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ABSTRACT 
We present Input Finger Detection (IFD), a novel technique for 
nonvisual touch screen input, and its application, the Perkinput 
text entry method. With IFD, signals are input into a device with 
multi-point touches, where each finger represents one bit, either 
touching the screen or not. Maximum likelihood and tracking 
algorithms are used to detect which fingers touch the screen based 
on user-set reference points. The Perkinput text entry method uses 
the 6-bit Braille encoding with audio feedback, enabling one- and 
two-handed input. A longitudinal evaluation with 8 blind 
participants who are proficient in Braille showed that one-handed 
Perkinput was significantly faster and more accurate than 
iPhone’s VoiceOver. Furthermore, in a case study to evaluate 
expert performance, one user reached an average session speed of 
17.56 words per minute (WPM) with an average uncorrected error 
rate of just 0.14% using one hand for input. The same participant 
reached an average session speed of 38.0 WPM with two-handed 
input and an error rate of just 0.26%. Her fastest phrase was 
entered at 52.4 WPM and no errors. 

Keywords: Text entry, blind, mobile devices. 

Index Terms:	
   H.5.2. Information interfaces and presentation: 
User interfaces — Input devices and strategies. K.4.2. Computers 
and society: Social issues – assistive technologies for persons with 
disabilities. 

1 INTRODUCTION 
As mobile touch screen devices become increasingly 

ubiquitous, they are also becoming more accessible to people with 
visual impairments. Both Apple and Google have developed 
screen readers that are pre-installed on their devices, but Apple’s 
iPhone seems to be the most popular touch screen phone among 
blind people. The iPhone is the only touch screen phone 
recommended by the National Federation of the Blind (NFB) [14], 
the American Foundation for the Blind [2], and the Royal 
National Institute of Blind People [18]. Meanwhile, Android’s 
accessibility features require a complex setup process [2]. 

Although advancements in touch screen accessibility have been 
made, the fundamental task of text entry remains slow and error-
prone. Much work has recently arisen in this area 
[3][4][13][16][17], highlighting the compelling need for a better 
input method. Bonner et al. [3] found that the mean text entry rate 
on an iPhone with VoiceOver was only 0.66 words per minute 
(WPM) and Oliveira et al. [16][17] report a mean speed of 2.1 
WPM with a VoiceOver-like input method. Clearly, a better text 

entry method is needed for blind and eyes-free text input. 
While VoiceOver interaction involves selection of virtual keys, 

we propose a novel multi-touch technique based on signal 
detection theory called Input Finger Detection (IFD). In this 
technique, a signal is input by touching the screen with several 
fingers where each finger represents one bit, either touching the 
screen or not. A user sets reference points anywhere on the screen 
at any time to indicate initial finger positions, and we use 
maximum likelihood to decide which fingers were used to input 
the touch points based on the reference points. We then track the 
reference points to ensure they accurately represent the “true” 
locations of the fingers.  

Using IFD, we developed Perkinput, a nonvisual text entry 
method that uses the 6-bit Braille character encoding. To enter a 
character with two hands, a user taps the screen with up to 3 
fingers from each hand. The fingers contacting the screen 
correspond to dots in the Braille character. When using one hand, 
a user enters 3 bits of a character at a time, performing two multi-
point touches to enter one character (see Figure 1). 

 

 

 
Figure 1: A user enters a character with Perkinput using one or two 
hands. The (a) Braille encoding for ‘r’ is the binary string “111010.” 
It is entered with two hands simultaneously as shown in (b), or with 
one hand by touching the phone twice. The first touch (c) inputs bits 

1-3 and the second touch (d) inputs bits 4-6. 

Additionally, we present a novel multi-device interaction 
technique that uses the screen of a second device to enter text 
twice as fast. Two-device Perkinput enables a user to enter text 
into a device with a small screen using both hands, by using a 
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second device’s screen for additional input space. Thus, instead of 
inputting characters with two touches by one hand, the user enters 
text twice as fast with both hands simultaneously.  

To evaluate Perkinput, we conducted a longitudinal study with 
eight blind participants comparing one-handed Perkinput to 
VoiceOver. Study results show that one-handed Perkinput was 
significantly faster and more accurate, and had a higher learning 
rate than VoiceOver. Average entry rates during the last session 
were 7.26 WPM (SD = 2.64) with one-handed Perkinput and 4.52 
WPM (SD = 1.51) with VoiceOver. Uncorrected error rates were 
low, averaging 2.13% (SD = 4.01) and 4.45% (SD = 5.73), 
respectively.   

With further practice, one Perkinput user reached an average 
entry rate of 17.56 WPM (SD = 3.36) as part of a case study we 
conducted to evaluate expert performance. This user had only 
0.14% (SD = 3.18) uncorrected errors. 

We also evaluated performance of two-handed Perkinput using 
a tablet and two connected phones with our case study participant. 
Perkinput on two devices was faster than one-handed Perkinput, 
with an average speed of 20.4 WPM (SD=8.4). More practice 
would probably raise the average speed well beyond that of one-
handed Perkinput. On a tablet, on the other hand, Perkinput was 
more than twice as fast as on a phone, with an average speed of 
38.0 WPM (SD = 9.1) and an error rate of 0.26% (SD = 1.43). 

Our main contributions are the theory of the IFD technique and 
its application, the Perkinput text entry method, with which we 
have achieved higher text entry rates than any other known 
nonvisual text entry method in the HCI literature. A second 
contribution is a novel two-device interaction technique, where 
two devices are used to enter text at a faster rate than with just one 
device. A third contribution is the empirical findings from our 
three studies, which demonstrate the potential of Perkinput for 
Braille-based text entry as well as the IFD technique in general.  

2 RELATED WORK 
Several nonvisual touch screen text entry methods have been 

proposed in the HCI literature, some of which are based on 
Braille. Perkinput differs from these methods because it uses the 
new concept of IFD, while other methods use primarily gestures 
or virtual keys. We discuss the benefits of IFD over the two 
existing paradigms in section 4. No other work reports entry rates 
for blind people that are comparable to our findings. Also, we are 
the first to conduct a longitudinal evaluation and an evaluation of 
nonvisual text entry on a tablet. 

One recent Braille-based text entry method is BrailleType 
[16][17], where the screen is split into six virtual keys 
representing the dots in a Braille cell. The user enters a character 
by selecting the regions that correspond to the raised dots in the 
character.  Oliveira et al. compared BrailleType to VoiceOver 
input in a one-session study with 15 blind people. They found that 
with an entry rate of 1.45 WPM, BrailleType was significantly 
slower than VoiceOver, albeit more accurate. 

Similarly, Frey et al. [4] describe BrailleTouch, a text entry 
method that also has six large virtual keys. The difference 
between BrailleType and BrailleTouch is that the latter requires 
the user to input all dots for a character simultaneously. To do 
this, the user holds the phone in a nonstandard way, with both 
hands in landscape orientation facing the screen away from the 
user. No evaluation of BrailleTouch is described.  

TypeInBraille [13] is another Braille-based entry method that 
uses three simple gestures to input one character based on its 
Braille encoding. There is no evaluation of TypeInBraille.  

Several nonvisual text entry methods in the literature are not 
based on Braille. No-Look Notes [3] is a text entry method with 
virtual keys where two keys must be selected and activated to 
enter one character. An evaluation with blind people compared 

No-Look Notes to VoiceOver, finding that entry rates were 0.66 
WPM and 1.32 WPM, respectively. Sánchez and Aguayo [21] 
also propose a method with virtual keys but have no evaluation.  

Oliveria et al. [17] present NavTouch, a touch screen method 
that uses a sequence of gestures to “navigate” through the 
alphabet until a letter is selected. A single-session evaluation 
found that NavTouch was slower than VoiceOver, with an entry 
rate of just 1.72 WPM, and an error rate of over 10%. 

Tinwala and MacKenzie [25] and Yfantidis and Evreinov [30] 
also presented gesture-based entry methods but conducted 
evaluations with blindfolded sighted users. Their results do not 
apply to blind people because the gesture input ability of a blind 
person differs significantly from that of a sighted person [8].  

Several of the text entry methods mentioned above were 
compared to iPhone’s VoiceOver text entry method. Given 
reviews and recommendations from blind organizations 
[2][15][18] and anecdotal accounts, the iPhone seems to be by far 
the most common touch screen device used by blind people. 
Introduced in 2009, VoiceOver is the iPhone’s built-in screen 
reader. When VoiceOver is running, a user can touch a virtual key 
to hear its description and double-tap or split-tap [7] to activate 
that key. A split-tap, initially termed a “second-tap” [7], involves 
touching the screen with a second finger while keeping the first in 
contact with the screen. VoiceOver thus enables eyes-free text 
entry on the iPhone’s virtual QWERTY keyboard. 

In addition to touch screen methods, Perkinput’s chording input 
resembles the Twiddler, a one-handed mobile keyboard used with 
wearable computers. Lyons et al. [11] conducted a longitudinal 
study and found that text entry with Twiddler was much faster 
than with multi-tap. Although Twiddler has physical keys, Lyon 
et al. highlight the potential of chording methods for fast, eyes-
free input. 

3 INPUT FINGER DETECTION (IFD) 
Touch screen input can be modeled by transmission of 

information over a noisy channel [22]. With Input Finger 
Detection (IFD), a user first positions her hand over the screen 
and sets n reference points with, for example, a long press of n 
fingers. Then, the user transmits a message into the device by 
encoding the message into multi-point touches, each representing 
a binary sequence with n bits. If the ith finger contacts the screen 
for a given touch, the ith bit in the binary sequence is 1. 
Otherwise, the ith bit is 0. The touch is input into a device with 
some inconsistency, since the user will not hit the reference points 
exactly with every subsequent touch. This inconsistency is 
analogous to the message passing through a noisy channel in our 
model. The device receives the noisy, encoded message and the 
input method decodes it using our detection algorithms.  

There are three sources of noise in our model: 
1. Hand repositioning. The user may reposition a hand on a 

device, such that the fingers are no longer near their 
reference points. 

2. Touch-point inconsistency. As with mouse clicks around a 
target, there is natural error that occurs when a user attempts 
to touch a consistent point on the screen. 

3. Hand drift. It is likely that the user’s hand drifts slowly over 
time as she touches the screen repeatedly. 

To correct for noise caused by (1), the user must simply set new 
reference points that reflect the new position of her hand. For (2), 
we use Maximum Likelihood (ML) [19] to detect which finger 
corresponds to which point while accounting for the distribution 
of points around the target reference points. To minimize 
decoding errors caused by hand drift in (3), we track the reference 
points after each touch. 
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Our approach applies to one or two dimensions with signals of 
up to 10 bits, since people have 10 fingers and can touch a two-
dimensional screen. For simplicity, we explain these concepts in 
the following section with examples for 3-bit encodings and one 
dimension only. Extending the ideas to two dimensions and longer 
bit encodings is straightforward. 

3.1 Maximum Likelihood for Detecting Fingers 
To determine which fingers touched the screen, we compare the 

input touch points to the reference points most recently set by the 
user. We assume that the user has not repositioned her hand, so 
the touch points for each finger are likely to be close to their 
reference points. There is inconsistency when touching the screen, 
however, and some fingers may have a greater variance than 
others.  

We correct for touch point inconsistency by using Maximum 
Likelihood (ML) [19] to detect which fingers touched the screen 
given the input touch points, thereby determining which bits in the 
signal are equal to 1. We assume the distribution of touch points 
around their respective reference points is Gaussian, centered at 
their reference points.  

To formalize our approach, let d be an observed data point and 
θ be the parameter we seek. Our hypothesis that θ is the “true 
value” is hθ. 

Suppose d is one point that corresponds to one reference point 
θ. We have three hypotheses for θ: h1, h2, h3, where hi is the 
hypothesis that d was input with finger i. ! ! ℎ!  is the 
probability of observing d given hθ and the ML detection is the 
value of θ that maximizes ! ! ℎ! . We express ! ! ℎ!  as a 
Gaussian distribution centered around reference point θ with 
variance σ2. 

! ! ℎ! =   
1

(2!)!/!  !
exp −

(! − θ)!

2!!
 (1) 

Figure 2 shows (in one dimension) the likelihood distribution of 
d given each hypothesis. The variance of the errors around the 
reference points differ, so even though the touch point is closer to 
reference point 2, it is more likely to be input by finger 1. In other 
words, ! ! ℎ!  is greater than ! ! ℎ! . The detected signal for 
Figure 2 is thus the binary sequence “100,” since only finger 1 
touched the screen. 

 
Figure 2: The curves show the likelihood distributions of a touch 
point input by each finger. The black dot marks the location of a 

touch point. The height of the curves above the touch point show 
that it was most likely input by finger 1, even though the point is 

closer to reference point 2 than to reference point 1. 

In the case where the observed data has more than one point, 
the ML detection is the set of values for θj that maximizes the 
sum of ! !! ℎ!   for each point j in the touch. This is valid if we 
assume that pointing variance is independent for points in the 
same touch. The set of values for θj must be unique and 
increasing, since one finger cannot touch the screen at more than 
one point and we assume fingers do not cross. 

Figure 3 shows the likelihood distributions for three reference 
points and two touch points. The ML detection is {1,2}, which 

maximizes the sum of the likelihood of the reference points given 
their respective input points. The detected binary sequence is 
“110.”  

 
Figure 3: The black dots mark the location of 2 touch points and the 

black lines show the probabilities that the first point was input by 
finger 1 and the second point was input by finger 2, whose sum is 

higher than any other combination of reference points.  

As Figure 2 and Figure 3 show, the variance of touches around 
a reference point is an important factor in IFD. Variances can be 
determined per finger per user by observing the distances between 
input points and their corresponding reference points. 
Adjustments can be made dynamically as well, by updating the 
variance with new data as the user touches the screen. 

3.2 Tracking Reference Points   
While our maximum likelihood detection is based on the 

assumption that a user keeps her fingers close to their reference 
points, we observe that a user tends to move her hand as she 
touches the screen repeatedly. To account for this movement, or 
drift, we track the reference points by adjusting them slightly with 
every input. This technique is based on a first-order Phase-Locked 
Loop [5], commonly used in electronic applications. 

After we determine which fingers touched the screen, we move 
each reference point towards its corresponding touch point by a 
fraction of the distance between them. Most touches, however, 
were not made with all 3 fingers, so we cannot update all 
reference points based on their corresponding touch points alone. 
We aim to correct for drift of the entire hand, so we assume that 
the drift of individual fingers is correlated with one another. 
Therefore, we use the error of each touch point to adjust all 
reference points, but to varying degrees.  

We formalize this concept with the following equation:  

!!!! = ! ∙ ! ∙ !! +   !! (2) 

where !! is the vector of reference points at time n. !! is the 
vector of errors, or differences, between the touch points input at 
time n and their corresponding reference points.  

! =   
!!
!!
!!

,    ! =   
!!
!!
!!

 (3) 

The scalar constant ! is the adaptation coefficient that indicates 
the extent to which errors are used to shift reference points. 
Smaller values of ! reduce the effect of tracking.  

Lastly, ! is the correlation coefficient matrix, which describes 
the degree to which the error of one input point affects each 
reference point. As an extreme example, suppose we assume there 
is no correlation among the fingers as they move. The correlation 
coefficient matrix that reflects this assumption is: 

! =   
1 0 0
0 1 0
0 0 1

 (4) 

When using ! from Eq. 3, the tracking of a reference point !!  is 
only affected by an input point with finger i. If a touch did not 
include a point made by finger i, then !!  is not updated. The 
specific matrix we use in Perkinput is described in section 5.2. 

1232012



4 IFD FOR NONVISUAL INPUT 
We discuss advantages of IFD for nonvisual input compared 

with the de facto approaches of virtual keys and gestures. 
First, our approach is inherently customizable to support a 

user’s hand size, pointing inconsistencies, and hand drift 
tendency. Unlike with virtual keys, reference points can be set 
anywhere on the screen and there are no predefined boundaries. 
Also, as we show with Perkinput, encodings can easily be adapted  
for one- or two-handed input. This is useful for different screen 
sizes such as phones and tablets and user abilities and preferences. 

IFD is fast, since there is no need to search for virtual keys or 
draw gestures. With methods like VoiceOver that have many 
small keys, the user must first explore the screen with audio 
feedback until the desired key is found, then activate the key. This 
two step process is slower than tapping the screen. Some methods 
use large virtual keys [3][4][16][21] to avoid or quicken the 
explore-and-activate process, but as keys get larger, fewer fit on 
the screen. In our approach, however, there are up to 2n possible 
inputs for one tap, where n is the number of reference points. 
Simple gestures for input are limited in the same way as large 
keys, since the number of possible simple gestures is small and 
several gestures must be input to enter one signal [13][17][30]. 

Finally, the algorithms we use and the chording nature of the 
technique make it robust to errors. The ability to reset reference 
points and the ML and tracking algorithms account for the three 
sources of noise in our model. Virtual keys have boundaries that 
lack tactile indications on a touch screen, so they are inherently 
visual. Also, complex gestures [25] are difficult for blind people 
to input [8]. Furthermore, input finger detection, like any chording 
technique, enables a user to discern through proprioception 
whether her input is correct. By contrast, in techniques based on a 
fingertip at a screen position, all inputs “feel” the same. 

In the following sections, we describe an application of IFD for 
Braille-based text entry for blind people, showing how the theory 
we presented works in practice.  

5 THE PERKINPUT TEXT ENTRY METHOD 
We begin by giving an overview of Braille and describe how 

we used IFD in Perkinput. For simplicity, we will hereafter refer 
to the “index” finger as finger 1, the “middle” finger as finger 2, 
and the “ring” finger as finger 3. Reference points 1, 2, and 3 
correspond to those fingers, respectively. 

5.1 Braille and Perkins Braillers 
Braille is a tactile alphabet where each character is represented 

by raised dots in a 3×2 grid. The dots are numbered as shown in 
Figure 4. Braille is often embossed with a Perkins Brailler, a 
mechanical device that has 6 keys that correspond to the dots in a 
Braille cell (see Figure 4). To enter a character, the user 
simultaneously presses the keys that correspond to the dots raised 
in the character. People commonly learn how to type on a Perkins 
Brailler as they learn to read Braille. 

 

 
Figure 4: A Perkins Brailler on the left and the Braille letter “p” on 

the right. The numbers above the keys show which keys 
correspond to which dots in a Braille cell. 

5.2 IFD in Perkinput 
Perkinput uses IFD with the Braille character encoding. This 

encoding offers an advantage for blind people who know Braille. 
For two-handed input, Perkinput uses the same dot-to-finger 
mapping as the Perkins Brailler. Fingers 1, 2, and 3 on the left 
hand enter dots 1, 2, and 3 respectively. On the right hand, fingers 
1, 2, and 3 enter dots 4, 5 and 6, respectively. For one-handed 
input, two touches are required to enter one Braille character. 
During the first touch, fingers 1, 2, and 3 enter dots of the same 
number and during the second touch, fingers 1, 2, and 3 enter dots 
4, 5, and 6. One-handed input is useful for devices with small 
screens such as phones. The second hand is free to hold the device 
or perform other tasks such as read Braille. Figure 5 shows which 
dots correspond to each finger for one-handed input. 

 

 
Figure 5: The numbers above the fingers show which fingers 

correspond to which Braille dots for (a) the first and (b) the second 
touch inputs with one-handed Perkinput. 

A user registers reference points with a “long press.” If six 
fingers are registered, Perkinput uses a 6-bit encoding. If only 
three fingers are registered, Perkinput uses the one-column-at-a-
time 3-bit encoding. Reference points can be set at any time and 
anywhere on the screen, whether in portrait or landscape 
orientation. The only restriction when registering reference points 
is that finger 1 must be closer to the top of the phone than finger 3 
in landscape orientation, or closer to the left side of the phone in 
portrait orientation. This enables Perkinput to determine which 
reference point corresponds to which finger.  

For IFD, we assume each reference point has a bivariate 
Gaussian touch point distribution with constant and equal variance 
along the x- and y-axes, with a covariance of zero. This simplifies 
the problem of ML detection to finding the nearest reference 
point(s) in two dimensions. In the future, we plan to dynamically 
track a user’s finger variance. We derived the following tracking 
constants through experimentation:  

! = 0.1, ! =   
1 0.4 0.4
0.4 1 0.4
0.4 0.4 1

 (5) 

 
Although using the Braille encoding has advantages, it does not 

include encodings for all characters used in text entry. Perkinput 
uses swipes to represent characters such as spaces and backspaces. 
A two-finger swipe in any direction represents a space and a 
three-finger swipe in any direction represents a backspace. This 
involves placing the fingers on the screen and moving them while 
still touching the screen. 

During one-handed input, we also added a gesture to input 
“blank” Braille columns. Some Braille characters do not have dots 
4, 5, or 6 raised, Perkinput uses a one-finger swipe to indicate that 
no dots are raised (i.e., a binary sequence “000”). For example, 
the letter “a” is encoded in Braille as dot 1, or the binary sequence 
“100000.” A user enters an “a” by touching the screen with finger 
1 and then swiping the screen with one finger. This maintains that 
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all Braille-encoded characters require two touches in the one-
handed version of Perkinput.  

Perkinput provides audio feedback with every touch, including 
entry of the first column of a character and registration of 
reference points. When a user enters a character, that character is 
spoken.  

5.3 Perkinput for Two Devices 
As touch screen devices become more common and less 

expensive, it is interesting to explore interaction techniques using 
two devices at once. Many people carry multiple devices, such as 
a phone and a music player, or a phone and a tablet. Even two of 
these mainstream devices are usually less expensive and easier to 
carry than devices with physical Braille keyboards, which cost 
$1,000 or more [1]. 

In two-device Perkinput, two BlueTooth-connected touch 
screen devices are used to input text into one device, which we 
call the primary device. The user inputs dots 1, 2, and 3 with the 
left hand on one device and dots 4, 5, and 6 with the right hand on 
a second device, as shown in Figure 6. We define the “primary 
device” as the device that initiated the BlueTooth connection and 
accepts input of dots 4, 5, and 6.  

The “secondary device” sends the primary device information 
about each multi-point touch it receives, which the primary device 
then decodes along with its own input to determine what character 
was entered. The user must register reference points on each 
phone. The primary device identifies characters in the same way 
standard Perkinput decodes the two touches required to enter a 
character—the only difference is that the first touch is now 
received from the non-primary device and has a different set of 
reference points than the second touch. 

 

 
Figure 6: With two devices, the left hand inputs dots 1, 2, and 3 and 

the right hand inputs dots 4, 5, and 6. The right phone is the 
primary phone, defined as the phone that initiates the BlueTooth 

connection and expects dots 4-6 as input. 

Two-device Perkinput decodes a character after it receives input 
from each device and there is no time limit. If the user touches 
one device twice before touching the second device, the first input 
on the former device is disregarded. Thus, to indicate a “blank” 
column, the user inputs a swipe as she does on one-handed 
Perkinput.  

6 STUDY 1: ONE-HANDED PERKINPUT VS. VOICEOVER 
To evaluate Perkinput on a small touch screen, we compared 

the one-handed version to the de facto standard in nonvisual touch 
screen text entry, iPhone’s VoiceOver. We conducted a 
longitudinal study with eight blind participants who knew Braille 
to evaluate performance over time. 

6.1 Method 

6.1.1 Participants 
We conducted the study with eight blind participants (five 

female, three male), with an average age of 55. None of the 

participants were able to visually identify keys on a phone. One 
participant had experience with VoiceOver but the others had 
little to no experience with touch screen devices. All participants 
were proficient with reading Braille and, as is typical, entering 
text on a Perkins Brailler. We required Braille proficiency when 
recruiting participants since memorizing the Braille character 
encodings is a separate task from entering text. All users were also 
proficient at typing on a QWERTY keyboard, so they were 
familiar with the layout of the soft keyboard used with 
VoiceOver.  

6.1.2 Apparatus 
We developed a prototype of one-handed Perkinput and 

VoiceOver input for a Samsung Galaxy Phone running the 
Android operating system. We implemented our own version of 
VoiceOver standard input instead of using an iPhone to control 
variables related to device hardware features such as touch screen 
sensitivity, and quality of audio feedback (we used the same audio 
files as feedback for both methods). There is precedence for 
comparing a text entry method to a research implementation of 
VoiceOver in prior work [16][17]. 

Our prototype did not include any contractions (Grade 2 
Braille) to maintain a fair comparison with VoiceOver. The same 
number of characters had to be entered for any given phrase on 
each method. 

The prototypes were instrumented with mechanisms to load 
random phrases and log information about each input, including 
time and screen coordinates. Phrases were spoken by the built-in 
text-to-speech engine. Character names were pre-recorded sound 
files. 

6.1.3 Procedure 
The study included eight sessions, the first of which was a 

training session and was not included in the study results. During 
training, we conducted a brief interview and explained one-
handed Perkinput and VoiceOver to a participant until he/she 
independently typed two phrases with each method.  

All other sessions were 75 minutes long, where participants 
typed phrases for 30 minutes with each method. We used a set of 
short phases [29] that are representative of the English language. 
No phrase was longer than 27 characters. Participants were 
instructed to type “as quickly and accurately as possible.” Each 
30-minute phrase entry period was preceded by a 5-minute warm-
up. Participants received a 5-minute break between methods. 

Since participants were blind, we were unable to present them 
with phrases visually. To reduce cognitive load, we used short 
phrases derived from a standard set of text entry evaluation 
phrases [29]. The prototypes spoke a phrase and participants were 
instructed to repeat the phrase verbally before entering it to ensure 
the phrase was understood. 

6.1.4 Design and Analysis 
This study was a 7 × 2 within-subjects factorial design with 

factors for Session and Method. The levels of Session were (1-7); 
the levels of Method were (one-handed Perkinput, VoiceOver).  
The average number of trials run per session per method was 
13.28 (SD = 9.31), with a maximum of 46 trials. A total of 2362 
trials were conducted, of which 1363 (57.7%) were for Perkinput 
and 999 were for VoiceOver (42.3%). 

For analyzing words per minute (WPM), a mixed-effects model 
analysis of variance was used [10] with fixed effects of Session 
and Method; Trial was included as a nested factor within Session 
and Method. In addition, Participant was modeled as a random 
effect to account for correlated measurements within subjects over 
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time [9]. In general, mixed-effects models preserve large 
denominator degrees-of-freedom but compensate with wider 
confidence intervals. In addition, mixed-effects models can, 
unlike traditional fixed-effects ANOVAs, accommodate 
unbalanced data such as ours, where we had a variable number of 
trials per session. 

Both uncorrected and corrected error rates were measured 
[24][26], the former being errors left in final transcriptions and the 
latter being from backspacing during entry. As is typical, neither 
uncorrected nor corrected error rates were remotely normal in 
their distribution (Shapiro-Wilk W > .65, p < .0001; see [23]), 
ruling out the use of parametric analyses. Therefore, we used the 
nonparametric Aligned Rank Transform procedure [6][20][28], 
which enables the use of ANOVA after alignment and ranking, 
and which maintains the integrity of interaction effects. The same 
model terms were used for error rates as for WPM. 

Subjective Method preferences were analyzed using a one-
sample Pearson Chi-Square test of proportions. 

To validate counterbalancing, a test of order effects was 
conducted utilizing an Order factor encoding Method’s order-of-
presentation (i.e., whether a method was first or second in a given 
session). Order was not statistically significant for WPM 
(F1,2351 = 1.51, n.s.), and neither was Order×Method 
(F1,2352 = 0.00, n.s.), indicating adequate counterbalancing and no 
asymmetric skill transfer. 

6.2 Results 

6.2.1 Words per Minute (WPM) 
Average entry speed over all sessions for one-handed Perkinput 

was 6.05 WPM (SD = 2.69). For VoiceOver, it was 3.99 WPM 
(SD = 1.65). This difference resulted in a significant effect of 
Method on WPM (F1,1880 = 224.25, p < .0001). Figure 7 shows 
WPM graphed over sessions. 

 

 
Figure 7: Entry rates as WPM over sessions 1-7, and extrapolated 

to session 14, for each input method. Higher is better 

6.2.2 Performance over Time 
We can examine how entry speeds varied over time. There was 

a significant effect of Session on WPM (F6,1878 = 51.36, 
p < .0001), as both methods improved over time. There was also a 
significant Session×Method interaction (F6,1878 = 5.94, p < .0001), 
as each method improved at a different rate over time. As can be 
seen in Figure 8, Perkinput improved more quickly than 
VoiceOver. 

It is customary (see, e.g., [11][12][26]) to fit power laws of the 
form y = axb to entry speeds, where y is WPM, x is Session, a is 
initial speed and b reflects the learning rate. Doing so results in 
the following equations for each method: 

Perkinput:  y = 3.4589x0.3812,  R2 = .9546 (6) 

VoiceOver: y = 2.7450x0.2600,  R2 = .9893 (7) 

From Figure 7 and the above equations, we can see that 
Perkinput was both initially faster than VoiceOver and improved 
at a faster rate. Extrapolating to twice the sessions that were 
conducted gives entry speeds of 9.46 WPM for Perkinput and 5.45 
WPM for VoiceOver in the 14th session. 

 

6.2.3 Error Rates 
We calculated both uncorrected and corrected error rates [24]. 

Note that while uncorrected error rates are at odds with entry rate, 
corrected errors take time to produce, and thus are subsumed by 
entry rate. A successful text entry method could make and fix 
mistakes “along the way” resulting in high corrected errors, but in 
the end, produce more accurate text in less overall time having 
low uncorrected errors [26]. Thus, uncorrected errors are of chief 
importance. Figure 8 shows uncorrected error rates by method 
over sessions. 

 

 
Figure 8: Uncorrected error rates over sessions 1-7 for each input 

method. Lower is better. 

The average overall uncorrected error rate for Perkinput was 
3.52% (SD = 5.87). For VoiceOver, it was approaching twice that, 
at 6.43% (SD = 7.16). This difference was significant 
(F1,1882 = 91.87, p < .0001). Furthermore, the overall uncorrected 
error rate went down significantly over time (F6,1878 = 19.41, 
p < .0001), and did so differentially by method (F6,1878 = 4.51, 
p < .001). Thus, we see that not only was Perkinput faster than 
VoiceOver initially and over sessions, but it resulted in fewer 
errors initially and over sessions as well. 

Corrected errors give insight into the amount of “error fixing” 
taking place during entry. Despite Perkinput creating more 
accurate text in less overall time, it did so while making more 
errors and error corrections. Corrected error rates were 12.23% 
(SD = 11.64) for Perkinput and 8.32% (SD = 10.53) for 
VoiceOver. This difference was significant (F1,1881 = 41.97, 
p < .0001). Overall, corrected error rates decreased significantly 
over sessions (F6,1878 = 17.33, p < .0001), but did not do so 
differently for each method (F6,1878 = 1.52, n.s.). 

6.2.4 Subjective Performance 
At the end of the longitudinal study, participants were asked 

which method they preferred overall. In light of the performance 
results in favor of Perkinput, it is perhaps not surprising that 6 of 8 
participants preferred this method to VoiceOver. Nonetheless, a 
one-sample Pearson Chi-Square test of proportions does not show 
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preference for Perkinput was significantly different than chance 
(χ2

(1,N=8) = 2.00, p = .16). 

7 STUDY 2: EXPERT PERFORMANCE WITH ONE-HANDED 
PERKINPUT 

We sought to assess expert performance on one-handed 
Perkinput after additional hours of practice by focusing on one 
participant who strongly preferred Perkinput to VoiceOver. 

7.1 Method 
We conducted a case study with one participant (female, age 

59) from Study 1, who achieved the highest text entry rates with 
Perkinput. We refer to this participant as P5. P5 was proficient in 
Braille but had little experience with touch screens. We conducted 
six additional sessions with P5, each consisting of 30 minutes of 
entering phrases with Perkinput. We used a similar procedure to 
that of Study 1, but we did not test VoiceOver. 

We used the same Perkinput prototype from Study 1 but made 
slight modifications according to feedback from P5. Instead of 
using swipes to represent “blank” columns and spaces, we used a 
tap by the “pinky” finger, which we call finger 4. A “blank” 
column is entered by tapping finger 4 and a space is entered by 
tapping finger 4 twice (like two “blank” columns). Also, a 
backspace was given the Braille encoding of dots 1, 2, 3, 4, 5, and 
6, instead of a three-finger swipe. We envision different ways of 
inputting “blank” columns and characters that lack Braille 
encodings to be set by the user in a preference dialog, since some 
users may find it easier to use swipes than pinky-taps. 

7.2 Results 
Not surprisingly, P5 improved her entry rate significantly over 

all sessions (F12,533 = 55.38, p < .0001). Her speed in the 13th 
session was 15.96 WPM (SD = 4.10) over 61 trials, but this was 
not her maximum session speed, which occurred in the 12th 
session and was 17.56 WPM (SD = 3.36) over 66 trials. By 
comparison, her speed in session 1 had just been 4.79 WPM 
(SD = 1.93) over 22 trials. Thus, P5 more than tripled her entry 
rate after 12 sessions, or about 6.5 total hours of one-handed 
Perkinput usage. 

P5’s single fastest phrase occurred in session 11, at 22.47 WPM 
with no uncorrected or corrected errors (0.0%). 

Figure 9 shows P5’s entry rates with Perkinput from sessions 1-
13 and extrapolated to session 26. For Study 1’s sessions (1-7), P5 
averaged 8.09 WPM (SD = 3.60). For the additional sessions of 
Study 2 (8-13), P5 averaged 14.12 WPM (SD = 4.88), an 
improvement of 74.5%. The extrapolated speed in session 26 is 
24.78 WPM, which is only about 2 WPM greater than P5’s fastest 
phrase reported from her 11th session. 

The power law equation for P5 is shown below. Note the 
remarkably high exponent (b) of 0.6348, indicating a rapid rate of 
improvement for P5 compared to the average over participants of 
0.3812. 
Perkinput:  y = 3.1332x0.6348,  R2 = .8435 (8) 

P5 corrected almost all of her errors during entry, so error rates 
for P5 were exceptionally low. P5’s average overall uncorrected 
error rate for sessions 1-13 was 0.50% (SD = 1.87), compared to 
3.52% for all participants for sessions 1-7. During entry, P5 made, 
on average, 9.16% (SD = 9.63) corrected errors, not too far below 
participants’ average of 12.23% for sessions 1-7. Thus, P5 shows 
that Perkinput, while creating some errors during entry, enables 
rapid enough error correction so as to achieve noteworthy speeds 
with few uncorrected errors in the end. 

 
Figure 9: Entry rates for P5 with one-handed Perkinput over 

sessions 1-13, and extrapolated to session 26. Higher is better. 
Note that unlike Figure 7 the Y-axis here reaches 25 WPM, not just 

10 WPM. 

8 STUDY 3: EVALUATING TWO-HANDED PERKINPUT 
After evaluating one-handed Perkinput, we wanted to compare 

text entry rates to those achieved using two hands. 

8.1 Method 
We conducted another case study with P5 who already had 6.5 

hours of practice with one-handed Perkinput. The procedure was 
similar to Study 1, but included only two sessions, the first of 
which was a training session and not included in the results. 
During the training session, P5 entered phrases with two hands for 
30 minutes on a tablet and another 30 minutes on two phones. 
During the latter session, P5 entered phrases for 30 minutes on 
each device setup, preceded by 5 minutes of warm-up. As in 
Study 1, P5 took a 5-minute break between methods. 

P5 entered text on a Samsung Galaxy tablet. For two-device 
input, we used two Samsung Galaxy phones.  

8.2 Results 
P5’s speeds with each method are shown in Figure 10. Recall 

that the average WPM for one-handed entry from P5’s fastest 
session (#12) was 17.56 WPM (SD = 3.36). With two devices, it 
was 20.43 WPM (SD = 8.41). With two hands on one device, it 
was 38.02 WPM (SD = 9.31). Overall, these differences were 
significant (F2,222 = 171.92, p < .0001).  

 

 
Figure 10: Entry rates in WPM for P5 with one-handed, two-device, 
and two-handed-one-device entry with Perkinput. Higher is better. 

Error bars represent ±1 SD. 
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Pairwise comparisons reveal that tablet entry was significantly 
faster than both two-device (F1,222 = 149.86, p < .0001) and one-
handed entry (F1,222 = 287.48, p < .0001). Two-device entry, 
however, was not quite significantly faster than one-handed entry, 
although a trend is clear in that direction (F1,222 = 3.31, p = .07). 
Recall that the two-device data was used only once for this 
testing, while the data for one-handed Perkinput were taken from 
P5’s fastest overall session. 

P5’s error rates with each method are shown in Figure 11. 
Uncorrected error rates were near zero for all three versions of 
Perkinput. Average uncorrected error rates were 0.14% 
(SD = 0.81) for one-handed Perkinput, 1.75% (SD = 3.18) for 
two-device Perkinput, and 0.26% (SD = 1.43) for two-handed 
Perkinput on a tablet. Corrected error rates were also low, at 
3.10% (SD = 3.86), 6.81% (SD = 7.86), and 3.19% (SD = 4.74), 
respectively. Thus, it seems two-device Perkinput was more error 
prone than the other methods, although all methods exhibited low 
uncorrected error rates, making speed measurements comparable.  

 

 
Figure 11: Error rates for P5 with one-handed, two-device, and two-
handed-one-device entry with Perkinput. Lower is better. Error bars 

represent ±1 SD. 

9 DISCUSSION 
In Study 1, our longitudinal study, we showed that one-handed 

Perkinput outperforms VoiceOver, the de facto eyes-free text 
entry method for touch screen devices, for users who are familiar 
with Braille. Perkinput was faster and more accurate in the first as 
well as the final sessions of the study, and was preferred by six 
out of eight participants. Surprisingly, both users who preferred 
VoiceOver had higher average entry rates with Perkinput, but also 
higher corrected error rates. The errors seemed to frustrate these 
participants, although they managed to correct many of them 
quickly. 

Performance on both methods in Study 1 was worse than we 
had expected. Participants had difficulty remembering a phrase, 
remembering how much of a phrase they had entered, and 
remembering how to spell certain words. Also, participants often 
touched the screen without intending to do so—a source of noise 
that we did not consider in our IFD model. Some of the challenges 
participants faced during the study were probably a result of age 
(average age was 55) and lack of experience with touch screens 
(all but one had little to no experience). We were concerned that 
the lower-than-expected performance on VoiceOver was a result 
of our prototype not fairly representing iPhone’s VoiceOver. 
However, VoiceOver entry speeds in related work [3][16][17] are 
even lower than in our findings. Our average VoiceOver entry rate 

for Session 1 was 2.74 WPM, slightly higher than the rate found 
by Oliveira et al. of 2.11 WPM [17].  

The case studies we conducted provide insight into the potential 
of expert performance with one- and two-handed Perkinput. Study 
3 showed that two-handed text entry with Perkinput on a tablet is 
dramatically faster than one-handed entry on a phone for a 
participant who is proficient at typing on a Perkins Brailler. In 
light of the high speeds achieved, we believe people may prefer to 
use two-handed Perkinput on a phone-sized touch screen as well. 
Perkinput is designed to accept input from one or two hands on 
any device: a user simply sets six reference points (using both 
hands) or three reference points (using one hand) to indicate 
which encoding (six or three bits) the system should expect.  

It would be interesting to compare performance of two-handed 
Perkinput to a Perkins Brailler keyboard1. As with QWERTY 
keyboards used by sighted people, it is likely that a “hard” Perkins 
keyboard would be more efficient than two-handed Perkinput, a 
“soft” counterpart. Efficient text entry on commodity touch 
screens offers advantages over entry on a hard keyboard, 
however, since people may not want to purchase and carry 
additional specialized hardware. 

As previously mentioned, we evaluated Perkinput with users 
who were already familiar with Braille. A person who does not 
know Braille would have to memorize the Braille character 
encodings as she learns Perkinput, but learning how to read 
Braille tactually is not required. It is likely that using VoiceOver 
would be faster initially, especially if the user is familiar with a 
QWERTY keyboard. There is no reason, however, for VoiceOver 
to have an advantage to Perkinput after the user has memorized 
the Braille character encodings. There are no known estimates of 
the number of blind people who know Braille, but the National 
Federation of the Blind reports that a declining number of children 
are learning Braille [14]. One participant suggested Perkinput 
would be a useful tool for learning Braille without specialized 
devices.  

Perkinput can potentially be used with other encodings that, 
while not conforming to an existing standard, are designed to 
optimize speed or minimize fatigue. For example, an encoding 
that assigns more ergonomic finger patterns to frequent characters 
may be faster after a user overcomes the initial task of 
memorizing each character’s encoding. 

10 FUTURE WORK 
Since Perkinput is the first application of IFD, it can be 

improved in many ways. We plan to dynamically estimate the 
variance values for each of a user’s fingers and use this 
information for the Maximum Likelihood detection. Our choice of 
tracking constants was somewhat arbitrary. Instead, we plan to 
learn the values of the adaptation coefficient and the correlation 
coefficient matrix using machine learning techniques. 
Additionally, both Maximum Likelihood and tracking can be 
modified to learn from user reinforcement. In text entry, the 
decoding algorithm receives negative reinforcement from the user 
when the backspace key deletes a user’s input.  

Perkinput can also be improved by adding support for 
contracted Braille, word-level automatic corrections, and better 
audio feedback. For example, when a user enters a space, the 
previous word should be spoken to remind the user of what she 
just entered and reveal possible mistakes.  

                                                                    
1 There are no known evaluations of text entry on Perkins Braillers or 
similar hard keyboards. 
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Finally, we plan to use Input Finger Detection for other 
applications, such as chording text entry that is not based on 
Braille. 

11 CONCLUSION 
We have described a new approach to touch screen input called 

Input Finger Detection (IFD) and its application for Braille-based 
text entry in Perkinput. The three studies we conducted 
demonstrate the potential of IFD. Our longitudinal evaluation 
showed that Perkinput outperforms iPhone’s VoiceOver, reaching 
entry rates that are far beyond those of any nonvisual text entry 
method in the HCI literature, with low error rates. Enabling blind 
people to enter text into mobile devices efficiently and accurately 
represents an important step forward in making mobile computing 
fully accessible to all. 
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