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CHAPTER

3.1

Measures of Text Entry
Performance

Jacob O. Wobbrock University of Washington, Seattle, WA, USA

INTRODUCTION

When people encounter a new text entry method, the first question they usually ask is,
“How fast is it?” Although speed is a key feature of any text entry method, there is much
more that can and should be said. Clearly, accuracy is important and is not entirely
independent of speed. Even so, there are different kinds of accuracy, such as accuracy
during input, when errors may be made and corrected, and accuracy after input, when
the entered text is considered complete. But do speed and accuracy tell us everything?
What can we say about how learnable a method is, or how efficient? What measures are
applicable to keyboard typing or stylus-based gestures? People are sometimes surprised
at how much can be said about the performance of a text entry method. Certainly, we
can capture and quantify a great deal more than just speed and accuracy.

This chapter presents numerous empirical measures of text entry performance.
These measures are, for the most part, method-agnostic, applicable to a variety of text
entry methods. Speed is one example of a method-agnostic measure. Other measures
presented near the end of the chapter are method-specific, inherent to keyboard
typing, selector movement, or gestural methods.

Although this chapter does not focus on experimental or methodological issues
(see Chap. 4), it is important to note that the meaning of an empirical measure is
dependent upon the manner in which the text entry data are captured. For example,
entry rates must be regarded differently when one is composing text versus copying it,
since the former may involve substantial thinking time and other considerations that
are difficult to measure. Therefore, copying text is usually preferred when evaluating
text entry methods in laboratory settings (MacKenzie & Soukoreff, 2002a). Even for
copying text, however, some studies have required participants to maintain synchronic-
ity with the source text, disallowing incorrect characters (Venolia & Neiberg, 1994;
Isokoski & Kaki, 2002; Evreinova et al., 2004; Ingmarsson et al., 2004), while others
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3.2.1

3 Measures of Text Entry Performance

have disabled backspace and other error correction mechanisms (Matias et al., 1996;
MacKenzie & Zhang, 1999). As we might imagine, these rather artificial limitations may
adversely affect participants’ entry and error rates.

Owing to its naturalness and widespread use, the unconstrained text entry evalua-
tion paradigm (Soukoreff & MacKenzie, 2001, 2003; Wobbrock & Myers, 2006d) is the
experimental methodology assumed by most measures in this chapter. In these evalu-
ations, a short presented string is shown to participants who enter it using the method
under investigation. A participant’s entered result is called the transcribed string. This
process is repeated over many trials. During transcription, all printable characters are
accepted as legitimate entries, and backspace is used as the sole means of error cor-
rection. No error beeps or other intrusions affect the fluid entry of text, and partici-
pants are simply told to “proceed quickly and accurately” (Soukoreff & MacKenzie,
2003) in an effort to balance speed and accuracy without unduly favoring one over
the other. Log files are written that provide a record of the input stream, which is the
sequence of actions (i.e., keystrokes, gestures, and so on) taken by participants dur-
ing transcription. This input stream is then parsed and interpreted according to the
measures presented in the rest of this chapter.

AGGREGATE MEASURES

Aggregate text entry measures refer to those that characterize a method’s perform-
ance on the whole. These are contrasted with character-level measures, explained in
Section 3.3. In particular, this section focuses on method-agnostic aggregate mea-
sures, mainly dealing with entry rates, error rates, and various measures of efficiency.

Entry Rates

Although characterizing the entry rate of a text entry method is mostly straightfor-
ward, a few nuances and alternatives exist that warrant some discussion. This section
reviews various speed-related measures and highlights their differences.

Words per Minute (WPM)

Words per minute (WPM) is perhaps the most widely reported empirical measure of
text entry performance. Since about 1905, it has been common practice to regard a
“word” as 5 characters, including spaces (Yamada, 1980)1. Importantly, the WPM
measure does not consider the number of keystrokes or gestures made during entry,

! Note that different text entry communities have different definitions of many common terms,

including the term “word.” For example, speech-based text entry researchers define “words” as
actual spoken words, not 5 characters. See Chap. 8 for a discussion of speech-based text entry.



3.2 Aggregate Measures

but only the length of the resulting transcribed string and how long it takes to pro-
duce it. Thus, the formula for computing WPM is:

_ -1 1
WPM = L~ %60 x =, (3.1)
S 5

In Eq. (8.1), T'is the final transcribed string entered by the subject, and |T| is the
length of this string. As stated, 7' may contain letters, numbers, punctuation, spaces,
and other printable characters, but not backspaces. Thus, 7'does not capture the text
entry process, but only the text entry result. The S term is seconds, measured from the
entry of the first character to the entry of the last, including backspaces. The “60” is
seconds per minute and the “1/5” is words per character.

Sometimes researchers prefer to report entry rates in characters per second
(CPS). Although this is less common than WPM, the measure is a simple transforma-
tion of WPM, since the first ratio in Eq. (3.1) is in CPS.

The “—1” in the numerator deserves special mention and is often neglected by
researchers when reporting entry rates. As stated, the S term in Eq. (3.1) is measured
from the entry of the first character to the entry of the last. Consider this example
from MacKenzie (2002b):

the quick brown fox jumps over the lazy dog (43 chars)

S A

t = 0 sec t = 20 sec

It would be incorrect to calculate CPS as 43/20, since timing begins with the entry
of the first character. Thus, the proper CPS calculation is (43 — 1)/20. Of course,
multiplying this ratio by 60 X 1/5 gives us WPM.

Adjusted Words per Minute (AdjWPM)

In the unconstrained text entry evaluation paradigm, participants can enter text
freely and must therefore strike a balance between speed and accuracy?. From Eq.
(3.1), it is clear that errors made and then corrected during text entry reduce WPM,
since it takes time to make and correct errors and WPM considers only the length of
the transcribed string. In contrast, errors remainingin the transcribed string, so-called
uncorvected errors, are at odds with speed, since participants can go faster if they leave
more errors. A way of penalizing WPM in proportion to the number of uncorrected
errors is to compute an adjusted entry rate (Matias et al., 1996; Wobbrock et al., 2006):

AdjWPM = WPM X (1 — U)“ (3.2)

2 To help participants in this regard, experimenters may suggest that participants enter text “as if

they were writing an e-mail to a colleague” or other such guideline.
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In Eq. (3.2), Uis the uncorrected error rate ranging from 0.00 to 1.00, inclusive. The
variable a might be called the “penalty exponent” and is usually set to 1.0, but may be
increased in order to more severely penalize WPM in light of uncorrected errors. For
example, if we have 10% uncorrected errors, our adjusted WPM will be 90% of the
raw WPM if ¢ = 1.0, but only 81% of the raw WPM if ¢ = 2.0. For an example of using
AdjWPM in a longitudinal study, see prior work (Wobbrock ez al., 2006).

Because of the rather arbitrary nature of AdjWPM, some experimenters (Lewis,
1999) have insisted that participants correct all errors during entry, thereby eliminat-
ing uncorrected errors and enabling WPM to be a single measure of performance. In
these studies, trials that contain uncorrected errors may be discarded and replaced
with additional trials. Such trials should, however, be reported separately as a per-
centage of all trials performed.

Keystrokes per Second (KSPS)

As noted, the calculation of WPM and AdjWPM do not take into account what happens
during text entry. To do this, it is also useful to view text entry activity as a process of data
transfer from the user to the computer. We can then characterize the “data rate.” For
example, some speech recognition systems may enter long chunks of text very quickly,
but also make many errors. These systems often support rapid error correction with a
designated phrase such as “scratch that.” Users may retry certain phrases many times
before the system correctly recognizes them, but WPM will not capture all of this activity.
Instead, we can use keystrokes per second (KSPS) according to the following formula:

KSPS = |IS|—_1 (3.3)

L

In Eq. (3.3), IS is the input stream, which contains all entered characters, including
backspaces. As in Eq. (3.1), the timing for S in seconds is assumed to begin with the
entry of the first character and end with the entry of the last. The use of the word
“keystrokes” in this measure should not be taken strictly, as the measure is still appli-
cable to nontyping text entry methods®. (The term might instead be “bytes per sec-
ond” (BPS), but in many of today’s character sets, characters are no longer single
bytes, so this term is not preferred.)

As an example, consider the following input stream in which “<” symbols indicate
backspaces and transcribed letters are in bold:

tha<e p<quik<ck brwn<<own t<fox (31 keystrokes)

A~ A~

t = 0 sec t = 10 sec

For historical reasons and because of its relationship to the keystrokes per character (KSPC) perform-
ance measure (see Section 3.2.2), KSPS uses the word “keystrokes” to refer to any token in the
input stream, whether it was generated by a literal keystroke or not. Although numerous text entry
methods are not keystroke-based methods, they still generate an input stream of characters, spaces,
and backspaces, and thus KSPS applies just fine.
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This input stream results in the transcribed string “the quick brown fox”. The proper
KSPS calculation for this input stream is (31 — 1) /10 = 3.0. Note that this differs
from a calculation of CPS: (19 — 1)/10 = 1.8.

Using KSPS, researchers can estimate an “empirical upper bound” by assuming
that all entered characters are correct. Such a calculation tells us how fast a method
might be (in CPS) if its accuracy during entry were improved to 100%. For an exam-
ple use of KSPS (referred to as BPS), see prior work (Wobbrock et al., 2004).

Gestures per Second (GPS)

If KSPS is the data rate of a method, then gestures per second (GPS) is the “action
rate.” At first blush, the term “gestures” may seem applicable only to stroke-based text
entry, but it should be interpreted more broadly. Here, a “gesture” is an atomic action
taken during the text entry process. What constitutes an “atomic action” is dependent
upon the method under investigation. For a stroke-based method, it would be any
individual unistroke. For a stylus keyboard, it would be a stylus tap. For a physical key-
board, it would be an attempt to strike a key. For a speech recognition system, it would
be an utterance. All of these are examples of gestures. Notably, the actions themselves
do not have to be text-producing. For example, tapping a sticky SHIFT key on a stylus
keyboard may be consider a gesture, even though SHIFT itself does not produce a
character. Since different methods will require different gestures, it is important that
researchers who use this measure report exactly what they consider a gesture to be.
The GPS measure tells us how fast the user is taking actions. We also therefore
introduce the concept of a “nonrecognition,” which we define as “any unproductive
gesture.” This may be an unrecognized unistroke, a stylus tap on “dead space”
between virtual keys, a missed physical key, or an unrecognized utterance. We will rep-

“ _

resent nonrecognitions as “@”. With this understanding, we can define GPS as:

S — |IS@|—1'

GP (3.4)

In Eq. (3.4), IS, stands for the input stream including all actions. Text entry experi-
ments can capture these actions by adding them to performance logs. For physical
gestures like striking a key, video analysis can be used to discover actions, including
nonrecognitions (i.e., missed keys).

Consider this example, in which “@” represents a nonrecognition and “®” repre-
sents SHIFT:

*Tha<pe p<quipk<ck brwn<<own t<foxp (35 gestures)

A~ ~

t = 0 sec t = 10 sec

The proper GPS calculation is (35 — 1)/10 = 3.4. It should now be clear that
GPS = KSPS = CPS for a given text entry trial.

51
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Learning Curves

Another common use of entry rates is to graph WPM over time and model the points
according to the power law of learning (Card et al., 1983)*. Such models take the
following form:

WPM = aX’. (3.5)

In Eq. (3.5), Xis the variable “time,” usually a session number, and a and b are fitted
regression coefficients. The value for a is “initial performance” and the value for b,
often below 0.5, determines the steepness of the curve. The result of fitting such
curves allows us to estimate performance in future sessions, especially if the goodness
of fit (R?) is high. For additional discussion, see the following examples: MacKenzie
and Zhang (1999), Isokoski and MacKenzie (2003), Lyons et al. (2004), Wobbrock
and Myers (2006a), and Wobbrock et al. (2006).

Error Rates

It may come as no surprise that measuring error rates in unconstrained text entry

experiments is trickier than measuring entry rates. There are multiple error metrics,

but most are concerned with the distinction between errors during entry (“corrected
» « »

errors”) and errors after entry (“uncorrected errors”).

Keystrokes per Character (KSPC)—Performance Measure

One way to quantify errors during text entry is to use the keystrokes per character
(KSPC) performance measure (Soukoreff & MacKenzie, 2001)5. This measure is a
simple ratio of the number of entered characters (including backspaces) to the final
number of characters in the transcribed string. The formula for calculating KSPC is:

KSPC = % (3.6)

* See Chap. 4, Section 4.4, for experimental issues concerning learning curves and longitudinal

studies.

This is not to be confused with the KSPC characteristic measure (see Sections 3.2.3 and 5.2), which
describes the inherent efficiency of a method as the number of key or button presses required to
generate a character. Note that like KSPS, the KSPC performance measure does not require a
keystroke-based method. All that is required to use this measure effectively is a text entry method that
generates a character-level input stream containing tokens like letters, spaces, and backspaces.
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As in Eq. (3.3), IS includes all characters, including backspaces. To use our previous
example:

tha<e p<quik<ck brwn<<own t<fox (31 keystrokes)

The transcribed string is “the quick brown fox”, which contains 19 characters. Thus,
our KSPC accuracy ratio is 31/19 = 1.63. Note that lower KSPC is better and 1.0 rep-
resents “perfect entry.” For an example use of KSPC, readers are referred to prior
work (Wobbrock et al., 2003b).

A limitation of the KSPC performance measure is that it makes no distinction
between backspaced characters that were initially correct and backspaced characters
that were initially incorrect (Soukoreff & MacKenzie, 2004). In the example above, the
first “wn” in “brwn” were, in some sense, correct, but erased in order to enter the omit-
ted “o”. The “wn” are treated as any other incorrect letters, even though they were
entered correctly by the participant. Much more complicated procedures are needed
to correctly differentiate corrected-and-wrong and corrected-butright characters. Such
procedures require a character-level error analysis of the input stream (see Section 3.3.3).

Gestures per Character (GPC)

An extension of KSPC is gestures per character (GPC). As with GPS, we regard a “gesture”
as any atomic action taken during the text entry process, and a “nonrecognition” to
be any unproductive gesture. Researchers should report GPS and GPC with clear def-
initions of what they consider a gesture. The GPC measure gives us an indication of
the accuracy during entry including futile actions. The formula for GPC is:

1S,|

(3.7)
7]

GPC =

In Eq. (3.7), IS, encodes all characters, backspaces, nonrecognitions, and other
actions. To use our previous example in which “®” represents SHIFT:

eTha<ge p<quipk<ck brwn<<own t<foxg (35 gestures)

The transcription is “The quick brown fox”. Thus, GPCis 35/19 = 1.84. That is, nearly
two gestures (i.e., actions) were required for every character that ended up in the tran-
scribed string. Thus, GPC is also some measure of efficiency, since entry methods that
require more actions per character will have a higher GPC, even if the accuracy of par-
ticipants taking those actions is reasonable. For an example use of GPC, see prior work
(Wobbrock et al., 2003b).

Minimum String Distance (MSD)

Thus far, we have considered accuracy during text entry, but what about the accuracy
of the resultant transcribed string? For this, we may use the minimum string distance

53
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FIGURE
3.1

3 Measures of Text Entry Performance

MSD(P, T)
D « new matrix of dimensions |P| + 1, |T| + 1
for i — 0 to |P| do
D[i, 0] « ¢
for j«— 0 to|T| do
D[0,j]
for i< 1to |P| do
for j— 1to|T| do
Dli, j] «— MIN(D[i — 1, 7] + 1,
Dl j— 1]+ 1,
Dli=1,j—11+Pli—1]# T[j— 1])
return D[|P|, |T|]

— O © 00O O N~

—

Algorithm for computing the minimum string distance. In this case, the # comparison
returns integer “1” if true and integer “0” if false. Adapted from Soukoreff and
MacKenzie (2001) and Wobbrock and Myers (2006d).

statistic (Levenshtein, 1965; Wagner & Fischer, 1974; Soukoreff & MacKenzie, 2001).
The MSD statistic gives us the “distance” between two strings in terms of the lowest
number of error-correction operations required to turn one string into the other. The
error-correction operations available to us are inserting a character, deleting (or omit-
ting) a character, and substituting a character (Damerau, 1964; Morgan, 1970; Gentner
et al., 1984). Consider the following presented (P) and transcribed (7T') strings:

P: the quick brown fox

T: tha gquck browzn fox

Manual inspection shows us that we have a substitution of “a” for “e”, an omission of
(134

i”, and an insertion of “z”. So for this example, MSD = 3. However, sometimes the
MSD result is not so clear:

P: quickly
T: qucehkly

What is the MSD in this case? Fortunately, an algorithm exists to compute the MSD for
us (Fig. 3.1). As parameters, the algorithm takes the presented and transcribed strings.

Using the MSD algorithm, we discover that “quickly” and “qucehkly” can be equated
with no fewer than three operations®. We can compute an MSD error rate according
to the following equation (Soukoreff & MacKenzie, 2001):

MSD(P,T)

) (3.8)
MAX ([P[.[1])

MSD error rate =

5 Determining which three operations is another matter, requiring a character-level error analysis.

See Section 3.3.2.
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TABLE
3.1

FIGURE

3.2

Correct (C) All correct characters in the transcribed text.
Incorrect-not-fixed (INF) All incorrect characters in the transcribed text.
Incorrect-fixed (IF) All characters backspaced during entry.

Fix (F) All backspaces.

Character classes used in computing corrected, uncorrected, and total error rates.

C F INF
Py, -
th quix<ck brpown
t W et g

INF IF C C

An example phrase showing character classifications according to the four categories
in Table 3.1. Adapted from Soukoreff and MacKenzie (2003). Used with permission.

As Soukoreff and MacKenzie (2001) explain, the denominator uses the longer of the
two strings so that (a) the measure does not exceed 1.00, (b) participants do not
receive undue credit for entering less text than contained in the presented string, and
(c) an appropriate penalty is incurred if more text is entered than is contained in the
presented string. Thus, for “quickly” and “qucehkly”, our error rate is 3/8 = 0.375.

Corrected, Uncorrected, and Total Error Rates

One drawback of using KSPC for accuracy during entry and MSD for accuracy after
entry is that they are not easily combined. Recent work has therefore set out to devise
a unified error metric. The result was the development of corrected, uncorrected,
and total error rates (Soukoreff & MacKenzie, 2003). These three error rates depend
on classifying all entered characters into one of four categories (Table 3.1).

Consider the classification example shown in Fig. 3.2. Automating these classifica-
tions is straightforward because we do not need to know which characters belong to each
category, but simply sow many characters do. Characters belonging to the F and IF classes
can be counted by making a backward pass over the input stream. The size of the INF
class is equal to MSD (B, T'). The size of the C class equals MAX(|P|, |T|) — MSD(RB, T).

Similar to the KSPC performance measure, the IF class contains all backspaced
characters, regardless of their initial correctness. In Fig. 3.2, if the “x” were a “c” it
would still belong to the IF class. This is one limitation of these aggregate error
metrics that is remedied by character-level error analyses (see Section 3.3.3).

Using these character classes, we can define our three error rates. The corrected
error rate supersedes the KSPC performance measure. It is calculated with Eq. (3.9):

IF
corrected error rate = ————— (3.9)

C+ INF + IF

55
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The uncorrected error rate supersedes the MSD error rate and is calculated using
Eq. (3.10):

uncorrected error rate = & (310)

C+INF +1IF’
The total error rate is merely the sum of Egs. (3.9) and (3.10):

+
total error rate = _F+INF (3.11)

C+INF+1IF’

In practice, it is common for corrected errors to vastly outnumber uncorrected errors.
This can make the total error rate rather uninformative, since it will mostly reflect cor-
rected errors. Furthermore, evaluators must be careful to point out that higher cor-
rected errors decrease speed, but higher uncorrected errors increase speed. A rapid
method that creates many corrected errors, has efficient error correction, and leaves
few uncorrected errors can still be considered a successful method, since it produces
accurate text in relatively little time.

Cumulative and Chunk Error Rates

Thus far, we have considered error metrics from the unconstrained text entry evalua-
tion paradigm. However, many user test software programs and typing tutors prior to
2001 neither used the unconstrained paradigm nor analyzed errors in this way. Instead,
many of these programs (Matias ef al., 1996) disallowed error correction all together
and simply treated an error as any character out of sync with the presented text. This
gave rise to what has been called the cumulative error rate. Consider again our example:

P: the quick brown fox
T: tha quck browzn fox

X KXKXKKXKX

In this case, 19 characters were presented, and of those entered, 9 disagree in a pair-
wise comparison. Thus, the cumulative error rate is 9/19 = 47.4%.

Clearly, however, the second block of errors—the eight-error “chunk”—was pre-
cipitated by the omitted “i” in “quck”. Thus, Matias et al. (1996) defined the chunk
error rate to account for this by treating error chunks as single errors, thus permitting
a more realistic automated analysis. The chunk error rate for the above example
would be 2/19 = 10.5%. However, we can see a drawback of the chunk error rate,
since a third error has been engulfed by the same chunk: the inserted “z” in “browzn”
deserves to be counted as a separate error, but the chunk error rate would fail to do so.
At this point, we can appreciate the development of the previous error rates designed
to accommodate the unconstrained text entry evaluation paradigm.



3.2 Aggregate Measures

3.2.3

Efficiency Measures

Various measures also exist that describe a method’s efficiency. The first of these pre-
sented in this section is a characteristic (or “model”) measure. The others are empir-
ical measures based on text entry experiments.

Keystrokes per Character (KSPC)—Characteristic Measure

The KSPC characteristic measure (MacKenzie, 2002c) quantifies how many key presses
are required to generate a single character in a text entry method. This is not the
same as the KSPC performance measure (see Section 3.2.2), which is a ratio of entered
characters to transcribed characters (Soukoreff & MacKenzie, 2001). As before, the
term “keystrokes” should be interpreted broadly. For example, a hypothetical stroke-
based stylus method that requires two distinct unistrokes to generate each character
would have a characteristic KSPC of 2.0.

MacKenzie (2002b) provides numerous examples to illustrate the calculation of
the KSPC characteristic measure. Entering lowercase letters on a standard Qwerty key-
board has a KSPC of 1.0000, since each key corresponds to a single letter. The multitap
method used on most mobile phones uses only eight keys for letters (keys 2-9) and a
ninth key (often the 0 key) for SPACE. Its KSPC is 2.0342. The disambiguating phone
keypad technique 79 (www.tegic.com) resolves phone key sequences into their most
likely words without requiring multiple presses of the same key. Its KSPC is 1.0072.
Word prediction and completion techniques have KSPCs under 1.0000 since multiple
letters may be entered in single actions (e.g., tapping a candidate word with a stylus).

How are these figures for KSPC calculated? The answer depends on the type of
method being considered, but all calculations require a language model. For our pur-
poses, a language model contains single letters, letter pairs, or entire words along with
a count of how many times those entities were observed in a corpus of text (Table 3.2).

When the entry of letters is independent of previously entered letters, the “letter
model” will do. For each letter in the model, we append the number of keystrokes
required to generate that letter in the text entry method being considered. The for-
mula for the KSPC characteristic measure is:

Y (K, X F)
KSPC = ¢€¢___ (3.12)
> F

ceC

In Eq. (3.12), ¢ is a single character in the letter model C, K, is the number of
keystrokes required to enter ¢, and F, is the frequency count for .

When the entry of a letter depends on the previously entered letter, we must use
the letter-pair model. (Letter pairs are also sometimes called letter digraphs or letter
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TABLE
3.2
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Letter model Letter-pair model ‘Word model
_ 90563946 e_ 18403847 the 6187925
a 32942557 _t 14939007 of 2941789
b 6444746 th 12254702 and 2682874
c 12583372 he 11042724 to 2560344
d 16356048 s_ 10860471 a 2150880

Examples of three language models used to calculate KSPC. Underscores (“_")
represent SPACE. Frequency counts are from the British National Corpus.
Adapted from MacKenzie (2002c).

digrams.) Selection keyboards that allow a user to move a selector over an on-screen
depiction of keys with successive presses of directional keys require the letter-pair
model, since the number of key presses required for each letter depends on the let-
ter from which we start (i.e., the previous letter). In this case, Eq. (3.12) still applies,
but ¢ is now a letter-pair and C contains all 27 X 27 = 729 letter-pairs in the model.

When the result of a key press depends on word-level context, the word model
must be used to calculate KSPC. To each word and frequency count in the model
(Table 3.2), we append the number of keystrokes required to generate that word,
including a trailing space. The KSPC calculation is then:

> (K, XF,
KSPC = WEEV X (3.13)
weW

In Equation (3.13), wis a word in the word model W, K, is the number of keystrokes
required to enter w, I}, is the frequency count for w, and C, is the number of charac-
ters in w. Both K, and C, assume the presence of a trailing space after the word.

The KSPC characteristic measure is one model-based way of quantifying the
efficiency of a text entry method. The following sections describe other measures of
text entry efficiency based on text entry experiments.

Correction Efficiency

The efficiency of error correction can be captured with the correction efficiency metric
(Soukoreff & MacKenzie, 2003). This metric is defined using the character classes
from Section 3.2.2. Correction efficiency is defined as:

correction efficiency = % (3.14)

As Eq. (8.14) shows, the correction efficiency metric is the ratio of incorrect-fixed
characters to the fix keystrokes that correct them. For basic keyboard typing, this
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metric will be 1.00, since characters can be created and erased in single key presses.
However, other methods may allow multiple characters to be erased with a single fix,
such as the Fisch in-stroke word completion technique (Wobbrock & Myers, 2006b),
which allows word suffixes to be erased with a special backspace stroke. As a second
example, consider speech recognition systems, which often allow multiple words
to be erased with a single command like “scratch that,” which could be considered a
single fix “keystroke.”

Participant Conscientiousness

Although it is not an efficiency metric per se, participant conscientiousness is related to
correction efficiency (Soukoreff & MacKenzie, 2003). The metric compares the num-
ber of errors corrected to the total number of errors made, indicating how meticu-
lous participants were in correcting errors as they entered text. The formula for
participant conscientiousness is:

.. Lo IF
participant conscientiousness = ————. (3.15)
IF + INF

Utilized and Wasted Bandwidth

The KSPS data rate (see Section 3.2.1) viewed text entry as the process of data trans-
fer from the user to the computer. Along with the KSPS data rate, we can character-
ize the wutilized bandwidth of a method (Soukoreff & MacKenzie, 2003)—the
proportion of transmitted keystrokes that contribute to the correct aspects of the
transcribed string:

utilized bandwidth = ¢ . (3.16)
C+INF +1IF +F

Accordingly, the wasted bandwidth is defined as its complement:

wasted bandwidth = INF +IF + F . (3.17)
C+INF +IF + F

Cost per Correction (CPC)

To more finely characterize error correction, we can use the cost per correction metric
(Gong & Tarasewich, 2006). This metric was developed to capture the relative cost of
error corrections in light of the fact that some errors go unnoticed until after a few
additional characters have been entered. Consider these three input streams in which
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correction sequences have been grouped in parentheses, spaces have been added for
clarity, and erroneous letters have been made bold:

(pui<<<) quick
(p<) g (r<r<) uick
(p<) g (v<) u (j<) ick

Gong and Tarasewich (2006) term the above sequences in parenthesis corrections. A
single correction’ consists of consecutive chunks of backspaced letters and the back-
spaces that remove them. In the first sequence, one error, the “p”, inspires the removal
of the following “ui”, resulting in a single correction block of six keystrokes. In the sec-

“ 9 “

ond sequence, the “p” is an initial error immediately corrected, but two attempts at “u
result in “r”; this sequence therefore has two correction blocks. The third sequence
contains three separate correction blocks separated by transcribed characters.

Using the notion of a “correction” and the keystroke classes defined previously

(see Section 3.2.2), cost per correction (CPC) is defined as:

cpc = EFF (3.18)
corrections

Applying Eq. (3.18)8 to the first sequence results in a CPC of (3 + 3)/1 = 6. For the sec-
ond sequence, we have (3 + 3)/2 = 3. For the third sequence, we have (3 + 3)/3 = 2.
These results correspond to intuition, which suggests that the “damage done” by the first
sequence’s error is greater than that of the second or third sequence.

CHARACTER-LEVEL MEASURES

Thus far, we have considered measures that produce results for an entire input
stream or transcribed string. Importantly, many of our measures have utilized only
counts of letters (e.g., number of backspaced letters) without regard to what those letters
are. For example, the IF character class may contain numerous already-correct char-
acters that have been either mistakenly or purposefully erased (Soukoreff & MacKenzie,
2004). For finer grained analyses that differentiate among individual characters, we
must use character-level analyses. Such analyses are generally more complicated than

N}

Although Gong and Tarasewich (2006) use the term “correction,” I find this term easily confused
with a single backspace. Instead, I prefer the term “correction sequence” or “correction block.”
Gong and Tarasewich (2006) include a third term in the numerator that represents “control key-
strokes” used to produce any letters in correction blocks. I omit this term because the example
sequences are method-agnostic and devoid of any method-specific control keys (e.g., NEXT in
Multitap).
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aggregate analyses, particularly in the case of errors. This section gives an overview of
method-agnostic character-level measures.

Intra- and Intercharacter Time

The character-level measure somewhat analogous to entry rate (see Section 3.2.1) is
intracharacter time, or the time to make a single character. Exactly how this value is mea-
sured will depend on the type of method under investigation, but most text entry meth-
ods support some notion of this measure. In a unistroke method, for example, the
intracharacter time is the time from pen down to pen up. This measure has been used to
compare unistroke character speeds in Graffiti and EdgeWrite (Wobbrock et al.,
2003b). For a continuous-stroking method like Quikwriting (Perlin, 1998), the intra-
character time is from when the stylus exits and returns to the center “hub” area. In a
typing-based method, we could measure times from key down to key up, although as oth-
ers have pointed out (Rumelhart & Norman, 1982), the full time to strike a key must
include the time to move to the key before it can be depressed. The use of high-speed
video can make it possible to identify the intracharacter times involved in keyboard
typing, although this is a labor-intensive process.

The formula for calculating the average intracharacter time from a time-
stamped input stream IS is

15|
Z (character-endi - Character-startl-)

intracharacter time = <=1 . (3.19)

|55]

In Eq. (3.19), the character-start; and character-end; values are time stamps for the ith
character in the input stream. The first character in ISis at index ¢ = 1.

Accordingly, we can also define the intercharacter time, which tells us how long par-
ticipants delay between the end of one character and the beginning of the next. For
example, world-champion typists, who can type up to 200 WPM, have average
interkeystroke intervals of about 60 ms, which is close to the neural transmission time
between the brain and fingers (Rumelhart & Norman, 1982). The intercharacter
time can also be useful in spotting learning or recall difficulties in gestural alphabets,
since novices may pause at length when trying to remember how to make certain
characters (Wobbrock et al., 2005a).

The formula for the average intercharacter time is

|13
Z (character—starti — character—endi_l)

intercharacter time = =2 |]9| 3 - (3.20)

Note that Eq. (3.20) requires that we have at least two input stream characters.

61



62

FIGURE

33

3.3.2

3 Measures of Text Entry Performance

ALIGN (P, T, D, x, y, P’, T’, ref alignments)
1 if x=0andy= 0 then
2 alignments —* (P’, T") // add a new aligned pair
3  return
4 if x> 0andy> 0 then
5 if D[x,y] =D[x—1,y— 1] and P[x — 1] = T[y — 1] then
6 ALGN(P, T, D, x— 1,y — 1,P[x— 11+ P, T[y— 1] + T")
7 ifD[x,y] =D[x—1,y— 1] + 1 then
8 ALGN(P, T, D, x— 1,y— 1,P[x— 11+ P, T[y— 1] + T7)
9 if x>0and D[x,y] = D[x — 1,y] + 1 then
10 ALIGN(P, T, D, x — 1,9, P[x— 11 + P, + T")
11 ify>O0and D[x, y] = D[x,y — 1] + 1 then
12 ALGN(P, T, D, %,y — 1,“7 + P, T[y— 1] + T”)
Algorithm for computing the optimal alignments of P and 7. Adapted from MacKenzie
and Soukoreff (2002b) and Wobbrock and Myers (2006d).

Uncorrected Errors in Transcribed Strings

Recall the three MSD error-correction operations: insertion, omission, and substitution
(see Section 3.2.2). Although the MSD algorithm tells us how many of these correc-
tions (and hence, errors) separate two strings, it does not tell us which errors exist or
for which characters. For that, we need a character-level error analysis for transcribed
strings (MacKenzie & Soukoreff, 2002b; Wobbrock & Myers, 2006d). Consider our
earlier example:

P: quickly
T: qucehkly

Previously, we determined that the MSD = 3. What might these three errors be? We
could have a substitution of “c” for “i”, another of “e” for “c”, and an insertion of “h”.
and insertions of “e” and “h”. Might there be
other sets of three errors? How can we know?

The answer lies in using the D matrix filled in by the MSD algorithm (see Section
3.2.2) to produce pairs of Pand T that reflect the different error corrections that
result in the MSD value. These pairs are called the optimal alignments of Pand 7T, and
they can be discovered using the algorithm shown in Fig. 3.3.

The algorithm in Fig. 3.3 takes as parameters the presented string P, transcribed
string 7, the filled MSD matrix D (see Fig. 3.1), integers x and y (initialized with the
lengths of P and 7, respectively), and strings P’ and 7", initially empty. The last
parameter is a reference to the set of optimal alignments, which is initially empty but
serves as the return value once filled.

Using the ALIGN algorithm, we receive the following optimal alignment pairs of
“quickly” and “qucehkly”:

w9
1

Or we could have an omission of

Pi: qu-ickly
Ty: qucehkly
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P,: qui-ckly
T,: qucehkly
Py: quic-kly
T5: qucehkly
P,: quic--kly
T,: qu-cehkly

=

In the alignment pairs, hyphens in P indicate insertions in 7; hyphens in T indicate
omissions from P; and different letters in corresponding positions indicate substitu-
tions. The alignments show us that there are four sets of three errors that result in
MSD = 3. Since it is impossible to know which set reflects the user’s actual intentions,
we can simply weight each error by the number of alignments in which it occurs. For
example, two alignments show a substitution of “c” for “i”; we can therefore treat this
as a 50% chance that “c” was substituted for “i”. Accordingly, we can tally character-
level errors for each character in our alphabet. This information can help designers
target problematic characters and fix them. A problematic character may be a unistroke
gesture that is commonly misrecognized or confused with another, or mini-Qwerty
keys that are too close together and often accidentally interchanged.

Corrected Errors in Input Streams

The character-level error analysis in the previous section gives fine-grained results for
each letter of the alphabet, but it has a major drawback: it considers only presented
and transcribed strings, ignoring the text entry process captured by input streams.

Recent work has attempted to extend the character-level error analysis to the input
stream by dealing with corrected character-level errors, not just uncorrected errors
(Wobbrock & Myers, 2006d). In many text entry studies, the number of corrected
errors (i.e., backspaced letters) is much greater than the number of uncorrected errors
left in the transcribed string. Therefore, a character-level error analysis of the input
stream has access to a great deal more character-level data than analyses of just pre-
sented and transcribed strings. The algorithms for automatically detecting and classify-
ing character-level input stream errors are lengthy and complicated, and interested
readers are referred to them elsewhere (Wobbrock & Myers, 2006d). The remainder of
this section gives examples of corrected character-level errors for illustration.

Corrected-and-Wrong, Corrected-but-Right

We have previously noted that the IF class of backspaced characters is just a count of
erroneous letters and therefore may include already-correct letters. An input stream
character-level error analysis can separate corrected-and-wrong from corrected-but-
right characters. Consider the following example:

P: quickly
IS: pui<<<quickly
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In this input, the “p” is corrected-and-wrong, but the first “ui” is corrected-but-right.
At the character level, the “p” is classified as a corrected substitution for “q”, and the
“ui” is corrected-butright.

Separating corrected-and-wrong from corrected-butright requires the determi-
nation of the target letter in P that the participant is entering. This is a complicated
issue that involves many ambiguities. However, in the majority of cases, we can use
some fairly reliable assumptions to simplify the challenges involved. For more infor-

mation in this regard, readers are referred elsewhere (Wobbrock & Myers, 2006d).

Corrected Substitutions and Confusion Matrices

As we saw in the previous example, corrected substitutions occur whenever a charac-
ter that does not match the target character is initially entered but later erased.
Consider this example:

P: quickly
IS: gv<w<vickly

This input shows trouble entering the “u” in “quickly”. The participant first entered a
“v”, then erased it only to enter a “w”, and then erased that only to enter a “v” again.
Presumably the participant gave up, choosing to leave the final “v” and move on.
Here, the first “v” and the “w” are corrected substitutions, while the last “v” is an
uncorrected substitution.

Both uncorrected and corrected substitutions can be graphed in a confusion
matrix (Grudin, 1984; MacKenzie & Soukoreff, 2002b; Wobbrock & Myers, 2006d). In
a confusion matrix, one axis holds target characters, another axis holds produced
characters, and a third axis holds the count of such entries. Figure 3.4 shows an

example from a real text entry study (Wobbrock et al., 2003a):

Corrected Insertions

Sometimes characters are initially inserted but then removed. In such cases, we have
corrected insertions:

P: quickly
IS: gxu<<uickly

“ @ o

In this example, it seems likely that the “x” was inserted before the “u”, and then

“ “

noticed and corrected. The “x” is therefore a corrected insertion, and the first “u” is
corrected-butright.

Corrected Omissions
A character that is initially omitted but later entered is a corrected omission. Consider:

P: quickly
IS: gic<<uickly
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FIGURE
3.4

3.4

\cwm
-35

Produced

A confusion matrix showing various counts. The back wall shows nonrecognitions
that occurred for different attempted characters. Adapted from Wobbrock and
Myers (2006d). Used with permission.

Here, it seems that the “u” was initially omitted, but later replaced after backspacing
the “ic”. Thus, “u” is a corrected omission, and the “ic” are corrected-but-right.

Although these corrected character-level errors seem straightforward, numerous
nuances and tricky cases exist. Interested readers are referred to the fuller discussion
available elsewhere (Wobbrock & Myers, 2006d).

MEASUREMENTS FROM LOG FILES

This chapter has thus far been primarily concerned with text entry experiments
in which participants transcribe a presented string. Such laboratory studies are
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extremely useful for eliciting results in controlled settings. But what about real-world
use? How can we assess a text entry method as it is used in the field? What if a partic-
ular method requires substantial learning beyond that which is possible or desirable
in a single session or even multisession study? When faced with these questions, some
text entry researchers have used extensive log file analysis.

Real-world text entry logs are messy. They may contain thousands or even mil-
lions of character entries, thoughtful pauses, long delays, and sudden bursts of activity
and numerous nonprintable character codes (e.g., cursor arrow keys). Accordingly,
the types of measurements available to researchers from real-world log files usually
involve comparisons of counts or ratios.

One extended analysis logged all desktop keystrokes for four PC users over a
period of 2 months (MacKenzie & Soukoreff, 2002a). The log file analysis counted
each type of keystroke and reported relative percentages for each key. Interesting find-
ings included the affirmation that SPACE is indeed the most common key (11.29%),
that BACKSPACE is second most common (7.10%), and SHIFT, DOWN ARROW,
and DELETE figure prominently in the results.

Another log file study of extended use focused on using a trackball as a writing
device and keyboard replacement (Wobbrock & Myers, 2006c). As part of a trackball
text entry method called Trackball EdgeWrite, users can complete entire words with simple
extensions to their trackball unistrokes. However, the positions of the word comple-
tions take time to learn. Thus, extended logging of one participant with a spinal cord
injury over 11 weeks was used to capture real-world learning. The results showed that
43.9% of the participant’s text was entered using word completion and that undone
completions accounted for only 7.7% of all completions performed, suggesting
reasonable accuracy.

Of course, many more measures are possible from the analysis of real-world text
entry logs. Which measures are most important will depend on the methods under
investigation and the questions being asked by researchers or developers. Of course,
permission should be obtained from participants before logging their text!

METHOD-SPECIFIC MEASURES

This chapter has been devoted mainly to method-agnostic measures so as to remain
relevant to as many text entry methods as possible. However, some useful measures are
specific to certain types of text entry methods. Those measures are covered briefly in
this section.

Keyboard Typing

Typing on a physical keyboard has been studied extensively (Rumelhart & Norman,
1982; Grudin, 1984). Although substitutions, insertions, and omissions characterize a
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large percentage of typing errors (Gentner et al., 1984), other errors also appear fre-
quently in typing. For example, a transposition error occurs when adjacent characters
are swapped:

P: special

T: speical

In the example above, the “ci” in “special” have been swapped as “ic”, constituting a
transposition error. In one study, researchers observed about one transposition error
for every 1800 typed characters (Rumelhart & Norman, 1982). Reportedly, a large
percentage of transposition errors, about 76%, occur across hands.

Another typing error is a doubling error; which occurs when a word that contains a
double letter has the wrong letter doubled. An example is:

P: school
T: scholl

Alternation errors are similar to doubling errors but with an alternating sequence of
characters. For example:

P: these
T: thses

A homologous error occurs when the wrong hand is used with the otherwise correct
finger and key position. This type of error is thought to be more common in novice
typists than in expert typists.

A capture error occurs “when one intends to type one sequence, but gets ‘cap-
tured’ by another that has a similar beginning” (Norman, 1981; Rumelhart &
Norman, 1982). Capture errors occur at the word level, as in the following examples
from Rumelhart and Norman (1982):

P: efficiency

T: efficient

P: incredibly
T: incredible
P: normal

T

norman
Another word-level error is a phonetic swap, such as in the following examples:

their
there

your

H ™ 3 °

you're

These are high-level errors that are unlikely to occur in short transcription typing,
but may occur when participants are composing text or transcribing long documents.
Most studies that analyze these types of errors simply report the number or rate of
occurrences and give salient examples.
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Selection-Based Methods

Selection-based methods are those that show on-screen options, such as letters in a
virtual keyboard, and allow users to select from among them. Selections may be per-
formed directly, such as when tapping with a stylus or clicking with a mouse, or indi-
rectly, such as when moving a selector with directional arrow keys and entering the
highlighted letter by pressing a separate select button.

Deviation in Direct Selection

For direct selection-based methods, we can analyze the distribution of selection points
relative to target centers and target sizes. Then we can compare deviations. A devia-
tion value of 0% means that the selection points each hit their targets at the ideal
locations (e.g., the very centers of virtual keyboard keys). A value of 100% means that
the selection points were at their full allowable range (e.g., the borders of virtual
keyboard keys):

2] (x; — x,)2 + (y; — y,)2
i Y %)
3yl

> 7]

teT

deviation = LELi=1 (3.21)

In Eq. (3.21), tis a target in the set of all targets T'and P, is the set of selection points
(x; y;) intended for target ¢, which has its center at (x, y). The §; term indicates
the radius of target ¢, which for simplicity is abstracted as a circle. The range of Eq.
(3.21) is 0% to 100%, assuming all selection points fall within their intended targets.
If some selection points fall outside their intended targets, the upper end of the
range is unbounded. Participants who are selecting targets with 90% deviation are
much closer to missing than participants who are selecting at 45% deviation. An
important aspect of this formula is that it is targetrelative and therefore capable of
comparing results obtained from different targets.

Selector Movement for Indirect Selections

Measures that can be reported for indirect selection-based methods are concerned
with the amount and manner of selector movement. An example of an indirect
selection-based method is the three-key date stamp method (MacKenzie, 2002a;
Wobbrock et al., 2006), in which one key moves a selector left, another moves it right,
and a third selects the current letter (Fig. 3.5).

A study of three-key text entry methods found that typamatic keystrokes, which are
those produced by automatic key repeat when a key is held down, comprise a large
percentage of keystroke behavior (MacKenzie, 2002a). In one three-key method,



3.5 Method-Specific Measures

FIGURE
3.5

3.5.3

Eile

<_abcd@fgh ijklImnopgrstuvwxyz

A three-key indirect selection-based method. The selector, which can be moved left
and right, is currently over the letter “e”. Image adapted from Wobbrock et al.
(2006). Used with permission.

typamatic events comprised 77% of the observed keystrokes. In another, they com-
prised 42%. The selector movement was also analyzed for movement efficiency, since
participants often overshot their intended letter. In one three-key method, partici-
pants moved the selector 13.7% more than optimal; in another, they moved it
27.7% more than necessary.

Another study examined two indirect selection-based methods used for joystick text
entry on game consoles (Wobbrock et al., 2004). The first was a selection keyboard.
With this method, the joystick moves a selector up, down, left, and right over the keys
of a virtual keyboard, and a joystick button selects the highlighted letter. Novice par-
ticipants were found to move the selector about 47.6% more than necessary, in part
because the keyboard employed wrap-around in both dimensions, but participants
rarely used this feature. A second method was the classic in-place date stamp method
familiar from high-score screens in arcade games. With this method, participants
“rolled” the stamp about 21.4% more than necessary.

Stroke- or Gesture-Based Methods

A key trade-off when moving from selection-based methods to stroke- or gesture-
based methods is in moving from recognition to recall. That is, with selection-based
methods, users can recognize what actions to take based on their view of what selec-
tions are available. With strokes or gestures, however, users must remember when,
how, and what actions to perform. Thus, some of the method-specific measures for
gesture- based methods are often concerned with how usable, guessable, and memo-
rable the gestures are.

Immediate Usability, Inherent Accuracy, and Memorability

MacKenzie and Zhang (1997) studied the immediate usability of Graffiti in four parts.
First, they compared the shapes of Graffiti letters to Roman letters, finding 80.8% of
them to be similar’. They called this value Graffiti’s inherent accuracy. Second, they

9 This value is not weighted by letter frequency. With letter-frequency weighting, this value is 79.2%.
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exposed participants for 1 minute to a Graffiti character chart, after which participants
entered each Graffiti letter five times without the chart or concern for speed. In this task,
participants were 81.8% accurate. Third, they allowed participants 5 minutes of
freeform practice with Graffiti, retesting them afterward as before. Accuracy increased
to 95.8%. A fourth and final assessment came 1 week later when participants were
brought back for a final test without additional exposure. This measure can be said to be
Graffiti’s memorability and remained at an impressive 95.8%.

Guessability

Wobbrock et al. (2005b) investigated the guessability of EdgeWrite gestures. Whereas
the immediate usability procedure gave participants some initial exposure and prac-
tice, the guessability assessment did not. Twenty participants were recruited to simply
guess how they would make each letter of the alphabet with their index finger on a
touchpad, with the constraint that their strokes would pass through any of the four
corners of the touchpad square, since this is how EdgeWrite letters are defined.
Participants had no prior knowledge or exposure to EdgeWrite whatsoever.

Guessability itself was calculated by comparing participants’ guesses to the exist-
ing EdgeWrite alphabet, effectively determining how many guesses would have been
accommodated by the existing alphabet:

> |7
G = se|‘;| . (3.22)

In Eq. (3.22), G is the guessability of a symbol set S (e.g., a stroke alphabet), sis an
individual symbol in § (e.g., a unistroke for “a”), Pis the set of all proposals (i.e.,
guesses), and P; is the set of proposals that were correct for symbol s. Using this for-
mula, the guessability of EdgeWrite was calculated to be 51.0%. The guesses provided
by participants were then collected as a new EdgeWrite alphabet. After resolving
conflicts, this new alphabet accommodated 80.1% of participants’ guesses.

DISCUSSION OF MEASURES

In this chapter, we have discussed a number of text entry measures and studies
that have used them. We have reviewed aggregate measures for speed and accuracy,
character-level measures, extended log file measures, and method-specific measures.
However, not all measures can or should be reported for all evaluations. So when
should we use which measures?

At the very least, text entry studies should report entry rate as WPM and accuracy
as uncorrected errors. Neither of these essential measures should be reported with-
out the other, since as we noted previously, they exist as trade-offs. Corrected errors
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are also of interest and should generally be reported, but it is important to differenti-
ate them from uncorrected errors since corrected errors reduce WPM but uncorrected
errors often increase it.

Studies of gestural methods or other methods that have clear notions of gestures
(or actions) should consider reporting GPS and GPC. Studies of novices learning ges-
tural methods should consider beginning with an assessment of guessability or imme-
diate usability. These studies may also want to report character-level errors, particularly
substitutions, and show confusion matrices in which peaks reveal commonly mis-
recognized or humanly confused gestures. Any other methods in which the process
of making each letter differs substantially may want to report character-level errors.

Longitudinal studies should always report learning curves of WPM over sessions.
They should pay particular attention to any crossover points that may occur.

Keystroke-based methods should report both performance KSPC and character-
istic KSPC and compare them. They may also want to report intercharacter time,
typamatic events, and typing-specific errors. Of course, other nonkeypad methods
can report the KSPC performance measure as well.

Some studies will require extended learning and real-world use. In such studies,
extended log file analyses will be appropriate, showing counts and ratios for different
text entry events over a period of weeks or months.

Certainly there are more measures conceivable than could fit in this chapter.
Different measures may be more appropriate for East Asian text entry, for example.
Researchers and developers should feel encouraged to invent new measures that are
targeted specifically to their method of interest. As with all measures, the important
thing is that they are relevant, reproducible, and rigorous. When reported in the
literature, they should be well defined and precise enough that readers can reuse
the measures in their own work.

FURTHER READING

An excellent place to start is the line of work by William Soukoreff and I. S. MacKenzie
(Soukoreft & MacKenzie, 2001, 2003, 2004). For character-level analyses, see MacKenzie
and Soukoreff (2002b) and Wobbrock and Myers (2006d). For examples of extended
log-file-based studies, see MacKenzie and Soukoreff (2002a), Magnuson and
Hunnicutt (2002), and Wobbrock and Myers (2006c). A study that reports many of
the measures described in this chapter for both selection-based and gestural methods
is Wobbrock et al. (2004).
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