
 61

EdgeWrite: A Stylus-Based Text Entry Method Designed
for High Accuracy and Stability of Motion

Jacob O. Wobbrock, Brad A. Myers, John A. Kembel
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

{ jrock, bam, jkembel }@cs.cmu.edu

ABSTRACT

EdgeWrite is a new unistroke text entry method for
handheld devices designed to provide high accuracy and
stability of motion for people with motor impairments. It is
also effective for able-bodied people. An EdgeWrite user
enters text by traversing the edges and diagonals of a
square hole imposed over the usual text input area. Gesture
recognition is accomplished not through pattern recognition
but through the sequence of corners that are hit. This means
that the full stroke path is unimportant and recognition is
highly deterministic, enabling better accuracy than other
gestural alphabets such as Graffiti. A study of able-bodied
users showed subjects with no prior experience were 18%
more accurate during text entry with EdgeWrite than with
Graffiti (p<.05), with no significant difference in speed. A
study of 4 subjects with motor impairments revealed that
some of them were unable to do Graffiti, but all of them
could do EdgeWrite. Those who could do both methods
had dramatically better accuracy with EdgeWrite.

Keywords

Text entry, text input, unistrokes, Graffiti, Palm, PDAs,
handhelds, assistive technology, computer access, motor
impairments, corners, edges, gesture recognition, Pebbles.

INTRODUCTION

We are investigating how handheld devices can be used as
assistive technologies to provide computer access for
people with motor impairments. In our previous work [19],
we describe how a handheld device can be used for
computer access by people who are unable to use a
keyboard and mouse due to motor impairments. People
with Cerebral Palsy or Parkinson’s often have intention
tremor that interferes with use of a mouse [11][20]. People
with Muscular Dystrophy often lose their gross motor
control and arm strength before losing their fine motor
control, making movement between a keyboard and mouse
difficult [18][20]. However, moving over the short expanse

Figure 1. A Palm PDA with an EdgeWrite template over the text
input area. A user makes all letters, numbers, and punctuation
inside the square hole by moving the stylus along the edges and
across the diagonals of the square. Small holes in the template
provide access to the four soft buttons on the Palm.

of a handheld screen often remains feasible. An application
we have written called Remote Commander allows people
to control their computer entirely from a Palm PDA,
providing for both text entry and mouse control. The reader
is directed to our previous work for more details [19].

However, text entry on a handheld device is difficult for
people with motor impairments. On-screen “soft”
keyboards are small and the keys can be difficult to acquire
even for able-bodied users. Some research addresses this
problem by attempting to discover the “optimal” soft
keyboard [30]. Still, for people with motor impairments,
these tiny keyboards are difficult to use and consume
precious screen space. They also require the user to fix her
attention on the keyboard rather than on the output [15].
This is particularly a problem when controlling a PC via a
handheld, as with Remote Commander, because the text
destination is on the PC monitor, not on the handheld.

Gestural text entry techniques, such as Graffiti, also do not
solve the problem of text input for people with motor
impairments. Tremor and fatigue dramatically impact a
user’s ability to make smooth, accurate, and controlled
movements [11]. Tremor makes it difficult or impossible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST ’03 Vancouver, BC, Canada
© 2003 ACM 1-58113-636-6/03/0010 $5.00

 62

for some subjects to make character forms recognizable by
a text entry system like Graffiti (Figure 2) [27].

Another result of tremor is that many users “bounce” the
stylus on the screen, triggering unwanted modes and
unwanted characters. In fact, this problem renders Graffiti
entirely unusable for some people with motor impairments.
A more stable means of text entry is necessary for users of
handheld devices who have motor impairments.

Able-bodied users will also benefit from more stable means
of text entry. Since PDAs are designed to be used “on the
go,” many situations arise where added stability could be
beneficial: riding a bus, walking, or annotating slides
during a presentation while standing.

For these reasons, we have been investigating multiple
approaches to providing stability through the use of
physical edges [28]. Edges offer many desirable properties.
Appling pressure against an edge while moving a stylus
provides:

• Greater Stability: Decreased movement variability
and movement offset [14].

• Greater Speed: Ability to move quickly yet
remain on the target line [27].

• Higher Accuracy: Targets along an edge or in a
corner are easier to acquire [27].

• Tangible Feedback: No longer is visual feedback
the only means of self-correction during
movement, as tactile feedback is available [2].

• Fitts’ Law Benefit: Edges allow for “target
overshoot,” where acquiring targets on edges is
easier than acquiring targets “in the open” [5][12].

To empirically validate these benefits, we conducted a
study of how edges affect the tracing of lines at various
angles on a handheld screen by people with motor
impairments [27]. We found dramatic advantages for line-
tracing along edges versus tracing lines “in the open.” Even
more dramatic were the advantages of tracing lines that
ended in corners. These advantages included the
aforementioned stability, speed, and accuracy.

Our research goal is to exploit these “pure” benefits of
edges in a text entry technique, and to prevent other factors
such as cognitive difficulties from diluting them. We
believe our new EdgeWrite1 input technique goes a long
way toward realizing these goals, as it relies heavily on
edges and corners, both interactively and algorithmically.
These edges are imposed on the input area by a transparent
plastic template with a square hole, inside which all text
entry is performed (Figure 1). Our empirical results show
that extensive iteration of the character set has made the
character forms highly guessable and easy to learn,
maintaining a low cognitive workload for the user.

In particular, we found that when compared to Graffiti,
EdgeWrite was 18% more accurate during text entry for
able-bodied users formerly unfamiliar with either technique
(p<.05). This benefit came without a significant cost in
speed. Users with motor impairments succeeded at using
EdgeWrite but were largely unable to use Graffiti due to
excessive tremor and bounce. The physical edges in
EdgeWrite reduced the propensity of tremulous users to
bounce the stylus on the screen.

AN OVERVIEW OF EDGEWRITE

EdgeWrite is a stylus-based unistroke input technique. To
make a character, a user places the stylus down inside the
square hole of the template (Figure 1), moves the stylus in a
specific pattern along the edges and diagonals of the square
(thereby hitting the corners of the square), and lifts upon
completion of the pattern. A character is then entered.

The first difference, then, between EdgeWrite and Graffiti2
is that all stylus motion in EdgeWrite occurs within a small
plastic square hole (1.69 cm2), which bounds the input area
with hard physical edges.

A second difference between EdgeWrite and Graffiti is that
recognition does not depend on the path of movement, nor
is the recognizer a pattern matcher. Instead, recognition
only depends on the order in which the corners are hit. The
advantages of this include:

• Users with motor impairments can “wiggle” or
slide and this does not degrade recognition.

• The recognition algorithm is elegant and fast, as
hit-testing corner areas is an operation capable of
being performed rapidly by a weak processor.

• Users can teach the system their own custom
gestures with one example, as training sets for a
pattern matching algorithm are not necessary.

• For the designer, it is easy to iterate character
forms; changing one only requires changing a
corner sequence value (a single integer). No sets
of points or glyphs are necessary.

1
 U.S. patent pending.

2 This paper refers often to Graffiti [7] because of its familiarity.

Most of our comments can be fairly applied to Unistrokes [6]
and Jot [9] as well.

Figure 2. A subject with Cerebral Palsy attempting to make a d in

Graffiti (left) and EdgeWrite (right). The Graffiti d was mis-

recognized as an h, whereas the EdgeWrite d was recognized
correctly. The jagged diagonal does not deter recognition in
EdgeWrite because only the order in which the corners are hit
matters. Note the straight lines where the subject moved along the

edges of the plastic template. This EdgeWrite d is an alternate form
not shown in the character chart in Figure 3.

 63

A third difference between EdgeWrite and Graffiti is the
reduction of modes in EdgeWrite. In particular, EdgeWrite
uses no shift, caps lock, or extended shift modes. The only
mode in EdgeWrite is a punctuation mode.

An important question is whether the EdgeWrite character
forms are easy to guess, learn, and make. Prior research
shows that Graffiti characters have these properties for
able-bodied users [16]. The evaluation discussed at the end
of this paper shows these properties to be true of EdgeWrite
as well.

Figure 3 is the character chart for current version of the
primary character forms in EdgeWrite. In addition, multiple
alternate forms exist for nearly every character (not
shown). The character forms are a product of many hours
of user testing and extensive iteration. In user testing, many
people discovered and used several of the alternate
character forms despite their absence from the chart,
suggesting a high degree of guessability.

Though many of the EdgeWrite characters look vaguely
like their handwritten counterparts, the mnemonic power of
these characters comes less from their appearance and more
from their “feel.” One subject noted this when, after
entering 20 phrases in EdgeWrite, he said, “I don’t
remember any of the pictures in my mind, but I still feel
them in my hand.”

As in Graffiti, some gestures resemble lowercase letters,
while other gestures resemble uppercase letters. All
gestures produce lowercase letters unless the capitalization
suffix stroke is appended to the gesture. The suffix stroke is
simply a motion to the upper-left corner (think “up” to
“make it big”) after the regular gesture is made but before
lifting the stylus. Note that, by design, no gestures finish in
the upper-left corner, allowing for this modeless design. In
user studies, subjects had no trouble with this method of
capitalization.

Primary EdgeWrite Character Forms

Figure 3. Primary EdgeWrite character forms. Alternate forms exist for nearly all
characters (not shown). The arcs comprising each character are not the literal path
of motion. Rather, the arcs make it possible to see where multiple strokes pass
over the same edge or diagonal. All arcs are actually made as straight lines.

 64

Another thing to notice about the character chart is that it
is representational, not literal. We faced a design
challenge in representing the strokes on paper, as many
characters have strokes that pass over the same edge or
diagonal more than once. If such a “double pass” is drawn
literally, then the result is merely a single line. Following
a suggestion from a professor of visual design, we chose
to arc the paths into the intended corners (Figure 4).
These arcs make it possible to clearly depict a double-
pass. Our subjects had little trouble reading the chart once
we explained this to them. In EdgeWrite, all movements
are, in the ideal case, straight lines. However, as
mentioned, straight line motion is not necessary for
recognition, only hitting the corners in the proper order.

Further detail about the design and implementation of
EdgeWrite is saved for a later section. Now we turn to the
related work that informed the creation of EdgeWrite.

Figure 4. These letters show how arcs reveal strokes that pass
over the same edge more than once, yet still indicate the intended
corner sequence. Both of these letters use the technique of
collapsing the letters’ right sides onto one edge.

RELATED WORK

The related work falls into four areas: (1) text entry
techniques, (2) assistive technologies and modeling of
motor-impaired performance, (3) text entry analysis
techniques, and (4) using edges to exploit Fitts’ Law.

Text Entry Techniques

Related techniques for entering text on handhelds come in
two main forms: on-screen soft keyboards and gesture-
based methods.

As mentioned in the introduction, we employed soft
keyboards in Remote Commander but found them
difficult for some users with motor impairments. Able-
bodied users generally find them fast, however, so there
has been an effort to create optimized keyboards which
minimize travel distance between letters through
quantitative modeling [30]. Many other soft keyboard
designs exist: a nice overview is provided in [15]. One
problem with all of them, however, is the increased focus-
of-attention incurred because users have to look at the
keyboards while using them.

More similar to EdgeWrite are the gestural text entry
techniques, which have a history dating back to as early
as 1957 [3]. Unistroke methods, for example, separate
characters during text entry by pen-down/pen-up

sequences. The term “unistroke” originated from the
alphabet by the same name developed at Xerox PARC
[6]. However, Unistrokes did not resemble real letters,
and for this reason were difficult to learn and recall [15].
Graffiti used character forms similar to handwritten forms
and proved much easier to retain than Unistrokes [16]. A
later unistroke research effort discovered that the easiest
strokes to make on a variety of devices were in the four
cardinal directions, so a “device independent” alphabet
was created using them [8]. EdgeWrite naturally employs
a high percentage of strokes in the four cardinal
directions.

The character recognition approach in EdgeWrite is
similar to that used in LibStroke [25] and Xstroke [29], as
all three use hit-testing of geometric regions, though
EdgeWrite is the only one to rely on edges and corners.
Plastic templates have been used in input techniques on
touch-sensitive graphical tablets for some time [2].
EdgeWrite is the first system of which we are aware to
combine these two concepts in a text entry technique.

In contrast to unistrokes, continuous gesture techniques
do not require lifting the stylus between characters in
order to improve the speed of input. Rather than making
character forms, the user moves the stylus through
different regions, and segmentation between letters is
accomplished by exiting one region and entering another.
Examples are Quikwriting [22], Cirrin [17], and Edge
Keyboards [28]. The latter two have the same problem as
soft keyboards (increased focus-of-attention) because they
require constant visual attention.

Though EdgeWrite in its current form is a unistroke
technique, we are actively exploring ways to create a
continuous gesture version. EdgeWrite already has the
elevated physical edges imposed by the plastic template to
provide tactile feedback and positional information
without visual cues [2]. If the user does not have to lift the
stylus, it may be possible to enter text completely eyes-
free. This has positive implications for the use of
handhelds by people who are blind, or by able-bodied
people in eyes-free situations, such as taking notes while
observing an object of interest.

Assistive Technologies for Motor Impairments

Researchers at Cambridge University have modeled
motor-impaired cursor motion to improve user models
and input techniques [10][11]. Relevant assistive
technologies aimed at providing computer access include
the Stanford Archimedes Project [21], which uses a
custom handheld device, as well as numerous assistive
technologies for text entry: row-column scanning, mouse-
driven keyboards, word prediction systems, and one-
handed keyboards [1].

Text Entry Analysis Techniques

Until recently, most text entry studies artificially
constrained input because of a lack of automated analysis
techniques for errors in uncorrected text. While speed is
straightforward to measure, accuracy—both during text

 65

entry and in the resultant string—are more difficult [24].
Space precludes a discussion of text entry analysis here,
but our evaluation of EdgeWrite is indebted to the work
of those who have developed improved analysis
algorithms for evaluating text entry. In particular, the
Levenshtein minimum string distance statistic [24] is
helpful, as well as the dependent measure of keystrokes
per character (KSPC) [13][24], which we extend to
gestures per character (GPC), described below.

Using Edges to Exploit Fitts’ Law

Fitts’ Law predicts the time it takes to acquire a target
from the size of the target and the travel distance to the
target. Specifically, the acquisition time is logarithmically
related to the travel distance and the target size [5].

While Fitts’ Law has been studied extensively [12], it has
been exploited by using edges relatively little in user
interfaces. Exceptions include a Web browser that placed
the “back” button at the left edge of the screen and found
reduced acquisition time [4]. Another exception is the
Macintosh user interface [26], which places menus atop
the screen. Other work has looked at keyboard layouts
placed around the edges of PDA screens, where the
device chassis provides an elevated edge against which a
stylus can hit [28].

THE DESIGN AND ENGINEERING OF EDGEWRITE

This section gives more detail about the design and
implementation of EdgeWrite. Because EdgeWrite is the
product of a highly iterative process, the evolution of key
facets is worth some discussion.

The Feel of EdgeWrite Characters

We believe it is because of the Fitts’ Law benefits of
edges—the ability to overshoot a target by an arbitrary
amount—that certain EdgeWrite characters “feel like”
their handwritten counterparts (Figure 5). When a user
hits a corner with a high force as she moves her stylus,
she may feel as though she is moving farther in that
direction than when she hits the same corner with less
force. We intend to study this phenomena in more detail
as part of our future work, but our observations of many
subjects suggest that this is precisely why EdgeWrite

characters can be easily learned: they feel similar to real
characters despite being mapped onto a square.

In Defense of a Square

The choice of a square hole was not arbitrary in the
design of EdgeWrite. For one, only the use of a square
guarantees that the edge-following motions will be in the
four cardinal directions: up, down, left, and right. These
have been shown to be the easiest directions to move in a
gestural alphabet, even without an edge [8][15].

Another reason we chose a square is for simplicity. A
more complicated polygon would result in more vertices
and more possibilities for the next corner to be hit while
moving. This could be cognitively overwhelming in the
case of many proximate vertices. Higher-order polygons
also would result in more oblique angles at the vertices,
and these may cause the stylus to “slip out” during
movement. While an acute angle pockets a stylus best, a
square’s 90° corners are adequate to catch a fast-moving
stylus. By contrast, a triangle would too severely limit the
number of possible character forms and reduce the extent
to which the forms resemble their handwritten
counterparts.

If we define a “segment” to be a straight line stroke
between two vertices (corners), then for gestures made
inside a closed shape with v vertices, the number of
possible character forms using s segments is given by the
formula:

∑
=

−⋅=

s

i

i
vvforms

0

)1(

This formula treats a tap at a vertex as a legal stroke, and
assumes that the same corner is never used twice in a row.

For a square, v = 4. If s = 0, meaning we use no segments,
we see that we have 4 possible forms available to us: a tap
in each of the four corners. With 1 segment we get 16
possible forms (4 + 4 × 3), with 2 we get 52 forms, and
with 3 we get 160 forms. Thus, there is a wealth of forms
to choose from with relatively few segments.

The character chart in Figure 3 represents 100 characters:
26 lowercase letters, 26 uppercase letters via the
capitalization suffix stroke, 10 digits, 4 white space
characters, 2 punctuation mode-setters, and 32
punctuations. We do not count period twice, as it is the
same form in and out of punctuation mode. Not pictured
in the chart are the four directional arrow keys, which are
also implemented, making for 104 unique characters in
the current EdgeWrite set. Incidentally, there are 228
forms in the entire set, which includes alternate forms.

The average primary EdgeWrite character form has 2.47
segments in it, excluding capitalization. If we include
capitalization and its associated suffix stroke, this average
increases to 2.84. The average number of segments per
character for the entire EdgeWrite character set, including
all alternates and capitals, is 3.49.

Figure 5. The form for y impacts the lower-right corner twice:
once on the diagonal down-stroke, and once on the straight
down-stroke (left). However, in making this form, it can “feel like”
the second stroke goes farther down because of a greater force
applied to the bottom edge on the second impact (right).

 66

Since we have 102 characters excluding punctuation
mode-set, the forms equation above dictates that we must
use 3 segments for at least some of the characters—50 of
them to be exact. If we designed the character set with the
fewest number of segments possible and no modes, and
with only one form for each character, then the average
number of segments per character in that set would be
2.39. So even with high learnability and guessability, the
average segments per primary character in EdgeWrite
(2.84) is less than ½ segment longer than the theoretical
lower bound (2.39). For entry without capitals (e.g.,
instant messaging), the average is even closer (2.47).

The current size of the square hole in the EdgeWrite
template is 1.69 cm2. This size was chosen to strike a
balance between competing constraints. We wanted to
shorten the distance of movement as much as possible,
particularly for those with motor impairments. On the
other hand, the corner regions needed to be spacious
enough to be reliably hit by the user, but not too close
together or they would be hit accidentally. Based on the
thickness and the size of the of the Palm stylus tip, we
settled on the current square size. After a good deal of
user testing, we have seen little reason to believe that this
size should change for the PDA version of EdgeWrite.

Evolution of the Corners

Though EdgeWrite’s corner-based recognition algorithm
is straightforward, the design of the corners themselves
was not obvious. The corners began naively as points
rather than areas, and this proved to be inadequate, as
users rarely hit the exact pixel in the corners. This was
because users held their styluses at various angles. An
angled stylus impacts the edge of the plastic template a
few millimeters above its tip, causing the tip to jut into the
square a few pixels even when the stylus is flush against
the edge (Figure 6).

After we increased the corner size to an appreciable area,
two other problems emerged. Once moving, users would
often accidentally hit corners, particularly when doing a
diagonal stroke, as in an s. However, if the corners were
too small, users would often fail to hit them on pen-down,
particularly in the backspace stroke (across the top or
bottom from right to left). It seemed that we needed large
corners for when the stylus went down, but then small
corners thereafter.

The next step in the design process added precisely this:
We inflated the corners until the stylus was detected
within one of them, then deflated all of them while the
stylus was moving (Figure 7). Deflated corners are not

rectangular but are triangular to make accidental corner-
hitting even rarer, especially during the making of a
diagonal segment.

An observation during a user study prompted the most
recent iteration on the corners. A right-handed user with a
chronic wrist injury held the stylus at a fairly shallow
angle relative to the PDA screen (e.g., Figure 6). The
result was that the elevated edge of the plastic square
prevented the tip of the stylus from getting close to the
right side of the square. Figure 7 shows our adjustments
for both right- and left-handed users. We provide extra
corner area along the x-axis for the dominant-hand side of
the square in order to account for users who hold their
styluses at steep angles. A nice property of this design is
that it does not negatively impact users who hold their
styluses more vertically.

Lessons Learned from Graffiti

Though Graffiti is as close to a “killer app” as any
handheld application, it is not perfect. We examined prior
studies of Graffiti (e.g., [16][23]) in an effort to improve
upon some of Graffiti’s problems.

Certain letters in Graffiti have specific problems. For
example, many people handwrite an n beginning at the
top-left of the letter and going down. In Graffiti, this
nearly always results in a w or h [16]. EdgeWrite supports
an optional initial down stroke on letters that commonly
have them: d, m, n, p, q, and r. Similarly, many people
make a down stroke at the end of u, and in Graffiti this
nearly always produces an h [16]. EdgeWrite allows this
down stroke on u. Graffiti also often produces a u when
novices make a v but forget to add the serif on the right.
EdgeWrite avoids this problem, as every form is more
than just subtly different from every other form.

Figure 7. The left column shows what the EdgeWrite recognition
algorithm regards as the corners before the stylus is detected
inside one of them. Once the stylus enters a corner area, the
corners deflate for the duration of the stroke, shown in the right
column. Note that “deflation” is not only in size but also in shape.

Figure 6. The tip of an angled stylus meets the screen a small
distance from the edge of the dominant-hand-side of the square.

right handed

left handed

 67

Another problem for novices using Graffiti is confusion
between the x and k, as these are mirror images of each
other [16]. EdgeWrite removes this similarity by
redesigning the k so that it starts at the top-left, where a
handwritten k starts, not at the top-right, where a Graffiti k
starts. (We leave the top-right k as an alternate form for
habituated Graffiti users.)

As mentioned above, users with motor impairments
sometimes “bounce” inadvertently on the screen. An older
version of EdgeWrite had characters that were entered by
taps in the corners. We removed all of these except period
(.) to reduce the likelihood of entering an accidental mode
or character by inadvertent taps on the screen.

In EdgeWrite, we differentiate position based on the
known location of the square. Hence, we can distinguish i
from 1 even though they are both downward strokes
because they are on different edges. This is a powerful
concept, as it allows for input in a very small area:
EdgeWrite does not need separate regions of the screen
for letters, numbers, capitals, and so on.

Implementation

The implementation of EdgeWrite enables fast character
recognition. The recognizer does nothing until it detects a
pen-down event in one of the corners. Once it does, it
begins queuing up all the points over which the stylus
moves until the stylus is lifted. No recognition or filtering
is done during the stylus movement in order to maximize
the number of movement points queued. Once the stylus
is lifted, the recognizer processes the point queue and hit-
tests the points against the corner regions. The result of
this loop is a 32-bit integer value representing the
sequence in which the corners were hit. This integer is
assembled efficiently: when a new corner is hit, the
existing integer sequence is shifted to the left and the new
corner is appended. This sequence is then sent to a lookup
function that finds the character corresponding to the
corner sequence, if any.

This recognition algorithm is fast in linear time O(n), and
we believe it could be implemented on a weak processor
with a poor digitizer sampling rate and a noisy
digitization of stylus coordinates. Anecdotally, it was not
possible for us to move the stylus faster than EdgeWrite
could recognize the stroke on a Palm V, which polls its
screen for the pen every 20 milliseconds.

The “other part” of EdgeWrite is implemented not in
software but in plastic. The template is crucial for
EdgeWrite to work well, and designing and fabricating
this plastic piece was just as iterative as developing the
software. We have numerous prototypes, and two recent
models are shown in Figure 8. Model 8a is small and sits
on the Palm screen. We found this to work fine for able-
bodied users, but users with motor impairments
sometimes put pressure with their fingers on the template,
causing it to press against the Palm screen and confuse the
digitizer. We designed model 8b in order to avoid putting
pressure on the screen: it sits on the Palm chassis and

therefore cannot touch the screen (Figure 1). Anchoring
the template in an elegant and robust way is a design
challenge for future work. For now, we just tape it to the
edges of the Palm case, which works fine.

AN EVALUATION OF EDGEWRITE

We conducted two evaluations of EdgeWrite: a formal
study with able-bodied users, and some observational
studies with 4 motor-impaired users.

Study #1: EdgeWrite vs. Graffiti, Able-Bodied Users

Though EdgeWrite is targeted towards people with motor
impairments, we wanted to assess its speed and accuracy
with able-bodied users to validate its design.

Procedure: Subjects, Tasks, Apparatus, Measures

We recruited 10 paid subjects who had no prior
experience with handheld text entry. Each subject was
assigned randomly to a between-subjects condition for
input method: Graffiti or EdgeWrite. The experiment
lasted 1 hour and consisted of two parts: a practice session
followed by a testing session.

Before the practice session, we taught subjects the basics
of the input method to which they were assigned. For
Graffiti, this included things like pointing out the area of
input, pointing out the letter area and the number area,
and demonstrating the appropriate pressure with which to
hold the stylus against the screen. It did not include
expert-level nuances like making the v backwards. For
EdgeWrite, this explanation included the importance of
pressing firmly against the edges during movement, and
the importance of hitting corners in the correct order.

The practice session consisted of making each character
twice successfully. Thus, if a character was not recognized
correctly, it was retried until success. Subjects progressed
through a character chart for EdgeWrite or Graffiti, a
subset of the characters shown in Figure 3.

The testing session consisted of entering 20 sentences, all
about 50 characters in length. Task sentences were

Figure 8. Two transparent plastic templates (actual size). Both
are anchored over the normal text entry area of a Palm PDA
using tape. Template (a) sits in contact with the Palm screen and,
if pressed upon, can interfere with the digitizer. Template (b)
avoids this problem by sitting on the Palm chassis, above the
screen a few millimeters (see Figure 1).

(a)

(b)

 68

presented in the same fixed order for every subject. The
sentences appeared on the Palm PDA screen, just above
the text entry area where subjects reproduced the text. The
close proximity of the task sentence and the text entry
area meant reduced focus-of-attention and prevented
unwarranted errors.

The character chart was available to subjects for use if
they could not remember how to make a character.
Subjects were encouraged to guess “once or twice” if they
could not recall a character, after which they could use the
chart. Their uses of the chart were recorded.

Subjects were not artificially constrained in their entry of
text: they could make errors or get out of sync with the
task sentence. They were told before the first task to
“proceed quickly and accurately, as you would enter text
in the real world” [24].

We designed the tasks to resemble realistic entries: letters,
names, phone numbers, addresses, and URLs [23]. We
felt these tasks would yield a more realistic measure of
speed and accuracy, as opposed to measures resulting
from tests of only lowercase letters, for example.

All task and performance data was logged on a nearby
laptop over a serial cable attached to the Palm PDA. This
data was then processed by a log file parser capable of
computing numerous statistics like task times from pen-
down and pen-up sequences, intra-character times, errors
in the final string, keystrokes per character, gestures per
character, etc. Space precludes a detailed discussion of
each measure. The interesting ones are discussed below.

Results

The three measures of obvious importance are speed,
accuracy during text entry, and accuracy after text entry.
We calculate all three of these measures with the methods
from [24].

Subjects continually improved over the first 12 tasks, then
began to flatten out in speed and accuracy, so here we
treat these first 12 tasks as training exercises and consider
only the last 8 tasks in our comparisons. In all

comparisons, the EdgeWrite value is reported first,

followed by the Graffiti value.

A one-way ANOVA for input technique with repeated
measures for task yields a non-significant result for entry
speeds: 6.6 to 7.2 wpm (F[1,56]=.27, n.s.). If we consider
all 20 trials to examine learning, the means are even
closer: 5.85 to 5.97 wpm (F[1,152]=.02, n.s.). Further
testing is required to differentiate the speeds of these two
methods.

Keystrokes per character (KSPC) is the ratio of the
number of characters entered while transcribing a string to
the number of characters in the resultant string [13][24]. If
every character is entered correctly the first time, no
corrections are made and a perfect score of 1.0 is the
result (lower is better). The ANOVA yields a significant
result in favor of EdgeWrite: 1.21 to 1.43 KSPC
(F[1,56]=9.32, p<.02), an 18% improvement. Note that

we did not include non-character-producing strokes such
as mode-setters in this measure, as that would unduly
penalize any entry technique with modes. Figure 9 shows
KSPC for Graffiti and EdgeWrite over the last 8 tasks.

Figure 9. Keystrokes per character as a measure of accuracy
during input. Lower KSPC is better. A perfect score is 1.0.

Errors left in the transcribed string can be compared to the
task sentence using the Levenshtein minimum string
distance statistic [24]. This computes the percentage of
errors between two strings based on how many editing
primitives (insertion, substitution, deletion) would be
required to transform one string into the other. The
ANOVA yields a non-significant result in favor of
EdgeWrite: .34 to .39 percent errors (F[1,56]=.02, n.s.).
For our tasks, this is roughly equivalent to one erroneous
character for every 250 characters entered (about 5 tasks).

We also can examine the intra-character time (pen-down
to pen-up) to determine which alphabet’s strokes are
faster. The ANOVA yields a significant result in favor of
Graffiti: .58 to .29 seconds (F[1,56]=20.57, p<.005). Note
that this did not translate into faster entry speed (wpm) for
Graffiti, as error correction and thinking time play a part.

We introduce a new measure similar to KSPC called
gestures per character (GPC). This measure is the same as
KSPC but includes mode setters and all other recognized
strokes—things KSPC must leave out. The result can be
used to show which alphabet is more “verbose,” requiring
more multi-stroke characters and more modes. The
ANOVA for GPC yields a significant result in favor of
EdgeWrite: 1.26 to 1.62 GPC (F[1,56]=14.65, p<.005).
This verifies our claim that EdgeWrite uses less mode
strokes, something important for motor-impaired users,
with whom every stroke counts.

Finally, both alphabets were extremely learnable and
guessable. For EdgeWrite, subjects had to use the
character chart for an average of 4.6 total characters out
of 1000 characters entered. For Graffiti, this average went

 69

up to 6.6. This comparison did not yield a significant
difference (F[1,152]=1.72, n.s.).

Another measure of learnability is the amount of time
spent on each task. Figure 10 shows that EdgeWrite and
Graffiti compared similarly. Overall means for task time
were nearly identical, at 118.16 seconds for EdgeWrite to
117.12 seconds for Graffiti (F[1,152]=0.0, n.s.).

Figure 10. Average task times across all 20 tasks show that
EdgeWrite and Graffiti were learned at comparable rates. The
upward spikes in the downward trend are due to tasks with higher
amounts of punctuation interspersed among simpler tasks.

Study #2: EdgeWrite vs. Graffiti, Motor-Impaired Users

Obtaining statistical results with subjects who have motor
impairments is often infeasible due to high variance
among people with disabilities, and because of the
difficulty in obtaining subjects. We observed 4 users with
motor impairments interacting with both EdgeWrite and
Graffiti and logged their data. Error counts are given as
the minimum string distance [24].

Subject 1

Subject 1 was a middle-aged woman with Parkinson’s
Disease and severe tremor. We asked her to enter each
lowercase letter (a-z) and each digit (0-9) twice in Graffiti
and then twice in EdgeWrite. Her recognition rates were
22/72 and 68/72, respectively. She used the character
chart during the whole exercise. In Graffiti, interspersed
with the mis-recognitions were a number of accidental
periods and other punctuation due to “bounce” on the
screen. Her tremor made it difficult for her to avoid
setting the punctuation mode in Graffiti. When she
entered a 50 character sentence in Graffiti and EdgeWrite,
she made over 3 times the number of errors in Graffiti.

Subject 2

Subject 2 was a 30-something woman with Spastic
Cerebral Palsy. When asked to make each letter and
number on the Graffiti chart, it turned out there were
some she could never correctly produce despite repeated
efforts: c, e, f, x, 2, 4. For EdgeWrite, these were limited

to 2 and 7. When she attempted the sentence, “The dog is
going fast,” in Graffiti she produced, “The g i gbsiangu%
fast” (8 errors). She skipped d after repeated mis-
recognitions because it was too difficult. In EdgeWrite,
she entered the sentence without leaving any errors. Her
only complaint was that the diagonals were difficult.

Subject 3

Subject 3 was a 30-something male with a form of
Muscular Dystrophy. He had a small baseline tremor.
Using Graffiti, he was unable to make b, d, and f after
multiple tries and gave up on them. Using EdgeWrite,
there were not any letters that he could not produce. In
fact, in an attempt to do 3 versions of each EdgeWrite
character, he made only 2 errors in 108 characters. When
asked to produce the sentence, “the ugly underwater
urchin eats putrid meat lovingly,” in Graffiti he produced,
“the ugl un erwater urchin eats putri meat lovingly” (3
errors). In EdgeWrite he produced the sentence without
leaving any errors.

Subject 4

Subject 4 was a 40-something woman with Cerebral
Palsy. She was able to enter all letters and numbers in
both Graffiti and EdgeWrite, but upon switching to
EdgeWrite from Graffiti, she exclaimed, “This is a lot
easier than before. Much easier, my goodness.” She
entered a 50 character sentence in Graffiti leaving 2 errors
and in EdgeWrite without leaving any errors.

FUTURE WORK

We are pursuing the development of a continuous entry
method, which would allow for eyes-free entry and could
be used for visually-impaired people. We are also
building versions of EdgeWrite for other platforms: cell
phones, watch faces, Trackpads, PocketPCs, and
joysticks. We would like to study text entry with joysticks
on game consoles, comparing EdgeWrite to current game
console methods. We plan to run other studies as well:
expert transition from Graffiti to EdgeWrite, extended use
over long periods of time, retention of the alphabet after a
period of non-use, guessability of character forms, and
text entry in unstable environments, such as while
walking down the street or standing on a bus. We also
require more validation with motor-impaired users.
Finally, we would like to begin developing models of
motor-impaired stylus behavior in hopes of gaining
insights for the design and refinement of input techniques.

CONCLUSIONS

We have shown that physical edges can be an effective
means of providing stability in stylus input techniques.
We have also shown that a unistroke alphabet comprised
entirely of strokes along 4 edges and 2 diagonals can be
highly guessable and learnable, despite the natural
concern that such a constrained alphabet would not be
usable. We have provided an algorithmic approach to
character recognition based on hit-testing in dynamic
size-and-shape-changing corner regions. This approach to
recognition resulted in an 18% accuracy improvement

 70

during text entry for EdgeWrite over Graffiti, without
significant detriment to entry speed.

EdgeWrite’s recognition technology could be
implemented on other platforms, including those without
the luxury of a fully-digitized touch screen. All that is
required is 4 corner sensors and 1 surface sensor. These
sensors could be crude: they do not have to determine
coordinates, only whether a stylus or finger is in contact
with them or not. Thus, we have shown that a reliable
character recognizer need not be a pattern matcher that
depends on the whole path of movement.

We are hopeful that many domains will find EdgeWrite or
the EdgeWrite recognition approach useful, from PDAs to
game consoles to assistive technologies.

ACKNOWLEDGMENTS
The authors thank Connie Campbell and the UCP of Pittsburgh,
Aaron Bauer, Victoria Danforth, Darren Gergle, Silvia Kembel,
Andrew Ko, Jeffrey Nichols, Alison Wobbrock, and John
Zimmerman. This work was supported by the NEC Foundation,
General Motors, Microsoft, and the National Science
Foundation. For more information and software downloads, see
http://www.cs.cmu.edu/~pebbles/assistive/

REFERENCES
1. Anson, D.K. Alternative Computer Access. F. A. Davis Co.,

1997. Chapters 8 and 14.

2. Buxton, W., Hill, R., Rowley, P. Issues and techniques in
touch-sensitive tablet input. Computer Graphics 19 (3),
1985, 215-223.

3. Dimond, T.L. Devices for reading handwritten characters.
Proc. Eastern Computer Conference, 1957, 232-237.

4. Farris, J.S., Jones, K.S., Anders, B.A. Acquisition speed
with targets on the edge of the screen: An application of
Fitts’ Law to commonly used Web browser controls. Proc.

Human Factors and Ergonomics Society 45th Annual

Meeting, 2001, 1205-1209.

5. Fitts, P.M. The information capacity of the human motor
system in controlling the amplitude of movement. Journal of

Experimental Psychology 47 (6), 1954, 381-389.

6. Goldberg, D., Richardson, C. Touch typing with a stylus.
Proc. INTERCHI ’93, 1993, 80-87.

7. Graffiti. Palm, Inc. Available at
http://www.palm.com/products/input/

8. Isokoski, P. A minimal device-independent text input
method. Unpublished thesis, University of Tempere,
Finland, 1999.

9. Jot. Communication Intelligence Corporation (CIC).
Available at http://www.cic.com/products/jot/

10. Keates, S., Clarkson, P.J., Robinson, P. Investigating the
applicability of user models for motion-impaired users.
Proc. ASSETS ’00. ACM Press, 2000, 129-136.

11. Keates, S., Hwang, F., Langdon, P., Clarkson, P.J.,
Robinson, P. Cursor measures for motion-impaired computer
users. Proc. ASSETS ’02. ACM Press, 2002, 135-142.

12. MacKenzie, I.S. Fitts’ Law as a research and design tool in
human-computer interaction. Human-Computer Interaction

7 (1). Lawrence Erlbaum, 1992, 91-139.

13. MacKenzie, I.S. KSPC (keystrokes per character) as a
characteristic of text entry techniques. Proc. Mobile HCI

’02. Springer-Verlag, 2002, 195-210.

14. MacKenzie, I.S., Kauppinen, T., Silfverberg, M. Accuracy
measures for evaluating computer pointing devices. Proc.

CHI ’01. ACM Press, 2001, 9-15.

15. MacKenzie, I.S., Soukoreff, R.W. Text entry for mobile
computing: Models and methods, theory and practice.
Human-Computer Interaction 17 (2). Lawrence Erlbaum,
2002, 147-198.

16. MacKenzie, I.S., Zhang, S. The immediate usability of
Graffiti. Proc. Graphics Interface ’97. Canadian Information
Processing Society, 1997, 129-137.

17. Mankoff, J., Abowd, G.D. Cirrin: A word-level unistroke
keyboard for pen input. Proc. UIST ’98. ACM Press, 1998,
213-214.

18. MDA. The Muscular Dystrophy Association, 2001.
Available at http://www.mdausa.org/

19. Myers, B.A., Wobbrock, J.O., Yang, S., Yeung, B., Nichols,
J., Miller, R. Using handhelds to help people with motor
impairments. Proc. ASSETS ’02. ACM Press, 2002, 89-96.

20. Neurology Channel. Movement disorders. Available at
http://www.neurologychannel.com/movementdisorders/

21. Newman, Keith. The open interface: Beyond keyboards and
mice. e.nz Magazine, May/June 2002, 6-11. Available at
http://archimedes.stanford.edu/Archimedes.pdf

22. Perlin, K. Quikwriting: Continuous stylus-based text entry.
Proc. UIST ’98. ACM Press, 1998, 215-216.

23. Sears, A., Arora, R. Data entry for mobile devices: An
empirical comparison of novice performance with Jot and
Graffiti. Interacting with Computers 14 (5). Elsevier Press,
October 2002, 413-433.

24. Soukoreff, R.W., MacKenzie, I.S. Measuring errors in text
entry tasks: An application of the Levenshtein string distance
statistic. Extended Abstracts CHI ’01. ACM Press, 2001,
319-320.

25. Willey, M. Design and implementation of a stroke interface
library. IEEE Region 4 Student Paper Contest, 1997.
Available at http://www.etla.net/libstroke/libstroke.pdf

26. Williams, G. The Apple Macintosh computer. Byte 9 (2),
1984, 30-54.

27. Wobbrock, J.O. The benefits of physical edges in gesture-
making: Empirical support for an edge-based unistroke
alphabet. Extended Abstracts CHI ’03. ACM Press, 2003,
942-943.

28. Wobbrock, J.O., Myers, B.A., Hudson, S.E. Exploring edge-
based input techniques for handheld text entry. Third Int’l

Workshop on Smart Appliances and Wearable Computing

(IWSAWC ’03). In Proc. 23rd IEEE Conference on

Distributed Computing Systems Workshops (ICDCS ’03).
IEEE Press, 2003, 280-282.

29. Worth, C.D. Xstroke: Full-screen gesture recognition for X.
Proc. USENIX ’03, 2003, 187-196.

30. Zhai, S., Hunter, M., Smith, B.A. Performance optimization
of virtual keyboards. Human-Computer Interaction 17 (3).
Lawrence Erlbaum, 2002, 229-269.

