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ABSTRACT
Current measures of stroke gesture articulation lack descriptive
power because they only capture absolute characteristics about the
gesture as a whole, not fine-grained features that reveal subtleties
about the gesture articulation path. We present a set of twelve new
relative accuracy measures for stroke gesture articulation that char-
acterize the geometric, kinematic, and articulation accuracy of sin-
gle and multi-stroke gestures. To compute the accuracy measures,
we introduce the concept of a gesture task axis. We evaluate our
measures on five public datasets comprising 38,245 samples from
107 participants, about which we make new discoveries; e.g., ges-
tures articulated at fast speed are shorter in path length than slow
or medium-speed gestures, but their path lengths vary the most, a
finding that helps understand recognition performance. This work
will enable a better understanding of users’ stroke gesture articula-
tion behavior, ultimately leading to better gesture set designs and
more accurate recognizers.

Keywords
Gesture task axis; relative accuracy measures; gesture error;
unistrokes; multi-stroke gesture; geometric accuracy; kinematic ac-
curacy; articulation accuracy; toolkit.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces

1. INTRODUCTION
As touch gesture interaction becomes more common, the need to

understand how to design appropriate gesture interactions grows.
One key aspect is understanding how users actually articulate pen
and finger gestures. For example, variations in stroke gesture ar-
ticulation have been studied in different ways in the literature, in-
cluding examining the consistency between and within users [1],
differences between user populations [9], and the impact of input
devices [17]. However, all of these methods focus on characteriz-
ing absolute and global features of the gesture itself, such as total
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Figure 1: Gesture task axes for single and multi-stroke gestures
(a, b), defined analogous to MacKenzie et al.’s [12] reference
axis for pointing tasks (c). The gesture task axis, acting as rep-
resentative articulation of a gesture type, is computed from a
set of gesture samples.

path length or articulation time. What has been missing are fine-
grained analyses of gesture articulations to support an understand-
ing of how gestures vary relative to each other and to recognizers’
canonical template forms. Once we have this knowledge, better
gesture set designs and more accurate template-based recognizers
can be proposed.

We present a set of relative gesture accuracy measures that de-
scribe the way gestures unfold and what happens during their pro-
duction in terms of their closeness to their ideal forms. Our mea-
sures are inspired by and analogous to MacKenzie et al.’s path-
based pointing measures [12], which describe the accuracy of a
pointing movement while it unfolds. As with that work, our work
reveals the accuracy of gesture motion while it takes place, rather
than just after-the-fact. MacKenzie et al. [12] defined the task axis
as a straight line between the starting point of the user’s mouse and
the pointing target, to which the accuracy of users’ pointing paths
was compared (Figure 1c). We conceptualize the problem in the
same way: a reference path or task axis is defined, and variations
from this path are captured in the measures we present. We define
the gesture task axis as a representative way to articulate a stroke
gesture (Figure 1a,b), similar to the gesture templates stored by
template-based gesture recognizers, such as $1 [24], $N [2,3], and
$P [19]. Our accuracy measures then capture local deviations of
users’ candidate gestures relative to the gesture task axis, in terms
of geometric, kinematic, and articulation accuracy. We evaluate our
relative accuracy measures on five public gesture datasets compris-
ing 38,245 samples from 107 participants and report new gesture
findings, not revealed by absolute measures, that have implications
for designing improved gesture sets and gesture recognizers.



The contributions of this work are: (1) a set of relative stroke
gesture accuracy measures to characterize users’ gesture articula-
tion patterns; (2) an operational definition of the gesture task axis;
(3) new findings regarding existing datasets enabled by our new ac-
curacy measures; and (4) the Gesture RElative Accuracy Toolkit
(GREAT) to compute the measures. These results can be used in
new gesture studies to characterize in more detail how users make
gestures. Ultimately, this work informs our understanding of de-
signing gesture sets and recognizers to accommodate users’ gesture
articulation patterns.

2. RELATED WORK
In prior work, evaluating the performance of user stroke ges-

ture articulation has been mainly confined to reporting conventional
measurements, such as accuracy rates for recognizers [2,19,24], ar-
ticulation time for user performance [6,24], and self-reported rat-
ings for user preference [20,23]. Such high-level measures charac-
terize gestural performance, but fail to capture more nuanced artic-
ulation behaviors. For example, pen and finger gestures have been
found similar in terms of articulation time and shape distance, but
different in aperture, corner distance, and intersecting points, which
may impact future finger-gesture designs [17].

Beyond these general long-established measures in HCI, the ar-
ticulation path of stroke gestures can be used to compute many ge-
ometric and kinematic features (e.g., see Blagojevic et al. [5] for a
comprehensive set of 114 absolute gesture features). However, de-
spite their potential to characterize articulation performance in fine
detail, such features have been primarily used for gesture recogni-
tion [5,14,18,22], rather than to understand how users actually ar-
ticulate gestures. In some cases, local features were used to inform
gesture analysis approaches, such as the connection between cur-
vature and tangential velocity employed by Cao and Zhai’s model
to predict gesture articulation time [6]. Only recently, a few studies
have started to employ feature analysis to evaluate gesture articu-
lation beyond error rates and task times. One example is Kane et
al. [9], who compared gestures articulated by blind versus sighted
people and reported differences picked up by newly-introduced fea-
tures, such as gesture size variation and line steadiness. Tu et
al. [17] defined new measures for stroke gestures, such as axial
symmetry and intersecting points deviation. They were thus able
to expose subtle differences between pen and finger gestures not
revealed when employing only production time and proportional
shape distance. Using absolute gesture features, Anthony et al. [1]
found that increased geometric complexity of gesture shapes leads
to people producing gestures less consistently.

In contrast to the work we present in this paper, gesture features
investigated by all of these previous studies characterize absolute
gesture articulation behavior, such as comparing path length or ar-
ticulation time between different conditions. However, they cannot
account for relative differences in individual gesture articulations.
Yet such comparisons and analyses could inform the design of
template-based recognizers, which operate based on comparisons
between pairs of gestures (candidates and templates). To address
this problem, we formulate new measures for quantifying and eval-
uating the accuracy of user gesture articulation behavior compared
to some fixed example gesture (the gesture task axis), reflective of
relative differences between individual executions.

3. RELATIVE ACCURACY MEASURES
We evaluate the precision of stroke gesture articulation relative to

the gesture task axis in terms of (1) geometric, (2) kinematic, and
(3) articulation accuracy. Geometric accuracy reflects how well

users are able to reproduce a gesture, given its geometric shape
alone. Kinematic accuracy captures differences in the time domain
and, therefore, informs how fluent or smooth the gesture path is.
Articulation accuracy measures how consistent users are in pro-
ducing stroke gestures by looking at the difference in number of
strokes and stroke ordering. Articulation accuracy may also be in-
terpreted as recall accuracy, showing how well users can reproduce
the exact execution details of a given gesture (e.g., always start the
gesture from the same point and follow the same direction, a con-
straint imposed by some recognizers [24]). In order to evaluate the
three types of accuracy, we employ the concepts of error and vari-
ability from MacKenzie et al. [12], who relied on them to evaluate
the accuracy of pointing tasks1. Error is an indicator of the absolute
difference between a measurement and a reference, and variability
is the standard deviation of a set of differences.

In the following discussion, we represent a stroke gesture as
a series of 2-D points, p = {pi = (xi, yi, ti) | i = 1..n}. The
task axis is denoted by p =

{
pi =

(
xi, yi, ti

)
| i = 1..n

}
, and

will be defined in the next section. We employ standard local
features at point pi: (1) arc-length si=

∑i
j=2 ‖pj − pj−1‖ for

i=2..n and s1=0; (2) turning angle θi=∠ (pi−1pi, pipi+1); and
(3) local speed vi=(si+1 − si−1) / (ti+1 − ti−1). Local values
are aggregated into global measures: (4) path length, L(p)=sn;
(5) total absolute turning angle, Θ(p)=

∑n−1
i=2 θi; (6) area of ges-

ture bounding box, A(p)=(maxi=1,n xi −mini=1,n xi) ×
(maxi=1,n yi −mini=1,n yi); and (7) average speed,
S(p)=(

∑n−1
i=2 vi)/(n − 2). We employ these measures later

in the paper when we compare absolute versus relative measures.
All the measures we will introduce are relative to the gesture

task axis and, therefore, the candidate gesture (for which the ac-
curacy is to be determined) and the task axis must first be aligned.
The alignment is a 1:1 matching defined as a permutation func-
tion σ : {1, 2, ..., n} → {1, 2, ..., n}, meaning that point pi on
the task axis is aligned to point pσ(i) on the candidate gesture. If
the gestures are always executed in the same direction (e.g., such
as the unistrokes of [24]), this function is the identity permutation,
σ(i) = i. Otherwise, the alignment is produced with the $P match-
ing technique [19].

3.1 Geometric accuracy
Geometric accuracy measures evaluate the deviation of the can-

didate gesture from the task axis in terms of shape distance, and
capture tendencies of the users to stretch and bend strokes during
articulation.

1. Shape Error (ShE) represents the average absolute deviation
of the candidate gesture points from the task axis in terms of the
Euclidean distance:

ShE(p) =
1

n

n∑
i=1

∥∥pσ(i) − pi∥∥ (1)

ShE relates to the cost function of the $1 recognizer [24], the
Proportional Shape Distance of SHARK2 [10], and the $P recog-
nizer [19], depending on the point alignment procedure.

2. Shape Variability (ShV) computes the standard deviation of
the distances between the points of the candidate and the task axis:

ShV(p) =

√√√√ 1

n− 1

n∑
i=1

(∥∥pσ(i) − pi∥∥− ShE(p)
)2 (2)

1MacKenzie et al. evaluated pointing tasks using, among other measures,
movement error (ME), movement offset (MO), and movement variability
(MV), computed relative to the pointing task axis [12].



Low ShV values show uniform shape distance errors across the en-
tire gesture path, while large values indicate that errors are larger
for some parts of the gesture and smaller for others.

3. Length Error (LE) measures users’ tendencies to “stretch”
gesture strokes with respect to the task axis:

LE(p) =

n∑
i=1

∣∣sσ(i) − si∣∣ (3)

As we employ uniform resampling of gestures as a preprocessing
step, similar to gesture recognizers [2,19,24], arc-lengths can be
written as si = (i− 1) · L

n−1
, which leads to:

LE(p) = |L(p)− L(p)| (4)

This compact form has the advantage of being generalizable for
multi-stroke gestures, for which directly comparing arc-lengths of
points aligned by the $P point-cloud algorithm is irrelevant. We can
also measure the stretching behavior as the difference in gesture
bounding box area, for which we derive the following definition
analogous to LE:

4. Size Error (SzE) measures users’ tendencies to “stretch” ges-
ture strokes in terms of the gesture area size:

SzE(p) = |A(p)−A(p)| (5)

5. Bending Error (BE) measures users’ tendencies to “bend”
the strokes of the articulated gesture with respect to the gesture
task axis. It is defined as the absolute average of the differences
between corresponding turning angles at the ith point, measured
on the gesture and the task axis:

BE(p) =
1

n

n∑
i=1

∣∣θσ(i) − θi∣∣ (6)

6. Bending Variability (BV) computes the standard deviation of
the differences in turning angle:

BV(p) =

√√√√ 1

n− 1

n∑
i=1

(∣∣θσ(i) − θi∣∣− BE(p)
)2

(7)

3.2 Kinematic accuracy
Kinematic accuracy measures evaluate articulation differences in

the time domain, and capture how fluent or smooth the articulated
path is in terms of production time and speed.

7. Time Error (TE) measures the difference in articulation time
(total duration) between the candidate and the task axis:

TE(p) = |T (p)− T (p)| (8)

8. Time Variability (TV) represents the standard deviation of the
differences between timestamps measured at each individual point
on the gesture path:

TV(p) =

√√√√ 1

n− 1

n∑
i=1

(∣∣ti − ti∣∣− TE(p)
)2 (9)

9. Speed Error (VE)2 measures the difference in the speed pro-
files of the candidate and the gesture task axis:

VE =
1

n

n∑
i=1

|vi − vi| (10)

2Where letter “V” in VE comes from “Velocity,” which is an innocent abuse
of notation to prevent multiple, confounding abbreviations startingwith “S”.

10. Speed Variability (VV) represents the standard deviation of
the local differences between the speed profiles:

VV =

√√√√ 1

n− 1

n∑
i=1

(|vi − vi| − VE(p))2 (11)

3.3 Articulation accuracy
Articulation accuracy measures how consistent users are in pro-

ducing the individual strokes of gestures, for which perfect accu-
racy is required by some recognizers (e.g., always start strokes from
the same starting point and following the same direction) or use
cases (e.g., Japanese script).

11. Stroke Count Error (SkE) reports the difference in the num-
ber of strokes between the candidate and the task axis.

12. Stroke Ordering Error (SkOE) is an indicator of stroke or-
dering accuracy, computed as the absolute difference between the
$1 cost measure (defined as the sum of Euclidean distances be-
tween chronologically-aligned points) [24] and the $P cost mea-
sure (defined as the sum of Euclidean distances between point
clouds) [19]:

SkOE(p) = |$1(p, p)− $P (p, p)| (12)

=

∣∣∣∣∣
n∑
i=1

‖pi − pi‖ −
n∑
i=1

∥∥pσ(i) − pi∥∥
∣∣∣∣∣

If the candidate gesture has been articulated in the same way as the
gesture task axis, the ordering error will be low, as both $1 and $P
will return approximately the same value. Should any difference
exist in stroke ordering between the candidate and reference, SkOE
will reflect it with a larger value.

4. THE GESTURE TASK AXIS
In the above measures, we use the term gesture task axis to mean

a specific articulation of a gesture type that serves as a reference,
against which the accuracy of other, candidate gestures is com-
puted. The task axis can be a geometrically-perfect shape definition
of the gesture (similar to MacKenzie et al.’s straight line for point-
ing tasks [12]), or it can be a representative gesture sample acquired
from the user that captures the articulation specificity of both the
user and the input device, as found in the training sets of template-
based gesture recognizers [2,19,24]. Both alternatives represent
reasonable design choices for computing gesture task axes to ac-
count for differences in gesture articulation behavior. The ideal
shape can be specified as a series of geometric primitives, such as
lines and arcs. Previous work has employed such representations
for gestures, either for the purpose of recognition [13] or for ges-
ture analysis [6]. However, despite the desirable objectivity of this
perfectly-shaped reference, such a representation may not neces-
sarily be reflective of actual user articulation patterns, which of-
ten reveal “chunking” and “corner-cutting” behaviors in an attempt
to produce gestures faster [6] (p. 1503). Also, such a reference
may not reflect the true accuracy of allographic handwriting [15]
(e.g., individual differences in letters that personalize one’s hand-
writing, such as A, A, A, orA for the letter “A”), for which it
may artificially overemphasize differences where they do not ex-
ist. Therefore, an alternative would be a subjective, user-dependent
reference, reflective of users’ articulation patterns. Following these
considerations, we arrived at three possible definitions for the ges-
ture task axis:



1. The geometric gesture task axis (GEOMETRIC), defined by
the gesture set designer by employing geometric primitives,
such as lines and curves.

2. The average gesture task axis (AVERAGE), computed as the
average shape of a set of user-captured gesture samples.

3. The canonical template form (TEMPLATE) supplied to a rec-
ognizer to which articulated gestures will be compared in a
template-based matching approach.

The GEOMETRIC gesture task axis needs to be specified by the
designer as a set of geometric primitives in a CAD-like manner.
In order to help this process, we developed a simple application
that takes the designer’s stroke input and converts it into lines and
curves. A stroke is replaced by a line if all the intermediate points
are within a threshold distance from the line segment defined by the
first and last points of the stroke. Otherwise, the stroke is modeled
using a polynomial interpolating spline, for which the shape can be
entirely customized by editing and manipulating its control points.

The AVERAGE gesture task axis is meant to be reflective of ac-
tual user-articulated gestures. Inspired by previous work on 2D
shape averaging [7,16], we devised a simple technique to compute
the “centroid gesture” of a set of samples. Let T be a set of sam-
ples for a given gesture symbol, T = {tj |j = 1..|T |}, where each
sample, tj , is represented as a series of two-dimensional points.
We first resample gestures to the same number of points and trans-
late them such that their centroid point is at the origin (using for
example the pseudocode made available with the $1, $N, or $P rec-
ognizers [2,19,24]). This approach allows us to work with point
sets of equal cardinality, which simplifies the subsequent gesture
alignment procedures, as well as assuring translation-invariance
for the computed accuracy measures. One of the gesture samples
is selected as a reference, to which all the other gestures are be-
ing aligned3. If the articulation patterns of the gestures in the set
are alike (e.g., a rectangle that is always executed from the same
starting point and in the same direction, such as in the $1 ges-
ture set [24]), the alignment is a simple 1:1 matching that connects
points with the same index on the two gestures. Otherwise, the
point cloud alignment of the $P gesture recognizer [19] is used to
best match the points of the two gestures for gestures that are exe-
cuted with different stroke directions or stroke ordering, such as the
gestures in [2]. Figure 2 illustrates the two point alignment types.
Once the alignments are computed, point pi of the reference gesture
is associated to a set of |T | − 1 points from the remaining samples
in the set. We then average the x and y coordinates of these points
in all the gestures to compute the ith point of the AVERAGE task
axis.

We use the AVERAGE result to define the TEMPLATE gesture
task axis as the gesture from the set that is “closest” to the average
gesture (in terms of the nearest-neighbor classification procedure
implemented by the $1 and $P recognizers, depending on how point
alignments were computed). Using this approach, the TEMPLATE
task axis is an actual user-articulated sample, representative of the
ones stored by template-based gesture recognizers [2,19,24] in their
training sets, and also representative of the “average” articulation
performance of the user.

4.1 Pilot Study for the Gesture Task Axis
We note that the GEOMETRIC task axis is artificially created and,

consequently, can only be used to assess geometric accuracy, as
timestamps are unavailable. The AVERAGE task axis allows com-
putation of the geometric and kinematic accuracy measures, but

3Previous work [16] has showed that how the reference is selected has little
influence on the final result.

Figure 2: Gesture points are aligned in their chronological or-
der of input if the two gestures conform to the same articulation
pattern, such as the case of the “question mark” symbols (a) ex-
ecuted from the same starting point and in the same direction.
Otherwise, points are aligned using the point-cloud matching
procedure of $P [19], such as for the “question mark” symbols
executed in opposite directions (b) or the “person” symbol (c)
executed with different number of strokes and stroke ordering.

for single strokes only (in the case of multi-strokes, AVERAGE is
a point-cloud [19], for which the execution details get lost dur-
ing the alignment procedure). On the other hand, the TEMPLATE
gesture task axis can compute all the geometric, kinematic, and
articulation-related accuracy measures for both single and multi-
strokes, as it represents an actual articulation of a stroke gesture.
However, in order to better inform our choice for the task axis,
we conducted a pilot evaluation, in which we computed the task
axes for the single-stroke gestures of the $1 set [24] (p. 159) and
the multi-stroke gestures of the MMG set [2] (p. 245), against
which we computed the geometric accuracy measures (8,000 to-
tal gesture samples). We found the values significantly correlated
(at p=.01), with Pearson r coefficients ranging between .138 and
.903 for single-strokes (average r=.562) and between .117 and
.909 for multi-strokes (average r=.659). These results confirm the
hypothesis that correlations will exist between the values of rela-
tive measures computed against different task axes, simply because
of their relative nature. Also, as anticipated, the objective GEO-
METRIC task axis produced larger values (e.g., higher errors) for
the accuracy measures than the subjective task axes (almost twice
as large on average), because of its inability to capture allographic
differences and “short-cutting” behaviors during articulation [6].
Also, given that results were similar for AVERAGE and TEMPLATE,
but TEMPLATE represents an actual user articulation, we employ in
this paper the TEMPLATE task axis as reference for computing rela-
tive accuracy measures. Figure 3 illustrates the TEMPLATE gesture
task axes for single and multi-stroke gestures from actual users’
data [2,20,22,24].

5. CASE STUDIES
We discuss the applicability of our relative accuracy measures to

several existing stroke gesture experiments and datasets reported in
previous work [2,3,8,20,22,24]. In order not to overload this paper
with exhaustive numerical data supplied by the entire set of mea-
sures, we focus on one case study example per accuracy type: ge-
ometric, kinematic, and articulation-related. We discuss geometric
accuracy measures on the $1 dataset [24] and compare our find-
ings to the recognition results reported in that work. We then dis-
cuss kinematic accuracy measures for the gesture set of Vatavu et
al. [20], who were interested in the time profile of stroke gestures
for estimating execution difficulty. Finally, we employ three multi-



Figure 3: Gesture task axes (orange lines) computed using the TEMPLATE scheme for single- and multi-stroke gestures from public
datasets: the “question mark” symbol [24]; “flower” and “stairs” [20]; “pitchfork” and “asterisk” [2]; and the “person” symbol [22].

stroke datasets [2,8,22] to reveal new findings about users’ articu-
lation behavior in terms of stroke count and stroke ordering. Where
possible, we compare differences in the values reported by absolute
versus relative measures (such as path length versus length error).

5.1 Effect of Articulation Speed on Geometric
Accuracy

We employ for this experiment the $1 gesture set [24], composed
of 16 gesture types (p. 159) articulated by 10 participants with 10
repetitions each4. Participants entered gestures at low, medium,
and fast speeds, corresponding to the instructions “as accurately as
possible” (for low), “balance speed and accuracy” (medium), and
“as fast as you can” (fast). The authors of the $1 work found a
significant effect of articulation speed on recognition errors for all
tested recognizers ($1, Rubine, and DTW). The smallest error oc-
curred for medium speed, explained that “at medium speeds, sub-
jects’ gestures were neither overly tentative nor overly sloppy” (p.
166). In the following, we provide supporting data for this hypoth-
esis by employing our relative measures, and reveal new findings
on users’ gesture articulation.

We computed task axes for each gesture type in the set under
both user-dependent and user-independent training scenarios. For
the first scenario, task axes were computed for each participant in-
dividually, while for the second, all participants’ data contributed to
the computation of the task axes. We then computed accuracy mea-
sures for candidate gestures, which were selected with a leave-one-
out cross-validation testing procedure5: one gesture sample was se-
lected as the candidate, while all the others were used to compute
the task axis.

There was a significant effect of articulation speed on Shape
Error (χ2(2)=70.355 for user-dependent and χ2(2)=77.889 for
user-independent training, p<.001), with medium gestures show-
ing the smallest difference in Shape Error and Shape Variability for
the user-dependent case. This result confirms the original authors’
finding on medium gestures exhibiting the highest recognition ac-
curacy, as we can confirm such gestures are “closer” to their cen-
troid, while the point-to-point distances exposed lower Shape Vari-
ability than encountered at other speeds (see Figure 4, next page).
Slow and fast gestures, which delivered lower recognition accu-
racies, also presented larger Shape Error and Variability values in
the user-dependent scenario, which is the scenario reported in [24].
The same negative correlation between recognition accuracy and
Shape Error/Variability was found for the user-independent sce-
nario6: an increase in Shape Error/Variability corresponds to lower
recognition rates. These findings reveal new insights about the ef-
fect of articulation speed on users’ stroke gesture executions, but

4http://depts.washington.edu/aimgroup/proj/dollar/
5This has the desirable property of being almost unbiased [21] (p. 255).
6Because the $1 work [24] does not report user-independent recognition
rates, we computed them by following the same training/testing procedure.

also help explain why $1’s recognition rates vary under increased
articulation speed. Using our relative measures, we confirm the
$1 authors’ hypothesis about fast gestures being more “sloppy”
and show that shape errors are equally introduced by over-focus
on accuracy (i.e., slow gestures being more “tentative”). We note
that this confirmation cannot be delivered by absolute performance
measures (e.g., recognition rates reported in [24]) that only show
differences between conditions, without providing explanations for
these differences.

Besides these results, we can further employ our relative stretch-
ing and bending accuracy measures to report new findings about the
gestures in the $1 set. For instance, articulation speed had a signif-
icant effect on absolute gesture length (χ2(2)=191.649, p<.001)
and area (χ2(2)=276.001, p<.001), with both length and area de-
creasing with increased speed (Figure 5 left, next page). However, a
closer look employing our relative measures shows people produc-
ing gestures with different variations in length and area depending
on the articulation speed (Figure 5 right, next page), with medium-
speed gestures being the most accurately articulated (p<.001).

Interestingly, participants exhibited a tendency to stretch their
strokes more when producing fast gestures, as indicated by Length
Error, but slow articulations led to larger variations in gesture area,
as shown by Size Error (p < .001). We also found that participants
exhibited a tendency to bend their strokes relative to the average
behavior. The significant effect of speed on the absolute turning
angle (χ2(2) = 887.134, p < .001) was also revealed in the Bend-
ing Error and Variability relative measures (Figure 6, next page).
However, the relative measures characterize users’ articulations at
more subtle levels of detail. For example, we now know that the
average shape “bending” expected from users across consecutive
articulations of gestures from the $1 set lies between 0.22 and 0.26
radians (12.6−15.0◦), and users are more accurate in producing the
curvature of these shapes at fast speeds.

5.2 Effect of Gesture Practice on Kinematic
Accuracy

We employ for this experiment the gesture set of Vatavu et
al. [20], which contains 18 gestures (p. 94) executed by 14 par-
ticipants with 20 repetitions each7. The set includes both familiar
(practiced) and unfamiliar (new) gestures, verified by asking par-
ticipants. Vatavu et al. found that articulation time correlated best
with perceived difficulty; i.e., gestures that took longer to articulate
were generally perceived as more difficult by users. However, no
explanation is provided for the cause of this phenomenon. Next,
we reveal new findings about users’ articulation behavior in the
time domain by employing our kinematic relative measures.

Absolute measures show that familiar gestures were articu-
lated with lower overall duration (1323 vs. 2433 ms, Z=−40.975,
p<.001) and faster (0.7 vs. 0.5 pixels/ms, Z=−37.660, p<.001)

7http://www.eed.usv.ro/~vatavu/index.php?menuItem=downloads

http://depts.washington.edu/aimgroup/proj/dollar/
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Figure 4: Recognition rates for the $1 recognizer (left) compared to Shape Error and Variability measures (right). Note how Shape
Error and Variability reflect differences in recognition rate (e.g., medium gestures have the smallest errors and are the most accu-
rately recognized in the user-dependent case).

Figure 5: Absolute gesture length and size (left) compared to relative error measures (right). Note how the relative measures reveal
articulation characteristics not captured by absolute measures (e.g., even though fast gestures are shorter in path length, their lengths
varied the most).

Figure 6: Absolute bending (left) compared to relative bending accuracy measures (right). Note how the relative measures replicate
the findings of the absolute measures for the user-dependent case, but Bending Variability shows a different trend for the user-
independent scenario.

Figure 7: Recognition rates ($1) and absolute kinematic measures (left) vs. relative measures (right). Note how relative measures
reveal articulation behavior not captured by absolute measures (e.g., familiar gestures are more variable in speed), which correlates
with differences in recognition rates.



than unfamiliar ones. This result is enough in most cases to confirm
the practice effect on gesture articulation, which separates novice
from expert users of a gesture interface [4]. However, our rela-
tive accuracy measures show more insight on the effect of practice.
For instance, participants articulated familiar gestures with smaller
Time Error and Variability than measured for unfamiliar ones (as
confirmed by Wilcoxon tests for both user-dependent and indepen-
dent scenarios, p<.001). This result shows that practice leads not
only to smaller articulation times, but also to smaller errors, as in-
dividual articulations are produced more consistently in the time
domain (Figure 7, previous page).

The analysis of relative speed accuracy measures also shows sur-
prising results, hard to infer otherwise: Speed Error and Variability
were found to be twice as large for familiar than for unfamiliar ges-
tures (p<.001). We see that, when entering familiar gestures, users
are faster, decreasing their carefulness. These nuanced findings
in the time domain are in accordance with the recognition rates8

of familiar gestures, which are significantly smaller than those of
unfamiliar gestures (Figure 7, left, previous page) for both user-
dependent (Z=−7.842, p<.001, small Cohen effect r=.25) and
independent training (Z=−6.098, p<.001, medium effect r=.36).

5.3 Articulation Accuracy of Multi-Stroke
Gestures

In this section we employ our relative accuracy measures to re-
port new findings on how users articulate multi-stroke gestures. We
use the MMG gesture set [2,3] (3,200 samples, 16 gesture types,
and 20 participants: 10 participants employed a stylus, the other 10
used a finger)9; the HHReco set [8] (6,986 samples, 13 gestures,
and 19 participants)10 and the Nic-Icon set [22] (13,819 samples,
14 gestures, and 34 participants)11.

We found a significant effect of gesture instrument (stylus versus
finger) on Stroke Ordering Error (Z=−3.255 for user-dependent
and Z=−4.228 for user-independent training, p<.001), with fin-
ger gestures exhibiting more variation in stroke ordering than sty-
lus gestures for the user-dependent scenario (Figure 8 right, next
page). This finding can be explained by the years of experience
with handwriting with a pen that make people fall back on those
patterns more often when using the pen than the finger; only re-
cently have people started making gestures on touchscreens by us-
ing their fingers. However, stylus stroke ordering patterns seem
to be more consistent within- than between-users, as more varia-
tion was found for stylus gestures in the user-independent training.
There was no significant effect of instrument on recognition accu-
racy12 of $P [19] in the user-dependent scenario (U=201788.00,
z=−0.637, n.s.). The effect was significant, however, for user-
independent training (U=27585.50, z=−3.104, p<.01), with fin-
ger gestures being more accurately recognized than stylus gestures
(Figure 8 left, next page).

Analysis on the absolute number of strokes employed by par-
ticipants13 showed no significant differences between the average

8Recognition rates were computed using the $P recognizer as per the pro-
cedure of [19], by varying the number of training samples per gesture type
T = 1, 2, 4, 8 and the number of training participants P = 1, 2, 4, 8.
9http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

10http://embedded.eecs.berkeley.edu/research/hhreco/
11http://unipen.nici.ru.nl/NicIcon/index.php
12Recognition rates were computed using the $P recognizer as per the pro-
cedure of [19], by varying the number of training samples per gesture type
T = 1, 2, 4, 8 and the number of training participants P = 1, 2, 4, 8.

13Only on the NicIcon and HHReco sets, as the MMG participants were
instructed to produce gestures with predefined number of strokes, which
makes Stroke Count Error analysis unavailable for this set.

stroke count of these sets (Figure 8, left), as indicated by a Mann-
Whitney test (U=59.00, z= −1.55, n.s.). However, the relative
Stroke Count Error measure revealed higher accuracy within users
and lower consistency (higher errors) between users. This finding
is prominently reflected by the HHReco set (Z=−53.09, p<.001),
for which the user-dependent SkE approaches zero (showing al-
most perfect within-user consistency), while the articulations of
different users are different on average by one stroke (Figure 8,
right). The findings enabled by our relative accuracy measures are
in accordance with the recognition results obtained for the HHReco
and NicIcon sets (Figure 8, left). In the user-dependent case, users
are more consistent in terms of number of strokes in the HHReco
set (SkE=0.02) than in the NicIcon set (SkE=0.18), which trans-
lates into higher recognition rates for HHReco (94.9% vs. 92.9%).
In the user-independent case, the situation is reversed: there is more
consistency between users for the NicIcon set (SkE=0.42) than for
HHReco (SkE=1.10) and, therefore, the recognition rates we ob-
tained for NicIcon are higher this time (75.8% vs. 72.1%). We
note again how the relative accuracy measures we have introduced
capture these subtle differences and provide more insight into how
users articulate their stroke gestures.

6. SUMMARY, IMPLICATIONS, AND
TOOLKIT SUPPORT

By employing our relative measures we were able to reveal new
aspects of how users articulate stroke gestures, not captured by ab-
solute measures. For instance, our findings show how articulation
speed affects shape consistency relative to templates stored by ges-
ture recognizers. Users are more accurate when balancing speed
and accuracy than when aiming for either high accuracy or high
speed. Based on these findings, we recommend training procedures
that collect gesture samples articulated at different speeds. Such a
recommendation is important for scenarios in which faster gesture
input is more likely (e.g., on the go) and for recognition approaches
that rely on geometric features to discriminate between gestures,
such as the Rubine recognizer [14] and its derived forms [5].

Our findings also show that practice affects both articulation time
and speed error, but in opposite ways: whereas familiar gestures
are articulated more consistently in the time domain, they also ex-
hibit larger speed errors. When entering familiar gestures, users
are faster, decreasing their carefulness. Consequently, designers
should employ recognition approaches that are not sensitive to how
gestures are different in time and speed, or should capture a suf-
ficient number of training samples to account for these variations.
For example, Rubine’s recognizer employs time features, among
other gesture descriptors, and Rubine recommends 15+ training
samples per gesture type [14] (p. 335).

We also found differences in stroke ordering for both finger
and stylus gestures, which encourages the use of recognition ap-
proaches robust to the order in which users enter strokes [2] or ges-
ture recognizers innately designed to handle such variations [19].

In the end, we release the Gesture RElative Accuracy Toolkit
(GREAT) to the community for further gesture studies and for
practitioners of gesture interfaces who need to tweak gesture sets
and recognizers for various application contexts. We release this
tool to enable new gesture discoveries between different condi-
tions (e.g., different user populations [9], input devices [17], or ges-
ture types [11]) and thus foster improved gesture interface designs.
GREAT computes our set of twelve relative accuracy measures and
can be downloaded for free online14.

14http://depts.washington.edu/aimgroup/proj/dollar/great.html

http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
http://embedded.eecs.berkeley.edu/research/hhreco/
http://unipen.nici.ru.nl/NicIcon/index.php
http://depts.washington.edu/aimgroup/proj/dollar/great.html


Figure 8: Recognition rates ($P) and absolute stroke count measure (left) versus relative Stroke Ordering and Stroke Count Error
(right). Note how the Stroke Count Error reveals differences in user consistency for the HHReco and NicIcon sets, not captured by
the absolute number of strokes.

7. CONCLUSION
We reported in this paper twelve new accuracy measures to ex-

amine relative differences between users’ stroke gesture articu-
lations, for which we have introduced the concept of a gesture
task axis. We showed how our measures go beyond prior work
by capturing relative gesture differences, and reveal new findings
on users’ stroke gesture articulation behaviors from five public
datasets, especially finding relationships between users’ articula-
tion and recognition accuracy for different recognizers. We hope
the contributions of this work will lead to a better understanding
of users’ gesture articulation behaviors for diverse contexts, and
we are eager to see how the community might use the new relative
measures and our toolkit to improve gesture interface designs.
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