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ABSTRACT 

EdgeWrite is a new unistroke text entry method for 
handheld devices designed to provide high accuracy and 
stability of motion for people with motor impairments. It is 
also effective for able-bodied people. An EdgeWrite user 
enters text by traversing the edges and diagonals of a 
square hole imposed over the usual text input area. Gesture 
recognition is accomplished not through pattern recognition 
but through the sequence of corners that are hit. This means 
that the full stroke path is unimportant and recognition is 
highly deterministic, enabling better accuracy than other 
gestural alphabets such as Graffiti. A study of able-bodied 
users showed subjects with no prior experience were 18% 
more accurate during text entry with EdgeWrite than with 
Graffiti (p<.05), with no significant difference in speed. A 
study of 4 subjects with motor impairments revealed that 
some of them were unable to do Graffiti, but all of them 
could do EdgeWrite. Those who could do both methods 
had dramatically better accuracy with EdgeWrite. 
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INTRODUCTION 

We are investigating how handheld devices can be used as 
assistive technologies to provide computer access for 
people with motor impairments. In our previous work [19], 
we describe how a handheld device can be used for 
computer access by people who are unable to use a 
keyboard and mouse due to motor impairments. People 
with Cerebral Palsy or Parkinson’s often have intention 
tremor that interferes with use of a mouse [11][20]. People 
with Muscular Dystrophy often lose their gross motor 
control and arm strength before losing their fine motor 
control, making movement between a keyboard and mouse 
difficult [18][20]. However, moving over the short expanse  

 

Figure 1. A Palm PDA with an EdgeWrite template over the text 
input area. A user makes all letters, numbers, and punctuation 
inside the square hole by moving the stylus along the edges and 
across the diagonals of the square. Small holes in the template 
provide access to the four soft buttons on the Palm. 

of a handheld screen often remains feasible. An application 
we have written called Remote Commander allows people 
to control their computer entirely from a Palm PDA, 
providing for both text entry and mouse control. The reader 
is directed to our previous work for more details [19]. 

However, text entry on a handheld device is difficult for 
people with motor impairments. On-screen “soft” 
keyboards are small and the keys can be difficult to acquire 
even for able-bodied users. Some research addresses this 
problem by attempting to discover the “optimal” soft 
keyboard [30]. Still, for people with motor impairments, 
these tiny keyboards are difficult to use and consume 
precious screen space. They also require the user to fix her 
attention on the keyboard rather than on the output [15]. 
This is particularly a problem when controlling a PC via a 
handheld, as with Remote Commander, because the text 
destination is on the PC monitor, not on the handheld. 

Gestural text entry techniques, such as Graffiti, also do not 
solve the problem of text input for people with motor 
impairments. Tremor and fatigue dramatically impact a 
user’s ability to make smooth, accurate, and controlled 
movements [11]. Tremor makes it difficult or impossible 
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for some subjects to make character forms recognizable by 
a text entry system like Graffiti (Figure 2) [27]. 

Another result of tremor is that many users “bounce” the 
stylus on the screen, triggering unwanted modes and 
unwanted characters. In fact, this problem renders Graffiti 
entirely unusable for some people with motor impairments. 
A more stable means of text entry is necessary for users of 
handheld devices who have motor impairments. 

Able-bodied users will also benefit from more stable means 
of text entry. Since PDAs are designed to be used “on the 
go,” many situations arise where added stability could be 
beneficial: riding a bus, walking, or annotating slides 
during a presentation while standing. 

For these reasons, we have been investigating multiple 
approaches to providing stability through the use of 
physical edges [28]. Edges offer many desirable properties. 
Appling pressure against an edge while moving a stylus 
provides: 

• Greater Stability: Decreased movement variability 
and movement offset [14]. 

• Greater Speed: Ability to move quickly yet 
remain on the target line [27]. 

• Higher Accuracy: Targets along an edge or in a 
corner are easier to acquire [27]. 

• Tangible Feedback: No longer is visual feedback 
the only means of self-correction during 
movement, as tactile feedback is available [2]. 

• Fitts’ Law Benefit: Edges allow for “target 
overshoot,” where acquiring targets on edges is 
easier than acquiring targets “in the open” [5][12]. 

To empirically validate these benefits, we conducted a 
study of how edges affect the tracing of lines at various 
angles on a handheld screen by people with motor 
impairments [27]. We found dramatic advantages for line-
tracing along edges versus tracing lines “in the open.” Even 
more dramatic were the advantages of tracing lines that 
ended in corners. These advantages included the 
aforementioned stability, speed, and accuracy. 

Our research goal is to exploit these “pure” benefits of 
edges in a text entry technique, and to prevent other factors 
such as cognitive difficulties from diluting them. We 
believe our new EdgeWrite1 input technique goes a long 
way toward realizing these goals, as it relies heavily on 
edges and corners, both interactively and algorithmically. 
These edges are imposed on the input area by a transparent 
plastic template with a square hole, inside which all text 
entry is performed (Figure 1). Our empirical results show 
that extensive iteration of the character set has made the 
character forms highly guessable and easy to learn, 
maintaining a low cognitive workload for the user. 

In particular, we found that when compared to Graffiti, 
EdgeWrite was 18% more accurate during text entry for 
able-bodied users formerly unfamiliar with either technique 
(p<.05). This benefit came without a significant cost in 
speed. Users with motor impairments succeeded at using 
EdgeWrite but were largely unable to use Graffiti due to 
excessive tremor and bounce. The physical edges in 
EdgeWrite reduced the propensity of tremulous users to 
bounce the stylus on the screen. 

AN OVERVIEW OF EDGEWRITE 

EdgeWrite is a stylus-based unistroke input technique. To 
make a character, a user places the stylus down inside the 
square hole of the template (Figure 1), moves the stylus in a 
specific pattern along the edges and diagonals of the square 
(thereby hitting the corners of the square), and lifts upon 
completion of the pattern. A character is then entered. 

The first difference, then, between EdgeWrite and Graffiti2 
is that all stylus motion in EdgeWrite occurs within a small 
plastic square hole (1.69 cm2), which bounds the input area 
with hard physical edges. 

A second difference between EdgeWrite and Graffiti is that 
recognition does not depend on the path of movement, nor 
is the recognizer a pattern matcher. Instead, recognition 
only depends on the order in which the corners are hit. The 
advantages of this include: 

• Users with motor impairments can “wiggle” or 
slide and this does not degrade recognition. 

• The recognition algorithm is elegant and fast, as 
hit-testing corner areas is an operation capable of 
being performed rapidly by a weak processor. 

• Users can teach the system their own custom 
gestures with one example, as training sets for a 
pattern matching algorithm are not necessary. 

• For the designer, it is easy to iterate character 
forms; changing one only requires changing a 
corner sequence value (a single integer). No sets 
of points or glyphs are necessary. 

                                                           
1
 U.S. patent pending. 

2 This paper refers often to Graffiti [7] because of its familiarity. 

Most of our comments can be fairly applied to Unistrokes [6] 
and Jot [9] as well. 

 
Figure 2. A subject with Cerebral Palsy attempting to make a d in 

Graffiti (left) and EdgeWrite (right). The Graffiti d was mis-

recognized as an h, whereas the EdgeWrite d was recognized 
correctly. The jagged diagonal does not deter recognition in 
EdgeWrite because only the order in which the corners are hit 
matters. Note the straight lines where the subject moved along the 

edges of the plastic template. This EdgeWrite d is an alternate form 
not shown in the character chart in Figure 3. 
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A third difference between EdgeWrite and Graffiti is the 
reduction of modes in EdgeWrite. In particular, EdgeWrite 
uses no shift, caps lock, or extended shift modes. The only 
mode in EdgeWrite is a punctuation mode. 

An important question is whether the EdgeWrite character 
forms are easy to guess, learn, and make. Prior research 
shows that Graffiti characters have these properties for 
able-bodied users [16]. The evaluation discussed at the end 
of this paper shows these properties to be true of EdgeWrite 
as well. 

Figure 3 is the character chart for current version of the 
primary character forms in EdgeWrite. In addition, multiple 
alternate forms exist for nearly every character (not 
shown). The character forms are a product of many hours 
of user testing and extensive iteration. In user testing, many 
people discovered and used several of the alternate 
character forms despite their absence from the chart, 
suggesting a high degree of guessability. 

Though many of the EdgeWrite characters look vaguely 
like their handwritten counterparts, the mnemonic power of 
these characters comes less from their appearance and more 
from their “feel.” One subject noted this when, after 
entering 20 phrases in EdgeWrite, he said, “I don’t 
remember any of the pictures in my mind, but I still feel 
them in my hand.”  

As in Graffiti, some gestures resemble lowercase letters, 
while other gestures resemble uppercase letters. All 
gestures produce lowercase letters unless the capitalization 
suffix stroke is appended to the gesture. The suffix stroke is 
simply a motion to the upper-left corner (think “up” to 
“make it big”) after the regular gesture is made but before 
lifting the stylus. Note that, by design, no gestures finish in 
the upper-left corner, allowing for this modeless design. In 
user studies, subjects had no trouble with this method of 
capitalization. 

Primary EdgeWrite Character Forms 

  

 

Figure 3. Primary EdgeWrite character forms. Alternate forms exist for nearly all 
characters (not shown). The arcs comprising each character are not the literal path 
of motion. Rather, the arcs make it possible to see where multiple strokes pass
over the same edge or diagonal. All arcs are actually made as straight lines. 
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Another thing to notice about the character chart is that it 
is representational, not literal. We faced a design 
challenge in representing the strokes on paper, as many 
characters have strokes that pass over the same edge or 
diagonal more than once. If such a “double pass” is drawn 
literally, then the result is merely a single line. Following 
a suggestion from a professor of visual design, we chose 
to arc the paths into the intended corners (Figure 4). 
These arcs make it possible to clearly depict a double-
pass. Our subjects had little trouble reading the chart once 
we explained this to them. In EdgeWrite, all movements 
are, in the ideal case, straight lines. However, as 
mentioned, straight line motion is not necessary for 
recognition, only hitting the corners in the proper order. 

Further detail about the design and implementation of 
EdgeWrite is saved for a later section. Now we turn to the 
related work that informed the creation of EdgeWrite. 

 
Figure 4. These letters show how arcs reveal strokes that pass 
over the same edge more than once, yet still indicate the intended 
corner sequence. Both of these letters use the technique of 
collapsing the letters’ right sides onto one edge. 

RELATED WORK 

The related work falls into four areas: (1) text entry 
techniques, (2) assistive technologies and modeling of 
motor-impaired performance, (3) text entry analysis 
techniques, and (4) using edges to exploit Fitts’ Law. 

Text Entry Techniques 

Related techniques for entering text on handhelds come in 
two main forms: on-screen soft keyboards and gesture-
based methods. 

As mentioned in the introduction, we employed soft 
keyboards in Remote Commander but found them 
difficult for some users with motor impairments. Able-
bodied users generally find them fast, however, so there 
has been an effort to create optimized keyboards which 
minimize travel distance between letters through 
quantitative modeling [30]. Many other soft keyboard 
designs exist: a nice overview is provided in [15]. One 
problem with all of them, however, is the increased focus-
of-attention incurred because users have to look at the 
keyboards while using them. 

More similar to EdgeWrite are the gestural text entry 
techniques, which have a history dating back to as early 
as 1957 [3]. Unistroke methods, for example, separate 
characters during text entry by pen-down/pen-up 

sequences. The term “unistroke” originated from the 
alphabet by the same name developed at Xerox PARC 
[6]. However, Unistrokes did not resemble real letters, 
and for this reason were difficult to learn and recall [15]. 
Graffiti used character forms similar to handwritten forms 
and proved much easier to retain than Unistrokes [16]. A 
later unistroke research effort discovered that the easiest 
strokes to make on a variety of devices were in the four 
cardinal directions, so a “device independent” alphabet 
was created using them [8]. EdgeWrite naturally employs 
a high percentage of strokes in the four cardinal 
directions. 

The character recognition approach in EdgeWrite is 
similar to that used in LibStroke [25] and Xstroke [29], as 
all three use hit-testing of geometric regions, though 
EdgeWrite is the only one to rely on edges and corners. 
Plastic templates have been used in input techniques on 
touch-sensitive graphical tablets for some time [2]. 
EdgeWrite is the first system of which we are aware to 
combine these two concepts in a text entry technique. 

In contrast to unistrokes, continuous gesture techniques 
do not require lifting the stylus between characters in 
order to improve the speed of input. Rather than making 
character forms, the user moves the stylus through 
different regions, and segmentation between letters is 
accomplished by exiting one region and entering another. 
Examples are Quikwriting [22], Cirrin [17], and Edge 
Keyboards [28]. The latter two have the same problem as 
soft keyboards (increased focus-of-attention) because they 
require constant visual attention. 

Though EdgeWrite in its current form is a unistroke 
technique, we are actively exploring ways to create a 
continuous gesture version. EdgeWrite already has the 
elevated physical edges imposed by the plastic template to 
provide tactile feedback and positional information 
without visual cues [2]. If the user does not have to lift the 
stylus, it may be possible to enter text completely eyes-
free. This has positive implications for the use of 
handhelds by people who are blind, or by able-bodied 
people in eyes-free situations, such as taking notes while 
observing an object of interest. 

Assistive Technologies for Motor Impairments 

Researchers at Cambridge University have modeled 
motor-impaired cursor motion to improve user models 
and input techniques [10][11]. Relevant assistive 
technologies aimed at providing computer access include 
the Stanford Archimedes Project [21], which uses a 
custom handheld device, as well as numerous assistive 
technologies for text entry: row-column scanning, mouse-
driven keyboards, word prediction systems, and one-
handed keyboards [1]. 

Text Entry Analysis Techniques 

Until recently, most text entry studies artificially 
constrained input because of a lack of automated analysis 
techniques for errors in uncorrected text. While speed is 
straightforward to measure, accuracy—both during text 
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entry and in the resultant string—are more difficult [24]. 
Space precludes a discussion of text entry analysis here, 
but our evaluation of EdgeWrite is indebted to the work 
of those who have developed improved analysis 
algorithms for evaluating text entry. In particular, the 
Levenshtein minimum string distance statistic [24] is 
helpful, as well as the dependent measure of keystrokes 
per character (KSPC) [13][24], which we extend to 
gestures per character (GPC), described below. 

Using Edges to Exploit Fitts’ Law 

Fitts’ Law predicts the time it takes to acquire a target 
from the size of the target and the travel distance to the 
target. Specifically, the acquisition time is logarithmically 
related to the travel distance and the target size [5]. 

While Fitts’ Law has been studied extensively [12], it has 
been exploited by using edges relatively little in user 
interfaces. Exceptions include a Web browser that placed 
the “back” button at the left edge of the screen and found 
reduced acquisition time [4]. Another exception is the 
Macintosh user interface [26], which places menus atop 
the screen. Other work has looked at keyboard layouts 
placed around the edges of PDA screens, where the 
device chassis provides an elevated edge against which a 
stylus can hit [28]. 

THE DESIGN AND ENGINEERING OF EDGEWRITE 

This section gives more detail about the design and 
implementation of EdgeWrite. Because EdgeWrite is the 
product of a highly iterative process, the evolution of key 
facets is worth some discussion. 

The Feel of EdgeWrite Characters 

We believe it is because of the Fitts’ Law benefits of 
edges—the ability to overshoot a target by an arbitrary 
amount—that certain EdgeWrite characters “feel like” 
their handwritten counterparts (Figure 5). When a user 
hits a corner with a high force as she moves her stylus, 
she may feel as though she is moving farther in that 
direction than when she hits the same corner with less 
force. We intend to study this phenomena in more detail 
as part of our future work, but our observations of many 
subjects suggest that this is precisely why EdgeWrite 

characters can be easily learned: they feel similar to real 
characters despite being mapped onto a square. 

In Defense of a Square 

The choice of a square hole was not arbitrary in the 
design of EdgeWrite. For one, only the use of a square 
guarantees that the edge-following motions will be in the 
four cardinal directions: up, down, left, and right. These 
have been shown to be the easiest directions to move in a 
gestural alphabet, even without an edge [8][15]. 

Another reason we chose a square is for simplicity. A 
more complicated polygon would result in more vertices 
and more possibilities for the next corner to be hit while 
moving. This could be cognitively overwhelming in the 
case of many proximate vertices. Higher-order polygons 
also would result in more oblique angles at the vertices, 
and these may cause the stylus to “slip out” during 
movement. While an acute angle pockets a stylus best, a 
square’s 90° corners are adequate to catch a fast-moving 
stylus. By contrast, a triangle would too severely limit the 
number of possible character forms and reduce the extent 
to which the forms resemble their handwritten 
counterparts. 

If we define a “segment” to be a straight line stroke 
between two vertices (corners), then for gestures made 
inside a closed shape with v vertices, the number of 
possible character forms using s segments is given by the 
formula: 

∑
=

−⋅=

s

i

i
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This formula treats a tap at a vertex as a legal stroke, and 
assumes that the same corner is never used twice in a row. 

For a square, v = 4. If s = 0, meaning we use no segments, 
we see that we have 4 possible forms available to us: a tap 
in each of the four corners. With 1 segment we get 16 
possible forms (4 + 4 × 3), with 2 we get 52 forms, and 
with 3 we get 160 forms. Thus, there is a wealth of forms 
to choose from with relatively few segments. 

The character chart in Figure 3 represents 100 characters: 
26 lowercase letters, 26 uppercase letters via the 
capitalization suffix stroke, 10 digits, 4 white space 
characters, 2 punctuation mode-setters, and 32 
punctuations. We do not count period twice, as it is the 
same form in and out of punctuation mode. Not pictured 
in the chart are the four directional arrow keys, which are 
also implemented, making for 104 unique characters in 
the current EdgeWrite set. Incidentally, there are 228 
forms in the entire set, which includes alternate forms. 

The average primary EdgeWrite character form has 2.47 
segments in it, excluding capitalization. If we include 
capitalization and its associated suffix stroke, this average 
increases to 2.84. The average number of segments per 
character for the entire EdgeWrite character set, including 
all alternates and capitals, is 3.49. 

 
Figure 5. The form for y impacts the lower-right corner twice: 
once on the diagonal down-stroke, and once on the straight 
down-stroke (left). However, in making this form, it can “feel like” 
the second stroke goes farther down because of a greater force 
applied to the bottom edge on the second impact (right). 
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Since we have 102 characters excluding punctuation 
mode-set, the forms equation above dictates that we must 
use 3 segments for at least some of the characters—50 of 
them to be exact. If we designed the character set with the 
fewest number of segments possible and no modes, and 
with only one form for each character, then the average 
number of segments per character in that set would be 
2.39. So even with high learnability and guessability, the 
average segments per primary character in EdgeWrite 
(2.84) is less than ½ segment longer than the theoretical 
lower bound (2.39). For entry without capitals (e.g., 
instant messaging), the average is even closer (2.47). 

The current size of the square hole in the EdgeWrite 
template is 1.69 cm2. This size was chosen to strike a 
balance between competing constraints. We wanted to 
shorten the distance of movement as much as possible, 
particularly for those with motor impairments. On the 
other hand, the corner regions needed to be spacious 
enough to be reliably hit by the user, but not too close 
together or they would be hit accidentally. Based on the 
thickness and the size of the of the Palm stylus tip, we 
settled on the current square size. After a good deal of 
user testing, we have seen little reason to believe that this 
size should change for the PDA version of EdgeWrite. 

Evolution of the Corners 

Though EdgeWrite’s corner-based recognition algorithm 
is straightforward, the design of the corners themselves 
was not obvious. The corners began naively as points 
rather than areas, and this proved to be inadequate, as 
users rarely hit the exact pixel in the corners. This was 
because users held their styluses at various angles. An 
angled stylus impacts the edge of the plastic template a 
few millimeters above its tip, causing the tip to jut into the 
square a few pixels even when the stylus is flush against 
the edge (Figure 6). 

After we increased the corner size to an appreciable area, 
two other problems emerged. Once moving, users would 
often accidentally hit corners, particularly when doing a 
diagonal stroke, as in an s. However, if the corners were 
too small, users would often fail to hit them on pen-down, 
particularly in the backspace stroke (across the top or 
bottom from right to left). It seemed that we needed large 
corners for when the stylus went down, but then small 
corners thereafter. 

The next step in the design process added precisely this: 
We inflated the corners until the stylus was detected 
within one of them, then deflated all of them while the 
stylus was moving (Figure 7). Deflated corners are not 

rectangular but are triangular to make accidental corner-
hitting even rarer, especially during the making of a 
diagonal segment. 

An observation during a user study prompted the most 
recent iteration on the corners. A right-handed user with a 
chronic wrist injury held the stylus at a fairly shallow 
angle relative to the PDA screen (e.g., Figure 6). The 
result was that the elevated edge of the plastic square 
prevented the tip of the stylus from getting close to the 
right side of the square. Figure 7 shows our adjustments 
for both right- and left-handed users. We provide extra 
corner area along the x-axis for the dominant-hand side of 
the square in order to account for users who hold their 
styluses at steep angles. A nice property of this design is 
that it does not negatively impact users who hold their 
styluses more vertically. 

Lessons Learned from Graffiti 

Though Graffiti is as close to a “killer app” as any 
handheld application, it is not perfect. We examined prior 
studies of Graffiti (e.g., [16][23]) in an effort to improve 
upon some of Graffiti’s problems. 

Certain letters in Graffiti have specific problems. For 
example, many people handwrite an n beginning at the 
top-left of the letter and going down. In Graffiti, this 
nearly always results in a w or h [16]. EdgeWrite supports 
an optional initial down stroke on letters that commonly 
have them: d, m, n, p, q, and r. Similarly, many people 
make a down stroke at the end of u, and in Graffiti this 
nearly always produces an h [16]. EdgeWrite allows this 
down stroke on u. Graffiti also often produces a u when 
novices make a v but forget to add the serif on the right. 
EdgeWrite avoids this problem, as every form is more 
than just subtly different from every other form. 

           

           

           
Figure 7. The left column shows what the EdgeWrite recognition 
algorithm regards as the corners before the stylus is detected 
inside one of them. Once the stylus enters a corner area, the 
corners deflate for the duration of the stroke, shown in the right 
column. Note that “deflation” is not only in size but also in shape. 

 

Figure 6. The tip of an angled stylus meets the screen a small 
distance from the edge of the dominant-hand-side of the square. 

right handed 

left handed 
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Another problem for novices using Graffiti is confusion 
between the x and k, as these are mirror images of each 
other [16]. EdgeWrite removes this similarity by 
redesigning the k so that it starts at the top-left, where a 
handwritten k starts, not at the top-right, where a Graffiti k 
starts. (We leave the top-right k as an alternate form for 
habituated Graffiti users.) 

As mentioned above, users with motor impairments 
sometimes “bounce” inadvertently on the screen. An older 
version of EdgeWrite had characters that were entered by 
taps in the corners. We removed all of these except period 
(.) to reduce the likelihood of entering an accidental mode 
or character by inadvertent taps on the screen. 

In EdgeWrite, we differentiate position based on the 
known location of the square. Hence, we can distinguish i 
from 1 even though they are both downward strokes 
because they are on different edges. This is a powerful 
concept, as it allows for input in a very small area: 
EdgeWrite does not need separate regions of the screen 
for letters, numbers, capitals, and so on. 

Implementation 

The implementation of EdgeWrite enables fast character 
recognition. The recognizer does nothing until it detects a 
pen-down event in one of the corners. Once it does, it 
begins queuing up all the points over which the stylus 
moves until the stylus is lifted. No recognition or filtering 
is done during the stylus movement in order to maximize 
the number of movement points queued. Once the stylus 
is lifted, the recognizer processes the point queue and hit-
tests the points against the corner regions. The result of 
this loop is a 32-bit integer value representing the 
sequence in which the corners were hit. This integer is 
assembled efficiently: when a new corner is hit, the 
existing integer sequence is shifted to the left and the new 
corner is appended. This sequence is then sent to a lookup 
function that finds the character corresponding to the 
corner sequence, if any. 

This recognition algorithm is fast in linear time O(n), and 
we believe it could be implemented on a weak processor 
with a poor digitizer sampling rate and a noisy 
digitization of stylus coordinates. Anecdotally, it was not 
possible for us to move the stylus faster than EdgeWrite 
could recognize the stroke on a Palm V, which polls its 
screen for the pen every 20 milliseconds. 

The “other part” of EdgeWrite is implemented not in 
software but in plastic. The template is crucial for 
EdgeWrite to work well, and designing and fabricating 
this plastic piece was just as iterative as developing the 
software. We have numerous prototypes, and two recent 
models are shown in Figure 8. Model 8a is small and sits 
on the Palm screen. We found this to work fine for able-
bodied users, but users with motor impairments 
sometimes put pressure with their fingers on the template, 
causing it to press against the Palm screen and confuse the 
digitizer. We designed model 8b in order to avoid putting 
pressure on the screen: it sits on the Palm chassis and 

therefore cannot touch the screen (Figure 1). Anchoring 
the template in an elegant and robust way is a design 
challenge for future work. For now, we just tape it to the 
edges of the Palm case, which works fine. 

AN EVALUATION OF EDGEWRITE 

We conducted two evaluations of EdgeWrite: a formal 
study with able-bodied users, and some observational 
studies with 4 motor-impaired users. 

Study #1: EdgeWrite vs. Graffiti, Able-Bodied Users 

Though EdgeWrite is targeted towards people with motor 
impairments, we wanted to assess its speed and accuracy 
with able-bodied users to validate its design. 

Procedure: Subjects, Tasks, Apparatus, Measures 

We recruited 10 paid subjects who had no prior 
experience with handheld text entry. Each subject was 
assigned randomly to a between-subjects condition for 
input method: Graffiti or EdgeWrite. The experiment 
lasted 1 hour and consisted of two parts: a practice session 
followed by a testing session. 

Before the practice session, we taught subjects the basics 
of the input method to which they were assigned. For 
Graffiti, this included things like pointing out the area of 
input, pointing out the letter area and the number area, 
and demonstrating the appropriate pressure with which to 
hold the stylus against the screen. It did not include 
expert-level nuances like making the v backwards. For 
EdgeWrite, this explanation included the importance of 
pressing firmly against the edges during movement, and 
the importance of hitting corners in the correct order. 

The practice session consisted of making each character 
twice successfully. Thus, if a character was not recognized 
correctly, it was retried until success. Subjects progressed 
through a character chart for EdgeWrite or Graffiti, a 
subset of the characters shown in Figure 3. 

The testing session consisted of entering 20 sentences, all 
about 50 characters in length. Task sentences were 

 

 

Figure 8. Two transparent plastic templates (actual size). Both 
are anchored over the normal text entry area of a Palm PDA 
using tape. Template (a) sits in contact with the Palm screen and, 
if pressed upon, can interfere with the digitizer. Template (b) 
avoids this problem by sitting on the Palm chassis, above the 
screen a few millimeters (see Figure 1). 

(a) 

(b) 
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presented in the same fixed order for every subject. The 
sentences appeared on the Palm PDA screen, just above 
the text entry area where subjects reproduced the text. The 
close proximity of the task sentence and the text entry 
area meant reduced focus-of-attention and prevented 
unwarranted errors. 

The character chart was available to subjects for use if 
they could not remember how to make a character. 
Subjects were encouraged to guess “once or twice” if they 
could not recall a character, after which they could use the 
chart. Their uses of the chart were recorded. 

Subjects were not artificially constrained in their entry of 
text: they could make errors or get out of sync with the 
task sentence. They were told before the first task to 
“proceed quickly and accurately, as you would enter text 
in the real world” [24]. 

We designed the tasks to resemble realistic entries: letters, 
names, phone numbers, addresses, and URLs [23]. We 
felt these tasks would yield a more realistic measure of 
speed and accuracy, as opposed to measures resulting 
from tests of only lowercase letters, for example. 

All task and performance data was logged on a nearby 
laptop over a serial cable attached to the Palm PDA. This 
data was then processed by a log file parser capable of 
computing numerous statistics like task times from pen-
down and pen-up sequences, intra-character times, errors 
in the final string, keystrokes per character, gestures per 
character, etc. Space precludes a detailed discussion of 
each measure. The interesting ones are discussed below. 

Results 

The three measures of obvious importance are speed, 
accuracy during text entry, and accuracy after text entry. 
We calculate all three of these measures with the methods 
from [24]. 

Subjects continually improved over the first 12 tasks, then 
began to flatten out in speed and accuracy, so here we 
treat these first 12 tasks as training exercises and consider 
only the last 8 tasks in our comparisons. In all 

comparisons, the EdgeWrite value is reported first, 

followed by the Graffiti value. 

A one-way ANOVA for input technique with repeated 
measures for task yields a non-significant result for entry 
speeds: 6.6 to 7.2 wpm (F[1,56]=.27, n.s.). If we consider 
all 20 trials to examine learning, the means are even 
closer: 5.85 to 5.97 wpm (F[1,152]=.02, n.s.). Further 
testing is required to differentiate the speeds of these two 
methods. 

Keystrokes per character (KSPC) is the ratio of the 
number of characters entered while transcribing a string to 
the number of characters in the resultant string [13][24]. If 
every character is entered correctly the first time, no 
corrections are made and a perfect score of 1.0 is the 
result (lower is better). The ANOVA yields a significant 
result in favor of EdgeWrite: 1.21 to 1.43 KSPC 
(F[1,56]=9.32, p<.02), an 18% improvement. Note that 

we did not include non-character-producing strokes such 
as mode-setters in this measure, as that would unduly 
penalize any entry technique with modes. Figure 9 shows 
KSPC for Graffiti and EdgeWrite over the last 8 tasks. 

 
Figure 9. Keystrokes per character as a measure of accuracy 
during input. Lower KSPC is better. A perfect score is 1.0. 

Errors left in the transcribed string can be compared to the 
task sentence using the Levenshtein minimum string 
distance statistic [24]. This computes the percentage of 
errors between two strings based on how many editing 
primitives (insertion, substitution, deletion) would be 
required to transform one string into the other. The 
ANOVA yields a non-significant result in favor of 
EdgeWrite: .34 to .39 percent errors (F[1,56]=.02, n.s.). 
For our tasks, this is roughly equivalent to one erroneous 
character for every 250 characters entered (about 5 tasks). 

We also can examine the intra-character time (pen-down 
to pen-up) to determine which alphabet’s strokes are 
faster. The ANOVA yields a significant result in favor of 
Graffiti: .58 to .29 seconds (F[1,56]=20.57, p<.005). Note 
that this did not translate into faster entry speed (wpm) for 
Graffiti, as error correction and thinking time play a part. 

We introduce a new measure similar to KSPC called 
gestures per character (GPC). This measure is the same as 
KSPC but includes mode setters and all other recognized 
strokes—things KSPC must leave out. The result can be 
used to show which alphabet is more “verbose,” requiring 
more multi-stroke characters and more modes. The 
ANOVA for GPC yields a significant result in favor of 
EdgeWrite: 1.26 to 1.62 GPC (F[1,56]=14.65, p<.005). 
This verifies our claim that EdgeWrite uses less mode 
strokes, something important for motor-impaired users, 
with whom every stroke counts. 

Finally, both alphabets were extremely learnable and 
guessable. For EdgeWrite, subjects had to use the 
character chart for an average of 4.6 total characters out 
of 1000 characters entered. For Graffiti, this average went 
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up to 6.6. This comparison did not yield a significant 
difference (F[1,152]=1.72, n.s.). 

Another measure of learnability is the amount of time 
spent on each task. Figure 10 shows that EdgeWrite and 
Graffiti compared similarly. Overall means for task time 
were nearly identical, at 118.16 seconds for EdgeWrite to 
117.12 seconds for Graffiti (F[1,152]=0.0, n.s.). 

 
Figure 10. Average task times across all 20 tasks show that 
EdgeWrite and Graffiti were learned at comparable rates. The 
upward spikes in the downward trend are due to tasks with higher 
amounts of punctuation interspersed among simpler tasks. 

Study #2: EdgeWrite vs. Graffiti, Motor-Impaired Users 

Obtaining statistical results with subjects who have motor 
impairments is often infeasible due to high variance 
among people with disabilities, and because of the 
difficulty in obtaining subjects. We observed 4 users with 
motor impairments interacting with both EdgeWrite and 
Graffiti and logged their data. Error counts are given as 
the minimum string distance [24]. 

Subject 1 

Subject 1 was a middle-aged woman with Parkinson’s 
Disease and severe tremor. We asked her to enter each 
lowercase letter (a-z) and each digit (0-9) twice in Graffiti 
and then twice in EdgeWrite. Her recognition rates were 
22/72 and 68/72, respectively. She used the character 
chart during the whole exercise. In Graffiti, interspersed 
with the mis-recognitions were a number of accidental 
periods and other punctuation due to “bounce” on the 
screen. Her tremor made it difficult for her to avoid 
setting the punctuation mode in Graffiti. When she 
entered a 50 character sentence in Graffiti and EdgeWrite, 
she made over 3 times the number of errors in Graffiti. 

Subject 2 

Subject 2 was a 30-something woman with Spastic 
Cerebral Palsy. When asked to make each letter and 
number on the Graffiti chart, it turned out there were 
some she could never correctly produce despite repeated 
efforts: c, e, f, x, 2, 4. For EdgeWrite, these were limited 

to 2 and 7. When she attempted the sentence, “The dog is 
going fast,” in Graffiti she produced, “The g i gbsiangu% 
fast” (8 errors). She skipped d after repeated mis-
recognitions because it was too difficult. In EdgeWrite, 
she entered the sentence without leaving any errors. Her 
only complaint was that the diagonals were difficult. 

Subject 3 

Subject 3 was a 30-something male with a form of 
Muscular Dystrophy. He had a small baseline tremor. 
Using Graffiti, he was unable to make b, d, and f after 
multiple tries and gave up on them. Using EdgeWrite, 
there were not any letters that he could not produce. In 
fact, in an attempt to do 3 versions of each EdgeWrite 
character, he made only 2 errors in 108 characters. When 
asked to produce the sentence, “the ugly underwater 
urchin eats putrid meat lovingly,” in Graffiti he produced, 
“the ugl un erwater urchin eats putri meat lovingly” (3 
errors). In EdgeWrite he produced the sentence without 
leaving any errors. 

Subject 4 

Subject 4 was a 40-something woman with Cerebral 
Palsy. She was able to enter all letters and numbers in 
both Graffiti and EdgeWrite, but upon switching to 
EdgeWrite from Graffiti, she exclaimed, “This is a lot 
easier than before. Much easier, my goodness.” She 
entered a 50 character sentence in Graffiti leaving 2 errors 
and in EdgeWrite without leaving any errors. 

FUTURE WORK 

We are pursuing the development of a continuous entry 
method, which would allow for eyes-free entry and could 
be used for visually-impaired people. We are also 
building versions of EdgeWrite for other platforms: cell 
phones, watch faces, Trackpads, PocketPCs, and 
joysticks. We would like to study text entry with joysticks 
on game consoles, comparing EdgeWrite to current  game 
console methods. We plan to run other studies as well: 
expert transition from Graffiti to EdgeWrite, extended use 
over long periods of time, retention of the alphabet after a 
period of non-use, guessability of character forms, and 
text entry in unstable environments, such as while 
walking down the street or standing on a bus. We also 
require more validation with motor-impaired users. 
Finally, we would like to begin developing models of 
motor-impaired stylus behavior in hopes of gaining 
insights for the design and refinement of input techniques. 

CONCLUSIONS 

We have shown that physical edges can be an effective 
means of providing stability in stylus input techniques. 
We have also shown that a unistroke alphabet comprised 
entirely of strokes along 4 edges and 2 diagonals can be 
highly guessable and learnable, despite the natural 
concern that such a constrained alphabet would not be 
usable. We have provided an algorithmic approach to 
character recognition based on hit-testing in dynamic 
size-and-shape-changing corner regions. This approach to 
recognition resulted in an 18% accuracy improvement 
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during text entry for EdgeWrite over Graffiti, without 
significant detriment to entry speed. 

EdgeWrite’s recognition technology could be 
implemented on other platforms, including those without 
the luxury of a fully-digitized touch screen. All that is 
required is 4 corner sensors and 1 surface sensor. These 
sensors could be crude: they do not have to determine 
coordinates, only whether a stylus or finger is in contact 
with them or not. Thus, we have shown that a reliable 
character recognizer need not be a pattern matcher that 
depends on the whole path of movement.  

We are hopeful that many domains will find EdgeWrite or 
the EdgeWrite recognition approach useful, from PDAs to 
game consoles to assistive technologies. 
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