings 
To determine how similar the various groupings were, we 
devised a distance metric by which to compare groupings. 
For each referent, we compared the groupings generated with 
Crowdsensus to the groupings generated from the experts’ 
judgments by converting each grouping into a 2-D matrix of 
43 rows and 43 columns, each row or column representing 
one symbol. Each cell was populated with one of three 
values: (-1, 0, +1). A -1 was for unused cells like the 
intersection of a symbol with itself. A 0 meant the symbols 
intersecting at this cell belonged to different groups. A +1 
meant the two symbols intersecting at this cell belonged to 
the same group.  

An example will help illustrate. Consider the grouping 
{(0,2), (1)}. Where symbols 0 and 2 belong to the same 
group and symbol 1 is in a group by itself. We would 
represent this grouping as shown in Figure 4A. Another 
grouping of these same symbols could be {(0), (1,2)}, where 
symbol 0 is in a group by itself, and symbols 1 and 2 are in a 
group. This second grouping is represented in Figure 4B. To 
measure the distance between the two groupings, we can use 
Eq. 2 [16], below: 

 (2) 

In Eq. 2, the 2-D distance d2 between 0-based indexed 
matrices A and B is given by taking the root of the sum of 
squared differences between all cells aij and bij “above the 
diagonal.” A cell aij is a cell in n × n matrix A and indicates 

whether items i and j are in a set together (+1) or not (0). The 
outer summation causes index i to start in column 1, and the 
inner summation causes index j to start at row 0. Thus, rows 
are iterated within columns for cells for which j < i. 

  A     B  

j\i 0 1 2  j\i 0 1 2 
0 -1 0 +1  0 -1 0 0 
1 -1 -1 0  1 -1 -1 +1 
2 -1 -1 -1  2 -1 -1 -1 

Figure 4. (A) Matrix A represents the grouping {(0,2), (1)}. (B) Matrix 
B represents the grouping {(0), (1,2)}. This type of matrix 
representation allows us to compute the distance between two sets-
of-sets. Note that the matrices have 0-based indices and assume that 
their items are indexed likewise from zero. 

Using Eq. 2, the distance d2 between matrices (A, B) in 
Figure 4 is 0.67, which makes intuitive sense because 1/3 of 
the elements in A must be moved to create B (i.e., move the 
2). In general, then, the 2-D distance d2 between two matrices 
is a value from 0, if they are identical, to 1, if the two matrices 
are entirely different.  

Table 3 (next page) shows the mean pairwise distances (and 
standard deviations) among Crowdsensus, the first author, 
and each one of the experts averaged over 10 referents. The 
crowd’s groupings via Crowdsensus are similar to the 
experts’, with E.3 being the closest on average to the crowd’s 
groupings at 0.27 and E.4 the furthest at 0.59. The average 
distance for all the experts among themselves was 0.29. 

Definitive Symbol Selection 
The third measure we used to judge the crowd’s performance 
relative to the experts was to find the definitive symbol 
generated by the crowd workers, i.e., the largest group of 
similar symbols, and compare that to the definitive symbol 
that emerged from the experts for each referent. We used an 
“experts’ group” to achieve our goal. The experts’ group for 
each referent was made up of symbols that appeared across 
all of the largest symbol groups per referent generated by the 
first author and the experts. 

Figure 5 (next page) shows the number of symbols in the 
experts’ group for every referent, the number of symbols the 
crowd elected, and the number of overlapping symbols 
between the two. For referents 2, 3, and 10, all of the symbols 
selected by the crowd appeared in the experts’ group, with 
the crowd’s symbols making up 73%, 42%, and 56% of the 
experts’ group, respectively. For referents 1, 5, 8, and 9, the 
crowd’s symbols made up 81%, 100%, 30%, and 59% of the 
experts’ group, respectively. 

Referent 4 was a case where there was no overlap in symbols 
between the crowd and the experts, i.e., Crowdsensus 
converged on a different set of symbols than the experts’ 
merged judgements to invoke “switch between pages in a 
backward direction.” For referents 6 and 7, we were unable 
to find a single referent that all experts had in their individual 
definitive symbol groups, which resulted in empty experts’ 
groups for these two referents. The crowd’s votes generated  
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Table 3. The mean distances over 10 referents between Crowdsensus, the first author, and the experts. The distance values are in [0.0, 1.0], 
where 0.0 means the two matrices are identical, and 1.0 means they are entirely different. Standard deviations are in parentheses.

a definitive symbol for referent 6, but the crowd’s votes did 
not cluster any two symbols into a group to be used as the 
definitive symbol for referent 7. Table 4 presents the experts’ 
and crowd’s sets of definitive symbols (i.e., elicited voice 
commands). 

 
Figure 5. Comparison of symbol counts in the definitive group for 
each referent (R1-R10). Blue bars are the number of symbols in the 
experts’ group. Yellow bars are for the crowd. Green bars are the 
number of overlapping symbols in the experts’ and crowd’s groups. 

Referent 
How would you phrase 
a voice command that 
would… 

Experts’ symbol Crowd’s symbol 

1. open the browser? “Open browser” “Open browser” 
2. perform a search for 
cat videos? 

“Search for cat 
videos” 

“Search for cat 
videos” 

3. click the first link on 
the page? “Click the first link”   “Click the first 

link” 

4. switch between pages 
in a backward direction? 

“Go back ‘one / to 
the last / to the 
previous’ page” 

“Go to the 
previous page” 

5. switch between pages 
in a forward direction? “Go to the next page” “Go to the next 

page” 
6. switch between 
multiple open tabs? N/A “Switch tabs” 

7. select a region on the 
page? N/A N/A 

8. request the same page 
you are browsing to be 
loaded again? 

“Reload the page” “Reload the page” 

9. bookmark a page? “Bookmark this 
page” 

“Bookmark this 
page” 

10. close the browser? “Close browser” “Close browser” 
Table 4. A list of all referents used in this study (adapted from [23]), 
and the symbols that would invoke them, as chosen by experts and 
non-expert crowd workers. An “N/A” indicates a lack of convergence. 

Cost 
We paid each researcher $50 to analyze our dataset of 10 
referents. Therefore, the cost of one referent to be analyzed 
by one expert was $5.00. For this study, with its 43 symbols 

per referent, we needed 2.15 Mechanical Turk HITs to 
complete one referent because one HIT contained 20 List 
Comparison voting tasks (see Figure 1B), and we needed 43 
such tasks to compare all of the symbols to each other. Our 
Turk tasks were priced at $2.75. Thus, the cost for a crowd 
worker to analyze a referent was $5.90. In summary, then, 
the cost of Crowdsensus was similar to the cost of the 
experts. 

Time 
On average, it took the experts, including the first author, 
3.17 (SD=1.2) minutes to group the symbols for a single 
referent. For the crowd workers, one HIT consisted of 20 List 
Comparison tasks (see Figure 1B). HITs were batched into 
groups of 31. Therefore, a batch resulted in 31 × 20 = 620 
List Comparison tasks. To analyze a single referent, we 
needed 43 List Comparison tasks. In 11.22 minutes, the 
crowd analyzed 14.4 referents, meaning, on average, it took 
about 0.78 minutes per referent. This result was about four 
times faster than the experts (i.e., 3.17 / 0.78 = 4.06). 

DISCUSSION 
To understand our findings in context, we revisit the research 
questions posed in the introduction:  

Q1. How can the crowd facilitate similarity judgments for 
agreement analysis in end-user elicitation studies? 

We were able to successfully utilize Crowdsensus to produce 
agreement analyses for our study. Crowdsensus takes a 
dataset of user-generated symbols and creates custom web 
interfaces. These interfaces facilitate the gathering of 
similarity judgment votes. Clustering algorithms group 
symbols during the agreement analysis of elicitation studies. 

We pilot-tested potential interfaces for Crowdsensus, 
examining the possible effects of simple user interface 
choices—displaying 1:1, 1:N, or N:N simultaneous 
comparisons; the specific phrasing of instructions; and the 
number of symbols displayed within a single HIT. Iterative 
comparative testing and refinement of the interface helped us 
identify a set of interface parameters that produce high-
quality crowd judgements, particularly the use of a 1:N 
selection mechanism and the crucial phrase “similar to” in 
the instructions. We discovered that it is safe to present large 
symbol sets as smaller, manageable subsets.  
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Experts Crowd Overlap

 Crowd 1st Author Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 
Crowd 0 .39 (.14) .40 (.23) .41 (.17) .27 (.18) .59 (.14) .41 (.21) .39 (.19) 
1st Author  0 .39 (.14) .36 (.10) .20 (.15) .40 (.12) .39 (.10) .37 (.10) 
Expert 1   0 .20 (.10) .36 (.14) .27 (.17) .18 (.11) .14 (.11) 
Expert 2    0 .37 (.90) .29 (.16) .19 (.07) .15 (.08) 
Expert 3     0 .48 (.13) .36 (.15) .36 (.12) 
Expert 4      0 .24 (.15) .26 (.18) 
Expert 5       0 .18 (.10) 
Expert 6        0 



 
 

From our study, we discovered that the average time a crowd 
worker spent voting on the similarity of one symbol 
compared to 43 others was 38.23 seconds. We recommended 
using 15 seconds as a threshold to accept valid data. We also 
used an approach to ensure the crowd workers were paying 
attention by testing whether they voted-as-similar the exact 
symbol to which they were comparing all other symbols.  

Q2. By using the crowd, what are the benefits, if any, in terms 
of cost and time compared to the status quo use of experts’ 
judgments? 

In our study, the crowd cost $5.90 per referent, while the 
experts cost $5.00. Therefore, the crowd cost was similar to 
the experts. Specific monetary costs may vary in practice 
depending on the exact wages of experts and crowd workers 
and on the desired level of redundancy in crowd judgments. 

The average time it took the crowd to analyze a single 
referent was 0.78 minutes. The average time it took the 
expert researchers we recruited to examine our data was 3.17 
minutes per referent. Therefore, the crowd can provide 
similarity judgments to analyze end-user elicitation studies 
using our List Comparison interface (see Figure 1B) about 
four times faster than expert researchers.  

Having the crowd analyze the results of elicitation studies 
cuts time significantly. The researcher is also free to conduct 
further analysis and tweak the crowd’s groupings, 
capitalizing on her own expertise and whatever 
supplementary material (e.g., study notes) she has available. 
By cutting down on the resources needed to analyze 
elicitation studies, we open up numerous possibilities to 
advance this methodology, like scaling up the number of 
symbols collected to create more inclusively-designed 
technologies, and lowering barriers to conduct replication 
studies or reanalyze published studies. 

Q3. How does the quality of the results produced by the 
crowd compare to those produced by expert researchers?  

Similarity judgments for symbols generated in elicitation 
studies are subjective. We expected to find differences in the 
way people grouped symbols. We therefore discuss the 
quality of the crowd’s results compared to those of our 
experts along three lines: agreement scores, grouping 
similarity, and the definitive symbol for each referent. 

Agreement Scores. Overall, the crowd’s grouping-agreement 
scores were lower than those of the experts. The experts 
seemed to believe that the symbols were more similar to each 
other than did the crowd. The crowd was stricter than the 
experts in considering which symbols belonged with each 
other in the same group, thereby creating smaller sets of 
more-similar symbols.  

Grouping Similarity. The average distances between the 
crowd’s grouping and each one of the experts’ was similar to 
those of the experts among themselves for every referent. 
This finding means that the crowd produced groupings 
comparable to those produced by the experts.  

Definitive Symbol Selection. Due to the lower agreement 
scores mentioned above, the crowd’s groupings were of 
smaller similar symbol sets. Thus, a definitive symbol 
chosen by the crowd contained less variance than those from 
the experts. For example, for referent 10, both the crowd and 
experts chose “close browser;” however, the experts’ 
grouping included variants like “please close this browser for 
me,” while the crowds’ grouping required a stricter match. 
This situation is where the experience of the experts and their 
familiarity with elicitation studies gives them an advantage 
over the crowd. Experts conducting elicitation studies might 
choose to create synonyms, like in the case where there are 
two or more popular groups of symbols proposed for a given 
referent. In our analysis, we made the simplifying 
assumption that a designer would choose a single symbol for 
each referent. However, the output of Crowdsensus could 
easily be analyzed by experts to form symbol synonyms. 

Limitations 
The symbols we elicited were text strings, a decision we 
made to simplify the process of capturing symbols and being 
able to share them easily with external experts. We suspect 
that richer multimedia symbols will require more time to 
analyze; we plan to generalize Crowdsensus to eventually 
support rich media. Also, our experts worked independently. 
Typically, if more than one researcher is analyzing the 
results, they work together to reach consensus on definitive 
symbols. Also, our dataset was relatively small, at 10 
referents and 430 symbols. Some studies are larger, such as 
Wobbrock et al.’s [38], which had 27 referents and 1080 
symbols, or Kane et al.’s [17], which had 22 referents and 
880 symbols. The scope of our dataset was limited to the 
standard functionality of a web browser, which made it easier 
to analyze than novel interactions; it is unknown whether 
expertise beyond that of crowd workers is required in more 
complex domains. 

CONCLUSION  
In this work, we developed Crowdsensus, a system that 
extends the popular design method of end-user elicitation 
studies by allowing researchers to crowdsource the crucial 
similarity judgments central to agreement analysis. Our work 
demonstrated that it is possible to use a crowd of non-experts, 
in conjunction with automatic clustering algorithms, to 
successfully analyze the results of an elicitation study. We 
also showed that using the crowd comes with benefits like 
saving time; it also produces results similar to those obtained 
with experts. It is our hope that using the crowd can propel 
end-user elicitation further by lowering barriers to running 
these studies at scale and with diverse audiences. 
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