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Chapter 7
Nonparametric Statistics
in Human–Computer Interaction

Jacob O. Wobbrock and Matthew Kay

Abstract Data not suitable for classic parametric statistical analyses arise frequently
in human–computer interaction studies. Various nonparametric statistical procedures
are appropriate and advantageous when used properly. This chapter organizes and
illustratesmultiple nonparametric procedures, contrasting themwith their parametric
counterparts. Guidance is given for when to use nonparametric analyses and how to
interpret and report their results.

7.1 Introduction

The field of human–computer interaction (HCI) is diverse in many ways. Its
researchers and practitioners come from all over the academic spectrum, from social
sciences like psychology, sociology, and anthropology, technical endeavors like com-
puter science, information science, and electrical engineering, and design disciplines
like product design, graphic design, interaction design, and architecture. With such
a wide range of backgrounds, methods, and phenomena of interest, it is no wonder
that almost any kind of data may arise as part of a study in HCI.

Whether we are examining people’s interactions with existing technology or eval-
uating new technologies that we invent, it is common to find that our data is not
amenable to conventional parametric analyses. Such analyses, most commonly the
familiar analysis of variance (ANOVA), are based on assumptions often violated
by data arising from HCI studies. Different “nonparametric” analyses are needed to
properly draw conclusions from such data.
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136 J.O. Wobbrock and M. Kay

This chapter reviews nonparametric analyses,many ofwhich are commonly found
in HCI studies, and others that are more recently emerging but could be of value to
HCI researchers and practitioners. For historical context, this chapter endeavors to
cite the original articles where the analyses first appeared. But before plunging into
the analyses themselves, let us first understand when to use nonparametric analyses.

7.2 When to Use Nonparametric Analyses

As Chap.3 described, every data set should be explored with descriptive statistics
and visual plots to ascertain the shape of its distribution. Preparing to analyze data
with nonparametric procedures is no different. A lot can be learned by examining the
shape of data to seewhether it appears to conform to a normal distribution, also known
as a Gaussian distribution or “bell curve.” The concept behind most nonparametric
analyses is that they do not assume a normal distribution and effectively destroy the
distribution inherent in a data set by operating on ranks, rather than on the original
data points themselves. Ranks destroy the intervals between values, so ascending
data points like 1, 5, 125 and 1, 3, 5 both become ranks 1, 2, 3.

Certain types of measures in HCI tend to fall normally while others almost never
do. Common non-normal data distributions that arise frequently in HCI studies are:

• Preference tallies, such as from studies of competing technologies
• Completion times, which may be skewed and long-tailed
• Error rates, which may have numerous zeroes amidst other values
• Ordinal scales, such as responses on Likert-type scales
• Rare events, such as recognition errors from an accurate gesture recognizer

The above examples are just some of the types of data that arise in HCI and may
warrant nonparametric analyses.

7.2.1 Assumptions of Analysis of Variance (ANOVA)

The familiar analysis of variance procedure, or ANOVA, is often more powerful than
analogous nonparametric procedures for the same data. The oft-used t-test and F-test
are two examples. Such tests are therefore generally preferred to their nonparametric
cousins. But t-tests and F-tests cannot always be used when data violates one or
more of three underlying assumptions required by such analyses. HCI researchers
and practitioners seeking to useANOVAprocedures should first ensure that their data
conforms to the three assumptions.When violations occur, nonparametric procedures
may be preferred.

The three underlying assumptions of ANOVA, and how to test for them, are:

1. Independence. Responses must be distinct measurements independent from one
another, except as correlated in a within-subjects design. Put another way, the

http://dx.doi.org/10.1007/978-3-319-26633-6_3
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value of one measure should not determine the value of any other measure. How
to test? The independence assumption is not tested mathematically but is verified
by an experiment design that ensures this assumption is met.

2. Normality.Residuals are the differences betweenmodel predictions and observed
measures. The normality assumption requires that residuals are normally distrib-
uted. In practice, the normality assumption can be regarded as referring to the
distribution of the response within each group under consideration. Mild devia-
tions from normality often do not pose serious threats to drawing valid statistical
conclusions, particularly when sample sizes are large. However, in the presence
of substantial deviations from normality, especially with small sample sizes as
are common in HCI, nonparametric procedures ought to be used. How to test? A
histogram of the residuals or the data itself can often reveal obvious deviations
from normality, such as data that conforms to log-normal, Poisson, or exponen-
tial data distributions. More formal tests of normality can be conducted, such as
the Shapiro-Wilk test (Shapiro and Wilk 1965) or the Kolmogorov-Smirnov test
(Kolmogorov 1933; Massey 1951; Smirnov 1939). R code for executing these
tests is provided elsewhere in this chapter. A good review of these and other
goodness-of-fit tests can be found in the literature (D’Agostino 1986).

3. Equal variances. The equal variances assumption is more formally known as the
assumption of “homogeneity of variance” or “homoscedasticity.” It requires that
the variance, or equivalently the standard deviation, among different experimen-
tal groups should be about the same. How to test? A histogram of the data from
each group being compared can reveal whether some groups have different vari-
ances than others. More formally, Levene’s test can be used (Levene 1960). If
homoscedasticity is violated, a Welch ANOVA or White-corrected ANOVA can
be used (Welch 1951;White 1980),which do not have the equal variances assump-
tion. An alternative is to use a nonparametric analysis, such as those covered in
this chapter.

7.2.2 Table of Analogous Parametric and Nonparametric
Tests

Many HCI researchers and practitioners are more familiar with parametric tests than
nonparametric tests. It can be helpful to see how the two types of tests relate. By
understanding the relation among parametric tests and their nonparametric equiva-
lents, researchers andpractitioners canmore confidently choosewhichnonparametric
test is right for their data.

This chapter is far from a comprehensive treatment of nonparametric statistics.
There are myriad nonparametric tests that might benefit researchers and practitioners
in HCI. This chapter focuses on the most common, widely available, and versatile
nonparametric tests. For a complete approach to nonparametric statistics, the reader
is directed to comprehensive treatments on the subject (Higgins 2004; Lehmann
2006).
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Table 7.1 Parametric tests and their nonparametric cousins
Samples Parametric test Nonparametric test

1 • One-sample t-test • One-sample chi-square
test
• Binomial test
• Multinomial test

≥1 • N -sample chi-square test
• G-test
• Fisher’s exact test

Factors Levels Between- or
within-subjects

Parametric test Nonparametric test

1 2 B • Independent-samples
t-test

• Median test
• Mann-Whitney U test

1 ≥2 B • One-way ANOVA • Kruskal-Wallis test

1 2 W • Paired-samples t-test • Sign test
• Wilcoxon signed-rank test

1 ≥2 W • One-way repeated
measures ANOVA

• Friedman test

≥1 ≥2 B • N -way ANOVA • Aligned rank transform
• Generalized linear
models†

–Multinomial logistic
–Ordinal logistic
–Poisson
–Gamma

≥1 ≥2 W • N -way repeated measures
ANOVA

• Aligned rank transform
• Generalized linear mixed
models†

• Generalized estimating
equations

†Generalized linear models and generalized linear mixed models may be considered parametric
analyses but the distributions on which they operate may be non-normal

Table7.1 categorizes the tests covered in this chapter based on the number of
“factors” and their “levels.” Factors are the independent variables manipulated
in an experiment, such as Device when comparing mice to a trackballs. They
may also be covariates, like Sex, which are not manipulated but are still of inter-
est for their possible effect on dependent variables, or responses. Factors can be
“between-subjects” or “within-subjects,” owing to whether each participant is
assigned only one level of the factor or more than one. Levels are the number of
values any given factor can assume. For example, Device, above, has two levels
(mouse, trackball), as does Sex (male, female). Note that Device could be a within-
subjects factor if every participant utilized both devices. Sex, on the other hand, is
generally considered only a between-subjects factor.
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Besides factors and levels, another distinguishing feature of certain tests iswhether
they are “exact tests.” Exact tests do not rely on approximations or asymptotic prop-
erties of the sampling distribution to derive p-values. Rather, they calculate their
p-values directly and exactly. HCI studies often have small sample sizes, which can
cause problems for asymptotic tests, and exact tests are then preferred. The Chi-
Square test is a popular asymptotic test. It may underestimate p-values at less than
1000 samples, increasing the chance of falsely rejecting null hypotheses. Exact tests
are currently under-utilized in HCI, largely due to conventions established before
advances in computing made exact tests widely practicable. Where possible, we
provide R code for running exact tests in this chapter.

Having established the criteria that are used to inform whether to use parametric
or nonparametric analyses, we now turn to the analyses themselves. In each case, an
(inappropriate) parametric analysis is conducted prior to any nonparametric analyses
for comparisons. These parametric analyses are flagged with a ⊘ symbol to indicate
caution. For continuity, the storyline about the sales teams using the new Mango
smartwatches is used.

7.3 Tests of Proportions

Often in HCI studies, researchers and practitioners elicit responses from participants
or users, count those responses, and thenwish to draw conclusions from those counts.
Responses of these kinds tend to be categorical in nature. For example, in a survey
respondentsmay be asked to express a preference for one of a variety of technologies,
like web browsers. Some number of respondents may choose Microsoft Internet
Explorer, while others may choose Google Chrome, while still others may choose
Mozilla Firefox or Apple Safari. One-sample tests of proportions can reveal whether
responses differ significantly from chance or from known probabilities—in this case,
perhaps the global market share percentage of each browser.

Going further, we may wish to know how respondents’ browser preferences differ
by country.We nowwould use a two-sample test of proportions. Known probabilities
may now need to be adjusted by the market share of each browser in each country.

A three-sample test would allow us to determine whether sex plays a role. A
four-sample test might include respondents’ income bracket. And so on… In short,
tests of proportions tell us whether observed proportions differ from chance or from
otherwise hypothesized probabilities.

7.3.1 One-Sample Tests of Proportions

Let us introduce our scenario for our one-sample tests. At one point prior to the com-
panywide adoption of Mango smartwatches, 75 sales representatives were recruited
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for a pilot study in which each Mango smartwatch was outfitted with one of two
email applications, A-mail or B-mail. After 3weeks, the watches were updated to
remove the first mail program and install the second. Another 3 weeks passed. At the
end of 6 weeks, each sales representative had used both A-mail and B-mail. The rep-
resentatives were then asked for their preference. As the data file prefs1AB.csv
shows, A-mail was preferred by 46 sales representatives and B-mail was preferred
by 29 representatives. The question is whether there was a significant preference for
one email application over the other.

As stated above, for comparisons we briefly report an (inappropriate) parametric
test prior to the preferred nonparametric tests.

⊘ One-sample t-test. The one-sample t-test is a simple parametric test that
assumes the population response is normal (Student 1908). For our example, we
can assume that if respondents showed no overall preference, 75/2 = 37.5 respon-
dents would vote for each email application. In other words, no overall preference
would mean a 50% chance of preferring one or the other applications. In our data,
we have 46/75 = 61.3% of respondents preferring A-mail, and 29/75 = 38.7%
preferring B-mail. Is this a statistically significant difference?

The R code for performing a one-sample t-test on prefs1AB.csv is:

> prefs1AB = read.csv("chapter7/prefs1AB.csv")
> t.test(prefs1AB$email_preference == "A-mail", mu=0.5)

One Sample t-test

data: prefs1AB$email_preference == "A-mail"
t = 2.002, df = 74, p-value = 0.04895
alternative hypothesis: true mean is not equal to 0.5
95 percent confidence interval:
0.5005335 0.7261332

sample estimates:
mean of x
0.6133333

The p-value is 0.049, which is less than the critical value of α = 0.05, meaning
the 46 votes for A-mail do represent a statistically significant preference for A-mail
over B-mail. The test result is reported as t (74) = 2.00, p < 0.05.

One-sample Chi-Square test. The most common way to test proportions is using
a one-sample Chi-Square test (Pearson 1900), which is a nonparametric alternative
to the one-sample t-test. Unlike the t-test, the Chi-Square test does not require that
the data be sampled from a normal distribution. However, it is an asymptotic test,
not an exact test, so for small sample sizes it must be used with caution. The premise
behind the test is the same as before, where we compare observed proportions to
chance, i.e., to 50/50.

The R code for performing a one-sample Chi-Square test on prefs1AB.csv
is:
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# assuming prefs1AB.csv is already loaded
# chisq.test expects frequency tables as input: here we
# create a cross tabulation (hence xtabs) of the number of
# responses for each level of email_preference
> email_preferences = xtabs( ~ email_preference, data=prefs1AB)
> email_preferences
email_preference
A-mail B-mail

46 29
> chisq.test(email_preferences)

Chi-squared test for given probabilities

data: email_preferences
X-squared = 3.8533, df = 1, p-value = 0.04965

The truncated p-value is 0.049, again indicating that the 46 votes for A-mail
represent a statistically significant preference over B-mail. The test result is reported
as χ2(1, N = 75) = 3.85, p < 0.05, where 1 is the value of df above.

Binomial test. The binomial test is a nonparametric test used to compare two
categories against expected probabilities, often called the probability of “success” or
“failure.” Unlike the Chi-Square test, which relies on approximations, the binomial
test is an exact test. A common use of the binomial test is to see whether responses
in two categories are equally likely to occur, such as testing whether a coin is fair
from a series of tosses. We can use the binomial test to see whether the probability of
someone preferring one of the email programs is significantly different from chance
(i.e., 50%).

The R code for performing a binomial test on prefs1AB.csv is:

# assuming prefs1AB.csv is already loaded
> email_preferences = xtabs( ~ email_preference, data=prefs1AB)
> binom.test(email_preferences)

Exact binomial test

data: email_preferences
number of successes = 46, number of trials = 75,
p-value = 0.06395
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.4937958 0.7236319

sample estimates:
probability of success

0.6133333

The p-value is 0.064, greater than the critical value of α = 0.05, meaning we
fail to reject the null hypothesis that the two categories are equally probable. In this
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case, the one-sample Chi-Square test underestimated the p-value: we rejected the
null hypothesis when using the asymptotic Chi-Square test and failed to reject when
using the exact binomial test. Since modern computers allow us to easily run an
exact test in this case, we should prefer the exact result to the Chi-Square result. The
test result is reported as a binomial test of N = 75 responses, a 50/50 hypothesized
response probability, and a p-value of 0.0640.

Multinomial test. What if there are more than two response categories? The
binomial test cannot be used. In such cases, the nonparametric multinomial test is
appropriate. Like the binomial test, the multinomial test is an exact test, and should
be preferred to the Chi-Square test.

Suppose the original study had compared three email programs instead of
two. Preferences were elicited from the 75 sales representatives. The data in
prefs1ABC.csv indicates that 35 respondents preferred A-mail, 22 preferred
B-mail, and 18 preferred C-mail. The question is whether these counts differ sig-
nificantly from chance, i.e., a third of respondents in each category. The code for
performing a multinomial test on prefs1ABC.csv is:

> library(XNomial)
> prefs1ABC = read.csv("chapter7/prefs1ABC.csv")
> email_preferences = xtabs(~ email_preference, data=prefs1ABC)
> xmulti(email_preferences, c(1/3, 1/3, 1/3), statName="Prob")

P value (Prob) = 0.04748

The p-value is 0.047, indicating that we should reject the null hypothesis that
each email program is preferred equally. The test result is reported as a multinomial
test of N = 75 responses, equal chance hypothesized response probability (i.e., a 1/3
chance of each email application being preferred), and a p-value less than 0.05.

The one-sample Chi-Square test we utilized above can also accommodate more
than two response categories like the multinomial test. The following R code runs a
one-sample Chi-Square test on prefs1ABC.csv:

# assuming prefs1ABC.csv is already loaded
> email_preferences = xtabs(~ email_preference, data=prefs1ABC)
> chisq.test(email_preferences)

Chi-squared test for given probabilities

data: email_preferences
X-squared = 6.32, df = 2, p-value = 0.04243

The p-value is 0.042. According to this Chi-Square test, there is a statistically
significant difference between the observed preferences and chance. Observing the
preference counts, we surmise a significant preference for A-mail over the other
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two mail programs. Note that the Chi-Square test underestimates the p-value com-
pared to the exact multinomial test. The multinomial test should be preferred where
computationally feasible, typically for sample sizes of less than 1000.

7.3.2 N-Sample Tests of Proportions

Regardless of how many response categories there are, if only one dimension of
data is considered, a multinomial test or a one-sample Chi-Square test is an option.
But what if we wish to categorize responses along more than one dimension? Con-
sider the question ofwhether preferences for theMango email applications—A-mail,
B-mail, or C-mail—were different in Sales TeamXversus Sales TeamY.One dimen-
sion lies along the sales teams, with two possible categories. A second dimension
lies along the email applications, with three possible categories. Thus, we have a
2 × 3 contingency table, also known as a “crosstabulation” or “crosstabs”.

Data appearing in prefs2ABC.csv contains 75 responses from each of two
sales teams. Its 2 × 3 contingency table is shown in Table7.2.

The question is whether the email application preferences of the two sales teams
differ significantly.

N-Sample Chi-Square test.Wehave thus far been generating 1× 2 and 1× 3 con-
tingency tables using the xtabs command. This command can generate crosstabs
with an arbitrary number of dimensions,making N -SampleChi-Square tests a simple
extension of the procedures we have already employed above.

The R code for running a two-sample Chi-Square test of proportions is:

> prefs2ABC = read.csv("chapter7/prefs2ABC.csv")
# we specify multiple factors in the xtabs formula to get
# crosstabs of higher dimensions.
> email_preferences = xtabs( ~ email_preference + team,

data=prefs2ABC)
> chisq.test(email_preferences)

Pearson’s Chi-squared test
data: email_preferences
X-squared = 6.4919, df = 2, p-value = 0.03893

Table 7.2 A2 × 3 contingency table of email application preferences by 75members each of Sales
Team X and Sales Team Y

Email application preference
A-mail B-mail C-mail Total

Sales team X 35 22 18 75
Y 21 35 19 75

Total 56 57 37 150
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The p-value is 0.039, indicating a significant difference in email application pref-
erences between the two sales teams. The test result is reported as χ2(2, N = 150) =
6.49, p < 0.05.

Other N-sample tests. Here we highlight two alternative tests of proportions that
use a similar syntax as chisq.test. One test that is gaining popularity is the G-
test (Sokal and Rohlf 1981), which, although an asymptotic test, is considered more
accurate than the Chi-Square test, which employs approximations where the G-test
directly computes likelihood ratios. The test is conducted in R using the G.test
function in the RVAideMemoire package.

Another popular test is Fisher’s exact test (Fisher 1922), which is an exact test
used primarily on 2 × 2 contingency tables but is capable of being extended to
general r × c tables provided sufficient computational resources (Mehta and Patel
1983). The test is conducted in R using the fisher.test function, and is natively
capable of handling general r × c contingency tables.

7.4 Single Factor Tests

In the previous section, we discussed tests for data that counted respondents—and
more precisely, their preferences—as measures of interest. In the rest of this chapter,
we consider the results of experimental designs in which people are assigned treat-
ments and the measures of interest involve the behavior or attributes of those people
under those treatments. We first consider single-factor tests. Before doing so, how-
ever, we introduce statistical tests for the assumptions of ANOVA, which may be
used to determine whether nonparametric tests are warranted in the first place.

7.4.1 Testing ANOVA Assumptions

Recall from the outset of this chapter that the three assumptions of ANOVA are
independence, normality, and equal variances. Here we examine these assumptions
for the salesXY.csv data file, which arises from the following scenario. Let
us assume members of one company sales team, Sales Team X, were given Mango
smartwatches over a three-monthperiod.During the sameperiod,members of another
company sales team, Sales TeamY, were not given the smartwatches so as to serve as
a control group. Each representative’s sales were measured during the three-month
period and multiplied by four to reflect estimated annualized sales. Thus, we have a
single between-subjects factor, Team, and a continuous measure for each participant,
annualized sales, in dollars.

The first assumption is independence. Do the measures arise independent of one
another?Assuming the salespeoplework independently and that there aremanymore
sales opportunities than sales representatives, and thus one salesperson’s gain is not
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inherently another salesperson’s loss, we can trust that the independence assumption
is met.

The second assumption is normality. Before conducting formal tests of normality,
let us visually examine the distribution of data with a histogram, one for each sales
team (Fig. 7.1).

The histograms are clearly non-normal in their appearance.Aswithmostmeasures
of income, the annualized sales data conforms to an exponential distribution. This
hunch canbe formally testedwith goodness-of-fit tests.Webriefly review twopopular
goodness-of-fit tests here. We recommend Shapiro-Wilk for testing normality; the
Kolmogorov-Smirnov test can be used to test the goodness-of-fit of non-normal
distributions. For more on goodness-of-fit tests, the reader is directed elsewhere
(D’Agostino 1986).

Shapiro-Wilk test. The Shapiro-Wilk test considers whether data from a sample
originated from a normal distribution (Shapiro and Wilk 1965). It has been shown to
have the best power of the three tests considered here (Razali and Wah 2011).

The R code for conducting a Shapiro-Wilk test on each team in salesXY.csv
is:

> salesXY = read.csv("chapter7/salesXY.csv")
> shapiro.test(salesXY[salesXY$team == "X",]$sales)

Shapiro-Wilk normality test
data: salesXY[salesXY$team == "X", ]$sales
W = 0.8368, p-value = 1.238e-07
> shapiro.test(salesXY[salesXY$team == "Y",]$sales)

Shapiro-Wilk normality test
data: salesXY[salesXY$team == "Y", ]$sales
W = 0.791, p-value = 6.013e-09

The p-value for both teams is p < 0.0001, indicating a statistically significant
difference between the distribution of their annualized sales and a normal distribution.

Fig. 7.1 The distribution of
annualized sales for each
sales team. Team X had
Mango smartwatches. Team
Y did not yet have the
Mango smartwatches.
Histograms can be generated
using the hist function, as
in hist(salesXY
[salesXY$team
=="X",]$sales)
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Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test considers how a data
sample compares to a given probability distribution (Kolmogorov 1933; Massey
1951; Smirnov 1939). It calculates the distance between the empirical distribution
function of a sample and the cumulative distribution function of the given probability
distribution. Thus, the Kolmogorov-Smirnov test can be used to test against non-
normal distributions.

The R code for executing the Kolmogorov-Smirnov test is:

# assuming salesXY.csv is already loaded

> lillie.test(salesXY[salesXY$team == "X",]$sales)

Lilliefors (Kolmogorov-Smirnov) normality test

data: salesXY[salesXY$team == "X", ]$sales

D = 0.1445, p-value = 0.0005212

> lillie.test(salesXY[salesXY$team == "Y",]$sales)

Lilliefors (Kolmogorov-Smirnov) normality test

data: salesXY[salesXY$team == "Y", ]$sales

D = 0.1791, p-value = 2.904e-06

The p-values for the teams are p < 0.001 and p < 0.0001, again indicating sta-
tistically significant departures from normality. Thus, from visual inspection and
from both formal goodness-of-fit tests, we conclude the data violates the normality
assumption of ANOVA.

The third assumption of ANOVA is equal variances. The standard deviation
of annualized sales for Sales Team X is $1,169,590.80. For Sales Team Y, it is
$904,175.91. Of course, with highly non-normal distributions, standard deviations
are not particularly descriptive. So how might we formally test the assumption of
equal variances?

Levene’s test. Levene’s test for homogeneity of variance, or homoscedasticity, is
a formal method for testing the equal variances assumption (Levene 1960). The test
determines the likelihood of whether two data samples are drawn from populations
with equal variance. A significant p-value below the α = 0.05 level indicates that
the data samples being tested are unlikely to have come from populations with equal
variances.

We conduct Levene’s test on two data samples, the annualized sales of Sales Team
X and of Sales Team Y. The R code for conducting Levene’s test is:
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# assuming salesXY.csv is already loaded
> library(car)
> leveneTest(sales ~ team, data=salesXY)
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 1 2.9567 0.08761 .

148
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value is 0.088, above the α = 0.05 threshold for declaring that the equal
variances assumption has been violated. Even still, with a trend-level result such as
this one, we ought to be wary of utilizing parametric tests. The result of Levene’s
test is reported as F(1,148) = 2.96, p = 0.088.

We have heretofore demonstrated that the data in salesXY.csv is not suitable
to analyse via parametric ANOVA. Nonparametric tests are therefore warranted. Let
us now turn to those tests.

7.4.2 Single-Factor Between-Subjects Tests

We continue with our scenario comparing the annualized sales of two sales teams,
Sales TeamXwearingMango smartwatches and Sales TeamYwithout suchwatches.
As above, for comparisons we briefly report an (inappropriate) parametric test prior
to the preferred nonparametric options.

⊘ Independent-samples t-test. The independent-samples t-test is a parametric
test for one-factor two-level between-subjects designs (Student 1908). Due to the
violation of normality, the test is inappropriate for the data in salesXY.csv.
Nevertheless, the R code for executing such an analysis is shown below. Note that by
default, R uses theWelch t-test (Welch 1951),which does not require equal variances,
having been formulated for this purpose.

# assuming salesXY.csv is already loaded
> t.test(sales ~ team, data=salesXY)

Welch Two Sample t-test
data: sales by team
t = 2.2293, df = 139.173, p-value = 0.02739
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:

43049.83 718064.85
sample estimates:
mean in group X mean in group Y

1250090.3 869532.9
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The p-value is 0.027,which indicates that the annualized sales of the two teams are
significantly different. Specifically, the sales of Sales TeamX are higher than those of
Sales Team Y, suggesting that the Mango smartwatches are having a positive effect.
The test result is reported as t (139.2) = 2.23, p < 0.05.

Median test. A more appropriate test is the nonparametric median test (Brown
and Mood 1948, 1951). The median test considers whether the medians from the
populations from which two data samples are drawn are the same. A simple test, the
median test counts each data point as above or below the median in the combined
sample. Traditionally, then a Chi-Square test—although we can also use an exact
test—is used to see whether the counts of data points from each sample differ. The
median test is the preferred choice if any data points are extreme outliers.

The R code for conducting a median test is:

# assuming salesXY.csv is already loaded
# the distribution="exact" parameter specifies the exact
# version of this test, and can be dropped if an
# asymptotic test is needed (e.g., if this code
# takes too long to execute).
> library(coin)
> median_test(sales ~ team, data=salesXY, distribution="exact")

Exact Median Test
data: sales by team (X, Y)
Z = -3.0923, p-value = 0.003157
alternative hypothesis: true mu is not equal to 0

The p-value is 0.003, indicating a significant difference in sales between the
teams. The test result is reported as an exact median test Z = −3.09, p < 0.01.

Mann-Whitney U test. Like the median test, the nonparametric Mann-WhitneyU
test1 operates on one-factor two-level between-subjects designs (Mann andWhitney
1947). It is more common in the field of HCI than the median test and usually more
powerful. The test converts data to ranks and is generally more powerful than the
parametric t-test for non-normal data.

The R code for conducting the test is:

# assuming salesXY.csv is already loaded
> library(coin)
> wilcox_test(sales ~ team, data=salesXY, distribution="exact")

Exact Wilcoxon Mann-Whitney Rank Sum Test
data: sales by team (X, Y)
Z = 2.2346, p-value = 0.02521
alternative hypothesis: true mu is not equal to 0

1 The Mann-Whitney U test has multiple and sometimes confusing names. It is also known as
the Wilcoxon-Mann-Whitney test, the Mann-Whitney-Wilcoxon test, and the Wilcoxon rank-sum
test. None of these should be confused with the Wilcoxon signed-rank test, which is for one-factor
two-level within-subjects designs.
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Fig. 7.2 The distribution of
annualized sales for Sales
Team Z

The p-value is 0.025, similar to that of the independent-samples t-test. The test
result is reported as an exact Mann-Whitney Z = 2.23, p < 0.05.

The Mann-Whitney U test is a good option for analyzing one-factor two-level
between-subjects designs. But what if we have one factor with more than two levels?
For example, let us consider 75 additional sales representatives, this time from Sales
Team Z, added to the study. Like Sales Team Y, Sales Team Z was not given Mango
watches at this time. The distribution of the team’s annualized sales is shown in
Fig. 7.2.

We now have a one-factor three-level between-subjects design. The factor is Team
and the levels are X, Y, and Z. We will use salesXYZ.csv, which extends the
data table to include the data from Sales Team Z.

⊘ One-way ANOVA. The popular parametric analysis for one factor with more
than two levels is a one-way ANOVA (Fisher 1921, 1925). As with the t-test above,
this analysis is inappropriate for these data due to the violation of the normality
assumption.

The R code for conducting a one-way ANOVA is:

> salesXYZ = read.csv("chapter7/salesXYZ.csv")
> summary(aov(sales ~ team, data=salesXYZ))

Df Sum Sq Mean Sq F value Pr(>F)
team 2 5.438e+12 2.719e+12 2.345 0.0982 .
Residuals 222 2.574e+14 1.159e+12
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value is 0.098, which is not statistically significant at the α = 0.05 level.
The test result is reported as F(2,222) = 2.35, p = 0.098.

Kruskal-Wallis test. The nonparametric Kruskal-Wallis test extends the Mann-
Whitney U test to one factor with more than two levels (Kruskal and Wallis 1952).
Like theMann-WhitneyU test, the Kruskal-Wallis test operates on ranks. It is a more
appropriate test to conduct on salesXYZ.csv than a one-way ANOVA.

The R code for executing a Kruskal-Wallis test is:
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# assuming salesXYZ.csv is already loaded
library(coin)
kruskal_test(sales ~ team, data=salesXYZ,

distribution="asymptotic")

Asymptotic Kruskal-Wallis Test

data: sales by team (X, Y, Z)
chi-squared = 5.1486, df = 2, p-value = 0.07621

The p-value is 0.076, indicating no significant differences among groups. The
test result is reported as a Kruskal-Wallis test χ2(2, N = 225) = 5.15, p = 0.076.

Many studies inHCI utilize designs inwhichmultiple responses are received from
each participant. We now turn to nonparametric tests for one-factor within-subjects
designs.

7.4.3 Single-Factor Within-Subjects Tests

In an effort to collect more data per participant, and generally to increase the power
of statistical tests on that data, many HCI researchers and practitioners prefer to
utilize within-subjects factors rather than between-subjects factors. Within-subjects
factors expose participants to more than one of their levels, for example, by having
each sales representative not use and use a Mango smartwatch over different time
periods. Suchwas the case for Sales TeamY, which initially was not given theMango
smartwatches to serve as a control for Sales TeamX. After three months, Sales Team
Y was given the watches, thereby enabling within-subjects comparisons for Sales
Team Y.

The data in salesYY.csv contains the same pre-Mango sales data for Sales
Team Y as shown in Fig.7.1. It also contains post-Mango sales data for each rep-
resentative, shown in Fig. 7.3. Thus, we have a single within-subjects factor, Watch,
and a continuous measure for each participant: their annualized sales, in dollars.

As before, we begin with an (inappropriate) parametric test for comparisons.

Fig. 7.3 The distribution of
annualized sales for Sales
Team Y after the adoption of
the Mango smartwatches
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⊘ Paired-samples t-test. A paired-samples t-test is a parametric within-subjects
test when two measures are taken from each participant (Student 1908). Due to the
violation of normality, the test is inappropriate for the data in salesYY.csv.
Nevertheless, the R code for executing such an analysis is:

> salesYY = read.csv("chapter7/salesYY.csv")
> library(reshape2) #for dcast
# for a paired t-test we must use a wide-format table. Most
# functions in R do not require a wide-format table, but the
# dcast function offers a quick way to translate long-format
# into wide-format when we do need it. This creates “pre”
# and “post” columns containing pre- and post-watch sales.
> salesYY_wide = dcast(salesYY, subject ~ watch,

value.var="sales")
> t.test(salesYY_wide$pre, salesYY_wide$post, paired=TRUE)

Paired t-test
data: salesYY_wide$pre and salesYY_wide$post
t = -2.4309, df = 74, p-value = 0.01748
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-732056.10 -72552.05

sample estimates:
mean of the differences

-402304.1

The p-value is 0.017, which indicates that after the adoption of the Mango smart-
watches, the annualized sales of Sales Team Y were different. The t-test result is
reported as t (74) = −2.43, p < 0.05. By examining the means and distributions,
we can see that the sales went up, from a median of about $580,000 before the
watches to about $870,000 after the watches:

# generate summary statistics for the sales, split
# into groups according to the levels of watch
> ddply(salesYY, ~ watch, function(data) summary(data$sales))

watch Min. 1st Qu. Median Mean 3rd Qu. Max.
1 post 10000 342500 870300 1272000 1911000 5000000
2 pre 10000 239800 580300 869500 1091000 4351000

Sign test. The sign test is a nonparametric alternative to the paired-samples t-test
(Dixon andMood1946; Stewart 1941). It is analogous to themedian test but for paired
data rather than unpaired data. The test is particularly useful when paired values do
not have scalar magnitudes but simply a greater-than or less-than relationship, even
coded as just 1 or 0.
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The intuition behind the sign test is if the paired samples are not significantly
different, then subtracting one value from its paired value should result in a positive
number (vs. a negative number) about 50% of the time. A binomial test is then used
to test for significant departures from an equal number of positive versus negative
differences.

The R code for conducting a sign test on salesYY.csv is:

# assuming salesYY_wide was constructed as above
# We can conduct a sign test simply by cross-tablulating the
# number of times post-watch sales are greater than pre-watch.
> post_sales_greater = xtabs( ~ post > pre, data=salesYY_wide)
> binom.test(post_sales_greater)

Exact binomial test

data: post_sales_greater
number of successes = 31, number of trials = 75, p-value =
0.1654
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.3007536 0.5329729

sample estimates:
probability of success

0.4133333

The p-value is 0.165, indicating that theMango smartwatches did not statistically
significantly affect the probability an individual team member’s annualized sales
increased on Sales Team Y. The test result is reported as a sign test of N = 75 paired
observations and p = 0.165.

Recognizing the relative statistical weakness of the sign test, Wilcoxon developed
amore powerful test, the signed-rank test, which considers not just direction of paired
differences but their magnitude as well.

Wilcoxon signed-rank test. The Wilcoxon signed-rank test, not to be confused
with the Wilcoxon rank-sum test (see Footnote 1), is a powerful and widely used
nonparametric test for one within-subjects factor with two levels (Wilcoxon 1945).
In HCI studies, the test is often used when individual participants try each of two
alternatives, say input devices or webpage designs, and the best alternative is to be
determined. Like many nonparametric tests, it operates on ranks rather than on raw
observations.
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The R code for executing a Wilcoxon signed-rank test is:

# assuming salesYY.csv is already loaded
> library(coin)
# here we specify the response variable (sales), the within-
# subjects variable (watch), and the variable identifying each
# subject (subject).
> wilcoxsign_test(sales ~ watch | subject, data=salesYY,

dist="exact")

Exact Wilcoxon-Signed-Rank Test

data: y by x (neg, pos)
stratified by block

Z = -2.2178, p-value = 0.02615
alternative hypothesis: true mu is not equal to 0

The p-value is 0.026, indicating a statistically significant difference in annualized
sales for Sales Team Y pre- and post-adoption of the Mango smartwatches. The test
result is reported as an exact Wilcoxon Z = −2.22, p < 0.05. We note that whereas
the sign test did not find a statistically significant difference, the Wilcoxon signed-
rank test did, confirming the greater power of this test and a reason for its preference.

The Wilcoxon signed-rank test is powerful but limited in an important way: it
can only compare two levels of a single factor. What if there are more than two
levels to be compared at once? Let us imagine that the company, pleased with the
increase in annualized sales due to the Mango smartwatches, decided to have Sales
TeamY conduct a third three-month experiment inwhich sales representatives would
wear two Mango smartwatches, one on each wrist. (Perhaps in the hope that if one
smartwatch is good, two might be better!)

The distribution of annualized sales is shown in Fig. 7.4.
The data for two watches represented above are captured in salesYY2.csv.

They are accompanied by the data for Sales Team Y for no watch (Fig. 7.1) and one
watch (Fig. 7.3). We therefore have one factor, Watch, now with three levels: none,
one watch, and two watches.

As above, we begin with an (inappropriate) parametric test for comparisons.
⊘ One-way repeated measures ANOVA. The parametric repeated measures

ANOVA can be used when multiple measures are taken from the same participant. It

Fig. 7.4 The distribution of
annualized sales for Sales
Team Y when each sales
representative wore two
Mango smartwatches, one on
each wrist
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is important to use a corrected test such as a Greenhouse-Geisser correction (Green-
house and Geisser 1959) in the event that sphericity is violated. Sphericity is a
property of the data related to the covariance among experimental groups that can
be tested with Mauchly’s test of sphericity (Mauchly 1940). When sphericity is not
violated, an uncorrected test can be used.

The R code for conducting Mauchly’s test of sphericity and the ensuing repeated
measures ANOVA is:

> salesYY2 = read.csv("chapter7/salesYY2.csv")
> library(ez)
# here we specify the dependent variable (sales), within-
# subjects variables (watch), and the variable that
# identifies subjects (subject).
> m = ezANOVA(dv=sales, within=watch,wid=subject,data=salesYY2)
# we then check the model for violations of sphericity
> m$Mauchly

Effect W p p<.05
2 watch 0.9518013 0.1647936
# and given no violations, examine the uncorrected ANOVA. If
# violations were found, we would instead look at m$Sphericity.
> m$ANOVA

Effect DFn DFd F p p<.05 ges
2 watch 2 148 2.973636 0.05418002 0.02593512

Mauchly’s test of sphericity givesW = 0.952, p = 0.165, indicating that spheric-
ity is not violated and that an uncorrected test can be used. The repeated measures
ANOVA gives F(2,148) = 2.97, p = 0.054, falling just shy of statistical significance.
Of course, given the violations of normality, we know this result to be specious. A
nonparametric test should be used instead.

Friedman test. The nonparametric Friedman test is a rank-based test for a single
within-subjects factor of any number of levels (Friedman 1937). The test is particu-
larly useful in HCI studies where participants work with more than two variations of
a user interface. For our example, we will use it to compare the annualized sales of
Sales TeamYwhen its representatives wore zero, one, and twoMango smartwatches.

The R code for initiating a Friedman test on salesYY2.csv is:

# assuming salesYY2.csv is already loaded
> library(coin)
> friedman_test(sales ~ watch | subject, data=salesYY2)

Asymptotic Friedman Test

data: sales by
watch (none, one, two)
stratified by subject

chi-squared = 6.9067, df = 2, p-value = 0.03164
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Table 7.3 Pairwise comparisons of annualized sales among the three levels ofWatch using Holm’s
sequential Bonferroni procedure

No watch One watch Two watches

Median Sales $580,320.00 $870,290.00 $337,919.00

Comparison Wilcoxon W p-value Holm’s α Significant?

One watch versus two
watches

457.0 0.0153 α/3 = 0.0167 Yes

No watch versus one
watch

420.0 0.0262 α/2 = 0.0250 No

No watch versus two
watches

190.0 0.3189 α/1 = 0.0500 No

The p-value is 0.032, indicating a statistically significant difference in annualized
sales among the levels ofWatch. The test result is reported as χ2(2, N = 75) = 6.91,
p < 0.05.

With three levels ofWatch, we may wish to knowwhich pairwise comparisons are
significant. Three pairwise comparisons may be conducted, but we must be careful
to apply a correction to avoid inflating the Type I error rate—the possibility of false
positives. A correction such as Holm’s sequential Bonferroni procedure can avoid
inflating the Type I error rate (Holm 1979).2 We conduct the pairwise comparisons
using Wilcoxon signed-rank tests, the results of which are shown in Table7.3.

We can conduct all pairwise comparisons in R and use the p.adjust function
to apply Holm’s sequential Bonferroni procedure follows:

# assuming salesYY2.csv is already loaded
> library(plyr)
# get all pairwise combinations of levels of the watch factor,
# equivalent to combn(levels(salesYY2$watch),2,simplify=FALSE).
comparisons = list(c("none", "one"), c("none", "two"),
c("one", "two"))
# run wilcoxon signed-ranks on each pair of levels, collecting
# the test statistic and the p-value into a single table.
> post_hoc_tests = ldply(comparisons, function(watch_levels){

wt = wilcoxsign_test(sales ~ factor(watch) | subject,
data=salesYY2[salesYY2$watch %in% watch_levels,],
dist="exact")

data.frame(comparison = paste(watch_levels,collapse=" - "),
z = statistic(wt), pvalue = pvalue(wt)

)
})

2Holm’s sequential Bonferroni procedure for three pairwise comparisons uses a significance thresh-
old ofα = 0.05/3 for the lowest p-value,α = 0.05/2 for the second lowest p-value, andα = 0.05/1
for the highest p-value. Should a p-value compared in that ascending order fail to be statistically
significant, the procedure halts and any subsequent comparisons are regarded as statistically non-
significant.



156 J.O. Wobbrock and M. Kay

# derive adjusted p-values using Holm’s sequential Bonferroni
# procedure
> post_hoc_tests$adjusted_pvalue =

p.adjust(post_hoc_tests$pvalue, method="holm")
> post_hoc_tests

comparison z pvalue adjusted_pvalue
1 none - one 2.217834 0.02615427 0.05230854
2 none - two -1.003306 0.31893448 0.31893448
3 one - two -2.413214 0.01532255 0.04596764

Corrected pairwise comparisons show that one Mango smartwatch produced dif-
ferent sales than two Mango smartwatches. Looking at median sales, it is clear that
two smartwatches hindered sales compared to one smartwatch. Perhaps information
overload had a deleterious effect on sales representatives’ productivity!

We have thus far considered nonparametric tests of proportions and nonparametric
single-factor tests with two or more levels. Our final consideration in this chapter
is nonparametric multifactor tests—those used when more than one factor is being
tested in the same experimental design.

7.4.4 Multifactor Tests

Modern experiments in HCI often involve more than one factor. Multifactor experi-
mental designs examine more than one factor simultaneously. Each factor may have
two or more levels. Chief among statistical concerns are tests for “interactions,”
wherein levels of one factor interact with levels of another factor to differentially
affect responses. For example, perhaps one Mango smartwatch email application
creates higher sales for Sales Team X, while a different email application creates
higher sales for Sales TeamY. This situation would result in a statistically significant
Team × Application interaction.

Nonparametric statistical methods for multifactor designs can be quite complex
and are a topic of active statistical research (Sawilowsky 1990). This chapter offers
a pragmatic but cursory review of four techniques: the Aligned Rank Transform,
Generalized Linear Models, Generalized Linear Mixed Models, and Generalized
Estimating Equations. For full treatments, the reader is directed to books on non-
parametric statistics (Higgins 2004; Lehmann 2006).

7.4.5 ⊘ N-Way Analysis of Variance

As above, we begin with an (inappropriate) parametric analysis for comparisons. Let
us reuse the data from Sales Team Y with zero, one, and two Mango smartwatches,
but now embellishedwith the city in which each sales representative operated: Babol,
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Fig. 7.5 Annualized sales for Sales Team Y by Watch and by City. A significant Watch × City
interaction is suggested by this graph. A similar graph can be generated by the R code
with(salesYY2city, interaction.plot(watch,city, sales))

Bakersfield, or Barrie. Thus, City is a three-level between-subjects factor, as each
sales representative worked only in one city. As before,Watch is a three-level within-
subjects factor. We therefore have a two-factor mixed design. These data are shown
in salesYY2city.csv.

The R code for executing a two-way factorial ANOVA with one within-subjects
factor, Watch, and one between-subjects factor, City, is:

> salesYY2city = read.csv("chapter7/salesYY2city.csv")

> library(ez)

> m = ezANOVA(dv=sales, between=city, within=watch,

wid=subject, data=salesYY2city)

> m$Mauchly

Effect W p p<.05

3 watch 0.9619982 0.2527474

4 city:watch 0.9619982 0.2527474

> m$ANOVA

Effect DFn DFd F p p<.05 ges

2 city 2 72 0.2622249 0.77006952 0.00255353

3 watch 2 144 3.1014944 0.04800009 * 0.02717733

4 city:watch 4 144 2.5909015 0.03915842 * 0.04459346

Although City alone was not a statistically significant main effect, there was a
significantWatch × City interaction as indicated by p-value of 0.039, meaning each
level of Watch resulted in different annualized sales depending on the city in which
the sales representative worked. Although a formal analysis would use pairwise
comparisons to draw conclusions, for our purposes we simply eyeball the graph
shown in Fig. 7.5. The graph suggests that although sales in all three cities were
similar without a Mango smartwatch, with one watch, sales in Babol and Bakersfield
improved, but not in Barrie. But with two Mango smartwatches, sales in Barrie
improved, but were worse in Babol and Bakersfield. (Perhaps the Barrie salespeople
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were all ambidextrous!) Differential results like these are what cause the statistically
significant Watch × City interaction.

Given the known violations of normality, the above parametric ANOVA is an
inappropriate analysis. We now turn to multifactor nonparametric procedures.

7.4.6 Aligned Rank Transform (ART)

Rank transforms have been utilized extensively in nonparametric procedures
(Conover and Iman 1981). However, ANOVAs applied to rank transforms are known
to drastically inflate Type I error rates for interaction effects (the chance of declaring
a significant interaction effect when there is not one), and therefore are not suitable
as multifactor analyses (Higgins and Tashtoush 1994; Mansouri 1999b; Salter and
Fawcett 1993).

One rank-based procedure that avoids this problem is called the Aligned Rank
Transform (ART). The nonparametric ART procedure originated in the 1980s (Faw-
cett and Salter 1984; Salter and Fawcett 1985) and has been a subject of attention
ever since (Higgins et al. 1990; Higgins and Tashtoush 1994; Mansouri 1999a; Man-
souri et al. 2004; Richter 1999; Salter and Fawcett 1993). Before ranking, the ART
procedure “aligns” the data separately for each effect by subtracting estimates of all
effects other than the effect of interest from each response (Hodges and Lehmann
1962). The idea is to “strip out” any effects except one from the data. The aligned
data is then ranked and a factorial ANOVA is performed with the aligned ranks as
the response. Importantly, only the effect for which the responses were aligned is
examined in the effects table; others are ignored. Thus, a separate aligning-ranking-
ANOVA process is conducted for every effect of interest, whether a main effect
or interaction. As aligning and ranking for every effect is tedious, tools have been
developed to automate the process (Wobbrock et al. 2011).

The authors of this chapter have created an R package for performing the ART
procedure called ARTool, based on a prior tool for Microsoft Windows of the
same name (Wobbrock et al. 2011). The package performs the aligning-and-ranking
process and automates running an ANOVA for each main effect and interaction.3

Using this package, the ART procedure is run on the data in salesYY2city.csv
using the following code:

3 Rather than using traditional repeated measures ANOVAs, ARTool uses mixed-effects analyses
of variance, explained below in the section on Generalized Linear Mixed Models.
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# assuming salesYY2city.csv is already loaded
> library(ARTool)
> m = art(sales ~ watch * city + (1|subject),data=salesYY2city)
> anova(m)
Aligned Rank Transform Anova Table (Type III tests)

Response: art(sales)

F Df Df.res Pr(>F)
watch 4.3132 2 144 0.01516 *
city 0.0165 2 72 0.98361
watch:city 2.0173 4 144 0.09510 .
---
Signif. codes: 0’***’ 0.001’**’ 0.01’*’ 0.05 ’.’ 0.1’’ 1

As with the parametric two-way ANOVA above, we have a statistically signifi-
cant effect of Watch on annualized sales F(2,144) = 4.31, p < 0.05. Also as above,
City alone did not exhibit a statistically significant effect. However, unlike above,
the Watch × City interaction is not statistically significant here but only a trend.
This result is to be trusted over the parametric result, given the evident violation of
normality.

The ART procedure can facilitate post hoc comparisons, provided levels are com-
pared within the aligned-and-ranked effects from which they came (Mansouri et al.
2004). We can conduct pairwise comparisons for all levels of theWatch factor using
the following R code:

# assuming m is the result of the call to art() above
> library(lsmeans)
> lsmeans(artlm(m, "watch"), pairwise ~ watch)
$lsmeans
watch lsmean SE df lower.CL upper.CL
none 108.5600 7.359735 216 94.05391 123.0661
one 130.0133 7.359735 216 115.50724 144.5194
two 100.4267 7.359735 216 85.92057 114.9328

Results are averaged over the levels of: city
Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
none - one -21.453333 10.40824 144 -2.061 0.1017
none - two 8.133333 10.40824 144 0.781 0.7150
one - two 29.586667 10.40824 144 2.843 0.0141

Results are averaged over the levels of: city
P value adjustment: tukey method for a family of 3 means
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The lsmeans procedure reports p-values corrected for multiple comparisons
using Tukey’s method (Kramer 1956; Tukey 1949, 1953). As for the post hoc tests
conducted above, we find the only significant difference is between one and two
watches, reported as t (144) = 2.84, p < 0.05.

7.4.7 Generalized Linear Models (GLM)

The classic ANOVA we have been utilizing in this chapter can be mathematically
formulated by what is called the General Linear Model (LM).4 This model describes
a family of analyses where the dependent variables are a linear combination of inde-
pendent variables5 plus normally-distributed errors. However, when the assumption
of normality is not met, the Generalized LinearModel (GLM) can utilize non-normal
response distributions (Nelder and Wedderburn 1972). GLMs are specified with a
distribution and a link function, which describe how factors relate to responses. The
LM is subsumed by the GLMwhen the distribution is “normal” and the link function
is “identity.” Many distribution-link function combinations are possible. Here we
review four common uses of the GLM for data arising in HCI studies. It is important
to note that such models are suitable only for between-subjects factors. For within-
subjects factors, we must add random effects to the models, as described in the next
subsection.

Multinomial logistic regression.Multinomial logistic regression, also referred to
as nominal logistic regression, is used for categorical (nominal) responses6 (Nelder
and Wedderburn 1972). In this respect, it can be used on data also suited to N -
sample Chi-Square tests of proportions. Recall the contingency data in Table7.2,
contained in prefs2ABC.csv. We can use multinomial logistic regression with
Team as a two-level factor and Preference as a response to discover whether there
were statistically significant differences in preference between sales teams.

In terms of the GLM, multinomial logistic regression uses a “multinomial” dis-
tribution and “logit” link function. The R code for executing such an analysis is:

4 General Linear Models are often called “linear models” and may be abbreviated “LM.” These
should not be confused with Generalized Linear Models, which may be abbreviated “GLM.” How-
ever, some texts use “GLM” for linear models and “GZLM” for generalizedmodels. Readers should
take care when encountering this family of abbreviations.
5 While not covered in this chapter, LMs and GLMs also offer the ability to use continuous inde-
pendent variables, not just categorical independent variables (see Chap. 11).
6 Multinomial logistic regression—when used with dichotomous responses such as Yes/No,
True/False, Success/Fail, Agree/Disagree, or 1/0—is called “binomial regression.” The GLM for
binomial regression uses a “binomial” distribution and “logit” link function. It can be conducted
using the glm function in much the same way as Poisson regression explained below, except with
the parameter family=binomial.

http://dx.doi.org/10.1007/978-3-319-26633-6_11
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> prefs2ABC = read.csv("chapter7/prefs2ABC.csv")
> library(nnet) #for multinom
> library(car) #for Anova
> m = multinom(email_preference ~ team, data=prefs2ABC)
> Anova(m)
Analysis of Deviance Table (Type II tests)

Response: email_preference

LR Chisq Df Pr(>Chisq)
team 6.5556 2 0.03771 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value is 0.038, indicating a significant difference in preference. The test
result is reported as a multinomial logistic regression χ2(2, N = 150) = 6.56, p <

0.05.
Multinomial logistic regression is useful for multifactor analyses as well. The file

prefs2ABCsex.csv has the same preferences data now embellished with the sex
of each sales representative. Thus, we have Team with two levels (Sales Team X or
Y) and Sex with two levels (male or female).

The R code for executing multinomial logistic regression on prefs2ABC
sex.csv is:

> prefs2ABCsex = read.csv("chapter7/prefs2ABCsex.csv")
> library(nnet) #for multinom
> library(car) #for Anova
# set contrasts for each factor to be sum-to-zero contrasts.
# this is necessary for the Type III Anova we will use.
> contrasts(prefs2ABCsex$team) <- "contr.sum"
> contrasts(prefs2ABCsex$sex) <- "contr.sum"
> m = multinom(email_preference ~ team * sex,data=prefs2ABCsex)
# We use a Type III Anova since it simplifies interpreting
# significant main effects in the presence of interactions.
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: email_preference

LR Chisq Df Pr(>Chisq)
team 6.4923 2 0.03892 *
sex 0.1029 2 0.94985
team:sex 0.5136 2 0.77354
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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As with our contingency table analysis, here there was a statistically significant
effect of Team on email application preference (χ2(2, N = 150) = 6.49, p < 0.05).
However, as one would expect, there was no statistically significant effect of Sex or
significant Team × Sex interaction.

Ordinal logistic regression.Ordinal logistic regression, also called ordered logit,
proportional odds logistic regression, or the cumulative link model, is analogous
to multinomial logistic regression but for ordered responses rather than unordered
categories ( McCullagh 1980). Such responses occur frequently in HCI studies that
utilize Likert scales, e.g., with subjective responses ranging from “strongly disagree”
to “strongly agree.”Ordinal logistic regression is an extension ofmultinomial logistic
regression to ordered response categories.

Let us assume that each sales representative was asked to indicate how much
they liked the email application they most preferred. On a 1–7 scale with end-
points “strongly disagree” to “strongly agree,” they rated their agreement with the
statement, “I love my preferred Mango smartwatch email application.” The data in
prefs2ABClove.csv reflects their responses.

The R code for running ordinal logistic regression on prefs2ABClove.csv
is:

> prefs2ABClove = read.csv("chapter7/prefs2ABClove.csv")
> library(MASS)
> library(car)
> contrasts(prefs2ABClove$team) <- "contr.sum"
> contrasts(prefs2ABClove$sex) <- "contr.sum"
# transform numeric variable into an ordinal variable
> prefs2ABClove$love = ordered(prefs2ABClove$love)
> m = polr(love ~ team * sex, data=prefs2ABClove)
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: love

LR Chisq Df Pr(>Chisq)
team 0.0149 1 0.9029
sex 29.5134 1 5.553e-08 ***
team:sex 0.0285 1 0.8659
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

There was no significant effect of Team on how much sales representatives love
their preferred Mango email application. There was also no Team × Sex interaction.
But there was a significant effect of Sex, reported as ordinal logistic χ2(1, N =
150) = 29.51, p < 0.0001. The average 1–7 Likert rating for males was 4.45; for
females it was 5.70. Perhaps the female sales representatives were a more positive
bunch!
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Poisson regression. Poisson regression is used for nonnegative integers that rep-
resent count data (Nelder and Wedderburn 1972; Bortkiewicz 1898). A common
use of Poisson regression in HCI is for counts of rare events. For example, accurate
gesture recognizers or automatic spelling correction systems that produce relatively
few errors from every 100 attempts may lend themselves to Poisson regression.7

For our scenario, let us pretend that the Mango smartwatch email applications
tracked and counted the number of customers to whom each sales representa-
tive failed to respond within 48 hours. Since sales representatives are trained to
respond quickly to customers, such occurrences should be relatively rare. The file
prefs2ABClate.csv contains the email application preferences data
embellished with the number of late responses for that sales representative during the
three-month study. Now, the preferred email application is treated not as a response
but as an independent variable potentially influencing the new response. Thus, we
have a 2 × 2 × 3 three-factor design with Team (X, Y), Sex (M, F), and Preference
(A-mail, B-mail, C-mail).

In the GLM, Poisson regression uses a “Poisson” distribution and “log” link
function, specified by the family argument to the glm function. It is executed in
R with the following:

> prefs2ABClate = read.csv("chapter7/prefs2ABClate.csv")
> contrasts(prefs$ABClate$team) <- "contr.sum"
> contrasts(prefs2ABClate$sex) <- "contr.sum"
> contrasts(prefs2ABClate$email_preference) <- "contr.sum"
> m = glm(late_responses ~ team * sex * email_preference,

data=prefs2ABClate, family=quasipoisson)
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: late_responses

LR Chisq Df Pr(>Chisq)
team 20.8684 1 4.919e-06 ***
sex 1.2934 1 0.25541
email_preference 3.3016 2 0.19190
team:sex 2.0317 1 0.15405
team:email_preference 0.1471 2 0.92907
sex:email_preference 5.2803 2 0.07135 .
team:sex:email_preference 4.1328 2 0.12664
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

7 Givendatawith a large number of zeroes, it is prudent to consider an extension toPoisson regression
called “zero-inflated” Poisson regression. This model incorporates binomial regression to
predict the probability of a zero alongside Poisson regression to model counts. See the zeroinfl
function in the pscl package.
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There was a significant effect of Team on number of late responses, reported as a
Poisson regression χ2(1, N = 150) = 20.87, p < 0.0001.

> ddply(prefs2ABClate, ~ team, function(data)
summary(data$late_responses))

team Min. 1st Qu. Median Mean 3rd Qu. Max.
1 X 0 0 1 1.080 2 4
2 Y 0 1 2 2.307 3 8

The average number of late responses for Sales Team X was 1.08; for Sales Team
Y, which did not have the Mango smartwatch yet, it was 2.31. We can also extract
the estimated ratio of rates of late responses between the two teams:

> library(multcomp) #for glht
> library(lsmeans) #for lsm
> team_effect = confint(glht(m, lsm(pairwise ~ team)))

Simultaneous Confidence Intervals

Fit: glm(formula = late_responses ~ team * sex *
email_preference, family = quasipoisson, data = prefs2ABClate)
Quantile = 1.96
95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
X - Y == 0 -0.6594 -0.9465 -0.3723

# effects in a Poisson model are on a log scale (because of the
# log link), so we often exponentiate them to interpret them.
> exp(team_effect$confint)

Estimate lwr upr
X - Y 0.5171661 0.3880856 0.6891797
attr(,"conf.level")
[1] 0.95
attr(,"calpha")
[1] 1.959964

Thus, we should expect members of Team X to have about 0.517 times the rate
of late responses as Team Y (95% confidence interval: [0.388, 0.689]).



7 Nonparametric Statistics in Human–Computer Interaction 165

Gamma regression. For data conforming to a Gamma distribution, a GLM can
be fitted with a “log” link function.8 A Gamma distribution applies to skewed, con-
tinuous data with a theoretical minimum, often zero. It is defined by two parameters,
“shape” and “scale.” The inverse of the scale parameter is called the “rate.” The
exponential distribution is a special case of Gamma distribution where the shape
parameter equals one.

The data contained in salesXY.csv and graphed in Fig. 7.1 can be modeled
by a Gamma distribution. That data has now been embellished with the sex of each
salesperson in salesXYsex.csv. The question now is how Team and Sex may
have affected annualized sales.

The R code for executing a GLMwith a Gamma distribution and log link function
is:

> salesXYsex = read.csv("chapter7/salesXYsex.csv")
> contrasts(salesXYsex$team) <- "contr.sum"
> contrasts(salesXYsex$sex) <- "contr.sum"
> m = glm(sales ~ team * sex, data=salesXYsex,

family=Gamma(link="log"))
> Anova(m, type=3)
Analysis of Deviance Table (Type III tests)

Response: sales

LR Chisq Df Pr(>Chisq)
team 5.1408 1 0.02337 *
sex 1.9128 1 0.16666
team:sex 0.1767 1 0.67420
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results indicate that therewas a statistically significant effect ofTeam on annu-
alized sales (χ2(1, N = 150) = 5.14, p < 0.05). The same conclusion was reached
with the Mann-Whitney U test, whose p-value of 0.025 was similar. It does not
appear that Sex or Team × Sex had any effect on annualized sales.

7.4.8 Generalized Linear Mixed Models (GLMM)

The GLMs reviewed in the last section are powerful models but with a major
limitation—they are unable to handle within-subjects factors because they cannot

8Although the canonical link function for the Gamma distribution is actually the “inverse” function,
the “log” function is often used because the inverse function can be difficult to estimate due to
discontinuity at zero. The two functions provide similar results.
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account for correlations amongmeasures of the same participant. This restriction lim-
its their utility in HCI studies in which the same participants are measured repeatedly
in one session or over time.

The Generalized Linear Mixed Model (GLMM) is an extended model that allows
for within-subjects factors (Gilmour et al. 1985; Stiratelli et al. 1984). A “mixed-
effects model” refers to the combination of both “fixed” and “random” effects. Thus
far in this chapter, we have only considered fixed effects, which are thosewhose levels
are purposefully and specifically chosen as treatments. By contrast, random effects
have levels whose values are not themselves of interest, but that represent a random
sample from a larger population about which we wish to generalize. In HCI studies
with repeatedmeasures, the random effects are almost always the human participants
in the experiment. By modeling Subject as a random effect, the correlation among
measures taken from the same participant can be accounted for.

In other respects, GLMMs are similar to the GLMs reviewed above. Distributions
and link functions can be specified for non-normal data.

Let us again consider the annualized sales for Sales TeamYwith noMango smart-
watch, oneMango smartwatch, and twoMango smartwatches in salesYY2city.
csv. (See Fig. 7.5.)

The R code for executing a factorial GLMM with a Gamma distribution, log link
function, and Subject as a random effect9 is:

> salesYY2city = read.csv("chapter7/salesYY2city.csv")
> library(lme4) #for glmer
> library(car) #for Anova
> contrasts(salesYY2city$city) <- "contr.sum"
> contrasts(salesYY2city$watch) <- "contr.sum"
# here (1|subject) indicates a random intercept
# dependent on subject.
> m = glmer(sales ~ city * watch + (1|subject),

data=salesYY2city, family=Gamma(link="log"))
> Anova(m, type=3)
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: sales

Chisq Df Pr(>Chisq)
(Intercept) 37079.7322 1 < 2e-16 ***
city 1.0191 2 0.60077
watch 5.4790 2 0.06460 .
city:watch 10.9741 4 0.02686 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

9 This model uses an intercept-only random effect. There are other types of random effects such as
slopes-and-intercept random effects that are described in Chap. 11.

http://dx.doi.org/10.1007/978-3-319-26633-6_11
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The results show a statistically significant Watch × City interaction (χ2(4, N =
225) = 10.97, p < 0.05) and a nonsignificant main effect of Watch (χ2(2, N =
225) = 5.48, p = 0.065). These results differ somewhat from those of the Aligned
Rank Transform, which showed a statistically significant main effect of Watch
(F(2,144) = 4.31, p < 0.05) and a nonsignificant Watch × City interaction
(F(4,144) = 2.02, p = 0.095). In neither analysis was City statistically significant.
The discrepancies in these results indicate the degree to which statistical conclusions
may vary depending on the analyses used.

7.4.9 Generalized Estimating Equations (GEE)

When the relationship among factors and responses is not known or there is no dis-
cernable structure, a Generalized Estimating Equation (GEE) can be used (Liang and
Zeger 1986; Zeger et al. 1988). Unlike GLMMs, GEEs are less sensitive to covari-
ance structure specification and can handle unknown correlation among outcomes.
Responsesmay be continuous, nominal, or ordinal. Statistical inference is commonly
performed with the Wald test (Wald 1943).

The R code for using a GEE with a Gamma distribution and log link function on
salesYY2city.csv is:

> salesYY2city = read.csv("chapter7/salesYY2city.csv")
> library(geepack)
# geeglm requires data sorted by grouping variable, so we sort
# by subject (so that all rows for a given subject are
# contiguous).
> salesYY2city = salesYY2city[order(salesYY2city$subject),]
> m = geeglm(sales ~ city * watch, id=subject,

data=salesYY2city, family=Gamma(link="log"))
> anova(m)
Analysis of ’Wald statistic’ Table
Model: Gamma, link: log
Response: sales
Terms added sequentially (first to last)

Df X2 P(>|Chi|)

city 2 0.46 0.795
watch 2 7.94 0.019 *
city:watch 4 12.03 0.017 *
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results show a statistically significantWatchmain effect (χ2(2, N = 225) =
7.94, p < 0.05) andWatch×City interaction (χ2(4, N = 225) = 12.03, p < 0.05).
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However, geeglm does not support Type-III ANOVAs,10 and as a result, our inter-
pretationof these tests is slightly different: The significant effect ofWatch canbe inter-
preted as a significant effect only outside the presence of a significantWatch × City
interaction, which this model contains. Therefore, we ignore the significant Watch
main effect and focus any further analysis on the interaction. As above, City is sta-
tistically nonsignificant.

7.5 Summary

The field of human-computer interaction is a field devoted both to invention and
to science. Its researchers and practitioners often transition fluidly from inventing
new interactive technologies to scientifically evaluating the behavior of people with
interactive technologies. The ability to correctly drawconclusions about this behavior
is therefore of paramount importance in focusing the efforts of these professionals.
Although not all studies in HCI require statistical inference, those that domust utilize
it correctly or risk missing actual benefits or proclaiming phantom ones.

With the wide variety of data collected in HCI studies, nonparametric statistics are
rife with opportunity for broad application. Such statistics may be understood best
by their relationship to more familiar, but often inapplicable, parametric statistics.
This chapter has provided an overview of nonparametric statistics useful in HCI at
an exciting time when the appreciation of their utility is growing in the field.
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