
Input Finger Detection for Nonvisual Touch Screen
Text Entry in Perkinput

Shiri Azenkot*, Jacob O. Wobbrock†, Sanjana Prasain*, Richard E. Ladner*
*Computer Science and Engineering | DUB Group

University of Washington
Seattle, WA 98195 USA

{shiri,ladner}@cs.washington.edu, pras5181@uw.edu

†The Information School | DUB Group
University of Washington
Seattle, WA 98195 USA

wobbrock@uw.edu

ABSTRACT
We present Input Finger Detection (IFD), a novel technique for
nonvisual touch screen input, and its application, the Perkinput
text entry method. With IFD, signals are input into a device with
multi-point touches, where each finger represents one bit, either
touching the screen or not. Maximum likelihood and tracking
algorithms are used to detect which fingers touch the screen based
on user-set reference points. The Perkinput text entry method uses
the 6-bit Braille encoding with audio feedback, enabling one- and
two-handed input. A longitudinal evaluation with 8 blind
participants who are proficient in Braille showed that one-handed
Perkinput was significantly faster and more accurate than
iPhone’s VoiceOver. Furthermore, in a case study to evaluate
expert performance, one user reached an average session speed of
17.56 words per minute (WPM) with an average uncorrected error
rate of just 0.14% using one hand for input. The same participant
reached an average session speed of 38.0 WPM with two-handed
input and an error rate of just 0.26%. Her fastest phrase was
entered at 52.4 WPM and no errors.

Keywords: Text entry, blind, mobile devices.

Index Terms:	
 H.5.2. Information interfaces and presentation:
User interfaces — Input devices and strategies. K.4.2. Computers
and society: Social issues – assistive technologies for persons with
disabilities.

1 INTRODUCTION
As mobile touch screen devices become increasingly

ubiquitous, they are also becoming more accessible to people with
visual impairments. Both Apple and Google have developed
screen readers that are pre-installed on their devices, but Apple’s
iPhone seems to be the most popular touch screen phone among
blind people. The iPhone is the only touch screen phone
recommended by the National Federation of the Blind (NFB) [14],
the American Foundation for the Blind [2], and the Royal
National Institute of Blind People [18]. Meanwhile, Android’s
accessibility features require a complex setup process [2].

Although advancements in touch screen accessibility have been
made, the fundamental task of text entry remains slow and error-
prone. Much work has recently arisen in this area
[3][4][13][16][17], highlighting the compelling need for a better
input method. Bonner et al. [3] found that the mean text entry rate
on an iPhone with VoiceOver was only 0.66 words per minute
(WPM) and Oliveira et al. [16][17] report a mean speed of 2.1
WPM with a VoiceOver-like input method. Clearly, a better text

entry method is needed for blind and eyes-free text input.
While VoiceOver interaction involves selection of virtual keys,

we propose a novel multi-touch technique based on signal
detection theory called Input Finger Detection (IFD). In this
technique, a signal is input by touching the screen with several
fingers where each finger represents one bit, either touching the
screen or not. A user sets reference points anywhere on the screen
at any time to indicate initial finger positions, and we use
maximum likelihood to decide which fingers were used to input
the touch points based on the reference points. We then track the
reference points to ensure they accurately represent the “true”
locations of the fingers.

Using IFD, we developed Perkinput, a nonvisual text entry
method that uses the 6-bit Braille character encoding. To enter a
character with two hands, a user taps the screen with up to 3
fingers from each hand. The fingers contacting the screen
correspond to dots in the Braille character. When using one hand,
a user enters 3 bits of a character at a time, performing two multi-
point touches to enter one character (see Figure 1).

Figure 1: A user enters a character with Perkinput using one or two
hands. The (a) Braille encoding for ‘r’ is the binary string “111010.”
It is entered with two hands simultaneously as shown in (b), or with
one hand by touching the phone twice. The first touch (c) inputs bits

1-3 and the second touch (d) inputs bits 4-6.

Additionally, we present a novel multi-device interaction
technique that uses the screen of a second device to enter text
twice as fast. Two-device Perkinput enables a user to enter text
into a device with a small screen using both hands, by using a

1212012

Graphics Interface Conference 2012
28-30 May, Toronto, Ontario, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print form, and
ACM to publish electronically.

second device’s screen for additional input space. Thus, instead of
inputting characters with two touches by one hand, the user enters
text twice as fast with both hands simultaneously.

To evaluate Perkinput, we conducted a longitudinal study with
eight blind participants comparing one-handed Perkinput to
VoiceOver. Study results show that one-handed Perkinput was
significantly faster and more accurate, and had a higher learning
rate than VoiceOver. Average entry rates during the last session
were 7.26 WPM (SD = 2.64) with one-handed Perkinput and 4.52
WPM (SD = 1.51) with VoiceOver. Uncorrected error rates were
low, averaging 2.13% (SD = 4.01) and 4.45% (SD = 5.73),
respectively.

With further practice, one Perkinput user reached an average
entry rate of 17.56 WPM (SD = 3.36) as part of a case study we
conducted to evaluate expert performance. This user had only
0.14% (SD = 3.18) uncorrected errors.

We also evaluated performance of two-handed Perkinput using
a tablet and two connected phones with our case study participant.
Perkinput on two devices was faster than one-handed Perkinput,
with an average speed of 20.4 WPM (SD=8.4). More practice
would probably raise the average speed well beyond that of one-
handed Perkinput. On a tablet, on the other hand, Perkinput was
more than twice as fast as on a phone, with an average speed of
38.0 WPM (SD = 9.1) and an error rate of 0.26% (SD = 1.43).

Our main contributions are the theory of the IFD technique and
its application, the Perkinput text entry method, with which we
have achieved higher text entry rates than any other known
nonvisual text entry method in the HCI literature. A second
contribution is a novel two-device interaction technique, where
two devices are used to enter text at a faster rate than with just one
device. A third contribution is the empirical findings from our
three studies, which demonstrate the potential of Perkinput for
Braille-based text entry as well as the IFD technique in general.

2 RELATED WORK
Several nonvisual touch screen text entry methods have been

proposed in the HCI literature, some of which are based on
Braille. Perkinput differs from these methods because it uses the
new concept of IFD, while other methods use primarily gestures
or virtual keys. We discuss the benefits of IFD over the two
existing paradigms in section 4. No other work reports entry rates
for blind people that are comparable to our findings. Also, we are
the first to conduct a longitudinal evaluation and an evaluation of
nonvisual text entry on a tablet.

One recent Braille-based text entry method is BrailleType
[16][17], where the screen is split into six virtual keys
representing the dots in a Braille cell. The user enters a character
by selecting the regions that correspond to the raised dots in the
character. Oliveira et al. compared BrailleType to VoiceOver
input in a one-session study with 15 blind people. They found that
with an entry rate of 1.45 WPM, BrailleType was significantly
slower than VoiceOver, albeit more accurate.

Similarly, Frey et al. [4] describe BrailleTouch, a text entry
method that also has six large virtual keys. The difference
between BrailleType and BrailleTouch is that the latter requires
the user to input all dots for a character simultaneously. To do
this, the user holds the phone in a nonstandard way, with both
hands in landscape orientation facing the screen away from the
user. No evaluation of BrailleTouch is described.

TypeInBraille [13] is another Braille-based entry method that
uses three simple gestures to input one character based on its
Braille encoding. There is no evaluation of TypeInBraille.

Several nonvisual text entry methods in the literature are not
based on Braille. No-Look Notes [3] is a text entry method with
virtual keys where two keys must be selected and activated to
enter one character. An evaluation with blind people compared

No-Look Notes to VoiceOver, finding that entry rates were 0.66
WPM and 1.32 WPM, respectively. Sánchez and Aguayo [21]
also propose a method with virtual keys but have no evaluation.

Oliveria et al. [17] present NavTouch, a touch screen method
that uses a sequence of gestures to “navigate” through the
alphabet until a letter is selected. A single-session evaluation
found that NavTouch was slower than VoiceOver, with an entry
rate of just 1.72 WPM, and an error rate of over 10%.

Tinwala and MacKenzie [25] and Yfantidis and Evreinov [30]
also presented gesture-based entry methods but conducted
evaluations with blindfolded sighted users. Their results do not
apply to blind people because the gesture input ability of a blind
person differs significantly from that of a sighted person [8].

Several of the text entry methods mentioned above were
compared to iPhone’s VoiceOver text entry method. Given
reviews and recommendations from blind organizations
[2][15][18] and anecdotal accounts, the iPhone seems to be by far
the most common touch screen device used by blind people.
Introduced in 2009, VoiceOver is the iPhone’s built-in screen
reader. When VoiceOver is running, a user can touch a virtual key
to hear its description and double-tap or split-tap [7] to activate
that key. A split-tap, initially termed a “second-tap” [7], involves
touching the screen with a second finger while keeping the first in
contact with the screen. VoiceOver thus enables eyes-free text
entry on the iPhone’s virtual QWERTY keyboard.

In addition to touch screen methods, Perkinput’s chording input
resembles the Twiddler, a one-handed mobile keyboard used with
wearable computers. Lyons et al. [11] conducted a longitudinal
study and found that text entry with Twiddler was much faster
than with multi-tap. Although Twiddler has physical keys, Lyon
et al. highlight the potential of chording methods for fast, eyes-
free input.

3 INPUT FINGER DETECTION (IFD)
Touch screen input can be modeled by transmission of

information over a noisy channel [22]. With Input Finger
Detection (IFD), a user first positions her hand over the screen
and sets n reference points with, for example, a long press of n
fingers. Then, the user transmits a message into the device by
encoding the message into multi-point touches, each representing
a binary sequence with n bits. If the ith finger contacts the screen
for a given touch, the ith bit in the binary sequence is 1.
Otherwise, the ith bit is 0. The touch is input into a device with
some inconsistency, since the user will not hit the reference points
exactly with every subsequent touch. This inconsistency is
analogous to the message passing through a noisy channel in our
model. The device receives the noisy, encoded message and the
input method decodes it using our detection algorithms.

There are three sources of noise in our model:
1. Hand repositioning. The user may reposition a hand on a

device, such that the fingers are no longer near their
reference points.

2. Touch-point inconsistency. As with mouse clicks around a
target, there is natural error that occurs when a user attempts
to touch a consistent point on the screen.

3. Hand drift. It is likely that the user’s hand drifts slowly over
time as she touches the screen repeatedly.

To correct for noise caused by (1), the user must simply set new
reference points that reflect the new position of her hand. For (2),
we use Maximum Likelihood (ML) [19] to detect which finger
corresponds to which point while accounting for the distribution
of points around the target reference points. To minimize
decoding errors caused by hand drift in (3), we track the reference
points after each touch.

122 2012

Our approach applies to one or two dimensions with signals of
up to 10 bits, since people have 10 fingers and can touch a two-
dimensional screen. For simplicity, we explain these concepts in
the following section with examples for 3-bit encodings and one
dimension only. Extending the ideas to two dimensions and longer
bit encodings is straightforward.

3.1 Maximum Likelihood for Detecting Fingers
To determine which fingers touched the screen, we compare the

input touch points to the reference points most recently set by the
user. We assume that the user has not repositioned her hand, so
the touch points for each finger are likely to be close to their
reference points. There is inconsistency when touching the screen,
however, and some fingers may have a greater variance than
others.

We correct for touch point inconsistency by using Maximum
Likelihood (ML) [19] to detect which fingers touched the screen
given the input touch points, thereby determining which bits in the
signal are equal to 1. We assume the distribution of touch points
around their respective reference points is Gaussian, centered at
their reference points.

To formalize our approach, let d be an observed data point and
θ be the parameter we seek. Our hypothesis that θ is the “true
value” is hθ.

Suppose d is one point that corresponds to one reference point
θ. We have three hypotheses for θ: h1, h2, h3, where hi is the
hypothesis that d was input with finger i. ! ! ℎ! is the
probability of observing d given hθ and the ML detection is the
value of θ that maximizes ! ! ℎ! . We express ! ! ℎ! as a
Gaussian distribution centered around reference point θ with
variance σ2.

! ! ℎ! =
1

(2!)!/! !
exp −

(! − θ)!

2!!
 (1)

Figure 2 shows (in one dimension) the likelihood distribution of
d given each hypothesis. The variance of the errors around the
reference points differ, so even though the touch point is closer to
reference point 2, it is more likely to be input by finger 1. In other
words, ! ! ℎ! is greater than ! ! ℎ! . The detected signal for
Figure 2 is thus the binary sequence “100,” since only finger 1
touched the screen.

Figure 2: The curves show the likelihood distributions of a touch
point input by each finger. The black dot marks the location of a

touch point. The height of the curves above the touch point show
that it was most likely input by finger 1, even though the point is

closer to reference point 2 than to reference point 1.

In the case where the observed data has more than one point,
the ML detection is the set of values for θj that maximizes the
sum of ! !! ℎ! for each point j in the touch. This is valid if we
assume that pointing variance is independent for points in the
same touch. The set of values for θj must be unique and
increasing, since one finger cannot touch the screen at more than
one point and we assume fingers do not cross.

Figure 3 shows the likelihood distributions for three reference
points and two touch points. The ML detection is {1,2}, which

maximizes the sum of the likelihood of the reference points given
their respective input points. The detected binary sequence is
“110.”

Figure 3: The black dots mark the location of 2 touch points and the

black lines show the probabilities that the first point was input by
finger 1 and the second point was input by finger 2, whose sum is

higher than any other combination of reference points.

As Figure 2 and Figure 3 show, the variance of touches around
a reference point is an important factor in IFD. Variances can be
determined per finger per user by observing the distances between
input points and their corresponding reference points.
Adjustments can be made dynamically as well, by updating the
variance with new data as the user touches the screen.

3.2 Tracking Reference Points
While our maximum likelihood detection is based on the

assumption that a user keeps her fingers close to their reference
points, we observe that a user tends to move her hand as she
touches the screen repeatedly. To account for this movement, or
drift, we track the reference points by adjusting them slightly with
every input. This technique is based on a first-order Phase-Locked
Loop [5], commonly used in electronic applications.

After we determine which fingers touched the screen, we move
each reference point towards its corresponding touch point by a
fraction of the distance between them. Most touches, however,
were not made with all 3 fingers, so we cannot update all
reference points based on their corresponding touch points alone.
We aim to correct for drift of the entire hand, so we assume that
the drift of individual fingers is correlated with one another.
Therefore, we use the error of each touch point to adjust all
reference points, but to varying degrees.

We formalize this concept with the following equation:

!!!! = ! ∙ ! ∙ !! + !! (2)

where !! is the vector of reference points at time n. !! is the
vector of errors, or differences, between the touch points input at
time n and their corresponding reference points.

! =
!!
!!
!!

, ! =
!!
!!
!!

 (3)

The scalar constant ! is the adaptation coefficient that indicates
the extent to which errors are used to shift reference points.
Smaller values of ! reduce the effect of tracking.

Lastly, ! is the correlation coefficient matrix, which describes
the degree to which the error of one input point affects each
reference point. As an extreme example, suppose we assume there
is no correlation among the fingers as they move. The correlation
coefficient matrix that reflects this assumption is:

! =
1 0 0
0 1 0
0 0 1

 (4)

When using ! from Eq. 3, the tracking of a reference point !! is
only affected by an input point with finger i. If a touch did not
include a point made by finger i, then !! is not updated. The
specific matrix we use in Perkinput is described in section 5.2.

1232012

4 IFD FOR NONVISUAL INPUT
We discuss advantages of IFD for nonvisual input compared

with the de facto approaches of virtual keys and gestures.
First, our approach is inherently customizable to support a

user’s hand size, pointing inconsistencies, and hand drift
tendency. Unlike with virtual keys, reference points can be set
anywhere on the screen and there are no predefined boundaries.
Also, as we show with Perkinput, encodings can easily be adapted
for one- or two-handed input. This is useful for different screen
sizes such as phones and tablets and user abilities and preferences.

IFD is fast, since there is no need to search for virtual keys or
draw gestures. With methods like VoiceOver that have many
small keys, the user must first explore the screen with audio
feedback until the desired key is found, then activate the key. This
two step process is slower than tapping the screen. Some methods
use large virtual keys [3][4][16][21] to avoid or quicken the
explore-and-activate process, but as keys get larger, fewer fit on
the screen. In our approach, however, there are up to 2n possible
inputs for one tap, where n is the number of reference points.
Simple gestures for input are limited in the same way as large
keys, since the number of possible simple gestures is small and
several gestures must be input to enter one signal [13][17][30].

Finally, the algorithms we use and the chording nature of the
technique make it robust to errors. The ability to reset reference
points and the ML and tracking algorithms account for the three
sources of noise in our model. Virtual keys have boundaries that
lack tactile indications on a touch screen, so they are inherently
visual. Also, complex gestures [25] are difficult for blind people
to input [8]. Furthermore, input finger detection, like any chording
technique, enables a user to discern through proprioception
whether her input is correct. By contrast, in techniques based on a
fingertip at a screen position, all inputs “feel” the same.

In the following sections, we describe an application of IFD for
Braille-based text entry for blind people, showing how the theory
we presented works in practice.

5 THE PERKINPUT TEXT ENTRY METHOD
We begin by giving an overview of Braille and describe how

we used IFD in Perkinput. For simplicity, we will hereafter refer
to the “index” finger as finger 1, the “middle” finger as finger 2,
and the “ring” finger as finger 3. Reference points 1, 2, and 3
correspond to those fingers, respectively.

5.1 Braille and Perkins Braillers
Braille is a tactile alphabet where each character is represented

by raised dots in a 3×2 grid. The dots are numbered as shown in
Figure 4. Braille is often embossed with a Perkins Brailler, a
mechanical device that has 6 keys that correspond to the dots in a
Braille cell (see Figure 4). To enter a character, the user
simultaneously presses the keys that correspond to the dots raised
in the character. People commonly learn how to type on a Perkins
Brailler as they learn to read Braille.

Figure 4: A Perkins Brailler on the left and the Braille letter “p” on

the right. The numbers above the keys show which keys
correspond to which dots in a Braille cell.

5.2 IFD in Perkinput
Perkinput uses IFD with the Braille character encoding. This

encoding offers an advantage for blind people who know Braille.
For two-handed input, Perkinput uses the same dot-to-finger
mapping as the Perkins Brailler. Fingers 1, 2, and 3 on the left
hand enter dots 1, 2, and 3 respectively. On the right hand, fingers
1, 2, and 3 enter dots 4, 5 and 6, respectively. For one-handed
input, two touches are required to enter one Braille character.
During the first touch, fingers 1, 2, and 3 enter dots of the same
number and during the second touch, fingers 1, 2, and 3 enter dots
4, 5, and 6. One-handed input is useful for devices with small
screens such as phones. The second hand is free to hold the device
or perform other tasks such as read Braille. Figure 5 shows which
dots correspond to each finger for one-handed input.

Figure 5: The numbers above the fingers show which fingers

correspond to which Braille dots for (a) the first and (b) the second
touch inputs with one-handed Perkinput.

A user registers reference points with a “long press.” If six
fingers are registered, Perkinput uses a 6-bit encoding. If only
three fingers are registered, Perkinput uses the one-column-at-a-
time 3-bit encoding. Reference points can be set at any time and
anywhere on the screen, whether in portrait or landscape
orientation. The only restriction when registering reference points
is that finger 1 must be closer to the top of the phone than finger 3
in landscape orientation, or closer to the left side of the phone in
portrait orientation. This enables Perkinput to determine which
reference point corresponds to which finger.

For IFD, we assume each reference point has a bivariate
Gaussian touch point distribution with constant and equal variance
along the x- and y-axes, with a covariance of zero. This simplifies
the problem of ML detection to finding the nearest reference
point(s) in two dimensions. In the future, we plan to dynamically
track a user’s finger variance. We derived the following tracking
constants through experimentation:

! = 0.1, ! =
1 0.4 0.4
0.4 1 0.4
0.4 0.4 1

 (5)

Although using the Braille encoding has advantages, it does not

include encodings for all characters used in text entry. Perkinput
uses swipes to represent characters such as spaces and backspaces.
A two-finger swipe in any direction represents a space and a
three-finger swipe in any direction represents a backspace. This
involves placing the fingers on the screen and moving them while
still touching the screen.

During one-handed input, we also added a gesture to input
“blank” Braille columns. Some Braille characters do not have dots
4, 5, or 6 raised, Perkinput uses a one-finger swipe to indicate that
no dots are raised (i.e., a binary sequence “000”). For example,
the letter “a” is encoded in Braille as dot 1, or the binary sequence
“100000.” A user enters an “a” by touching the screen with finger
1 and then swiping the screen with one finger. This maintains that

124 2012

all Braille-encoded characters require two touches in the one-
handed version of Perkinput.

Perkinput provides audio feedback with every touch, including
entry of the first column of a character and registration of
reference points. When a user enters a character, that character is
spoken.

5.3 Perkinput for Two Devices
As touch screen devices become more common and less

expensive, it is interesting to explore interaction techniques using
two devices at once. Many people carry multiple devices, such as
a phone and a music player, or a phone and a tablet. Even two of
these mainstream devices are usually less expensive and easier to
carry than devices with physical Braille keyboards, which cost
$1,000 or more [1].

In two-device Perkinput, two BlueTooth-connected touch
screen devices are used to input text into one device, which we
call the primary device. The user inputs dots 1, 2, and 3 with the
left hand on one device and dots 4, 5, and 6 with the right hand on
a second device, as shown in Figure 6. We define the “primary
device” as the device that initiated the BlueTooth connection and
accepts input of dots 4, 5, and 6.

The “secondary device” sends the primary device information
about each multi-point touch it receives, which the primary device
then decodes along with its own input to determine what character
was entered. The user must register reference points on each
phone. The primary device identifies characters in the same way
standard Perkinput decodes the two touches required to enter a
character—the only difference is that the first touch is now
received from the non-primary device and has a different set of
reference points than the second touch.

Figure 6: With two devices, the left hand inputs dots 1, 2, and 3 and

the right hand inputs dots 4, 5, and 6. The right phone is the
primary phone, defined as the phone that initiates the BlueTooth

connection and expects dots 4-6 as input.

Two-device Perkinput decodes a character after it receives input
from each device and there is no time limit. If the user touches
one device twice before touching the second device, the first input
on the former device is disregarded. Thus, to indicate a “blank”
column, the user inputs a swipe as she does on one-handed
Perkinput.

6 STUDY 1: ONE-HANDED PERKINPUT VS. VOICEOVER
To evaluate Perkinput on a small touch screen, we compared

the one-handed version to the de facto standard in nonvisual touch
screen text entry, iPhone’s VoiceOver. We conducted a
longitudinal study with eight blind participants who knew Braille
to evaluate performance over time.

6.1 Method

6.1.1 Participants
We conducted the study with eight blind participants (five

female, three male), with an average age of 55. None of the

participants were able to visually identify keys on a phone. One
participant had experience with VoiceOver but the others had
little to no experience with touch screen devices. All participants
were proficient with reading Braille and, as is typical, entering
text on a Perkins Brailler. We required Braille proficiency when
recruiting participants since memorizing the Braille character
encodings is a separate task from entering text. All users were also
proficient at typing on a QWERTY keyboard, so they were
familiar with the layout of the soft keyboard used with
VoiceOver.

6.1.2 Apparatus
We developed a prototype of one-handed Perkinput and

VoiceOver input for a Samsung Galaxy Phone running the
Android operating system. We implemented our own version of
VoiceOver standard input instead of using an iPhone to control
variables related to device hardware features such as touch screen
sensitivity, and quality of audio feedback (we used the same audio
files as feedback for both methods). There is precedence for
comparing a text entry method to a research implementation of
VoiceOver in prior work [16][17].

Our prototype did not include any contractions (Grade 2
Braille) to maintain a fair comparison with VoiceOver. The same
number of characters had to be entered for any given phrase on
each method.

The prototypes were instrumented with mechanisms to load
random phrases and log information about each input, including
time and screen coordinates. Phrases were spoken by the built-in
text-to-speech engine. Character names were pre-recorded sound
files.

6.1.3 Procedure
The study included eight sessions, the first of which was a

training session and was not included in the study results. During
training, we conducted a brief interview and explained one-
handed Perkinput and VoiceOver to a participant until he/she
independently typed two phrases with each method.

All other sessions were 75 minutes long, where participants
typed phrases for 30 minutes with each method. We used a set of
short phases [29] that are representative of the English language.
No phrase was longer than 27 characters. Participants were
instructed to type “as quickly and accurately as possible.” Each
30-minute phrase entry period was preceded by a 5-minute warm-
up. Participants received a 5-minute break between methods.

Since participants were blind, we were unable to present them
with phrases visually. To reduce cognitive load, we used short
phrases derived from a standard set of text entry evaluation
phrases [29]. The prototypes spoke a phrase and participants were
instructed to repeat the phrase verbally before entering it to ensure
the phrase was understood.

6.1.4 Design and Analysis
This study was a 7 × 2 within-subjects factorial design with

factors for Session and Method. The levels of Session were (1-7);
the levels of Method were (one-handed Perkinput, VoiceOver).
The average number of trials run per session per method was
13.28 (SD = 9.31), with a maximum of 46 trials. A total of 2362
trials were conducted, of which 1363 (57.7%) were for Perkinput
and 999 were for VoiceOver (42.3%).

For analyzing words per minute (WPM), a mixed-effects model
analysis of variance was used [10] with fixed effects of Session
and Method; Trial was included as a nested factor within Session
and Method. In addition, Participant was modeled as a random
effect to account for correlated measurements within subjects over

1252012

time [9]. In general, mixed-effects models preserve large
denominator degrees-of-freedom but compensate with wider
confidence intervals. In addition, mixed-effects models can,
unlike traditional fixed-effects ANOVAs, accommodate
unbalanced data such as ours, where we had a variable number of
trials per session.

Both uncorrected and corrected error rates were measured
[24][26], the former being errors left in final transcriptions and the
latter being from backspacing during entry. As is typical, neither
uncorrected nor corrected error rates were remotely normal in
their distribution (Shapiro-Wilk W > .65, p < .0001; see [23]),
ruling out the use of parametric analyses. Therefore, we used the
nonparametric Aligned Rank Transform procedure [6][20][28],
which enables the use of ANOVA after alignment and ranking,
and which maintains the integrity of interaction effects. The same
model terms were used for error rates as for WPM.

Subjective Method preferences were analyzed using a one-
sample Pearson Chi-Square test of proportions.

To validate counterbalancing, a test of order effects was
conducted utilizing an Order factor encoding Method’s order-of-
presentation (i.e., whether a method was first or second in a given
session). Order was not statistically significant for WPM
(F1,2351 = 1.51, n.s.), and neither was Order×Method
(F1,2352 = 0.00, n.s.), indicating adequate counterbalancing and no
asymmetric skill transfer.

6.2 Results

6.2.1 Words per Minute (WPM)
Average entry speed over all sessions for one-handed Perkinput

was 6.05 WPM (SD = 2.69). For VoiceOver, it was 3.99 WPM
(SD = 1.65). This difference resulted in a significant effect of
Method on WPM (F1,1880 = 224.25, p < .0001). Figure 7 shows
WPM graphed over sessions.

Figure 7: Entry rates as WPM over sessions 1-7, and extrapolated

to session 14, for each input method. Higher is better

6.2.2 Performance over Time
We can examine how entry speeds varied over time. There was

a significant effect of Session on WPM (F6,1878 = 51.36,
p < .0001), as both methods improved over time. There was also a
significant Session×Method interaction (F6,1878 = 5.94, p < .0001),
as each method improved at a different rate over time. As can be
seen in Figure 8, Perkinput improved more quickly than
VoiceOver.

It is customary (see, e.g., [11][12][26]) to fit power laws of the
form y = axb to entry speeds, where y is WPM, x is Session, a is
initial speed and b reflects the learning rate. Doing so results in
the following equations for each method:

Perkinput: y = 3.4589x0.3812, R2 = .9546 (6)

VoiceOver: y = 2.7450x0.2600, R2 = .9893 (7)

From Figure 7 and the above equations, we can see that
Perkinput was both initially faster than VoiceOver and improved
at a faster rate. Extrapolating to twice the sessions that were
conducted gives entry speeds of 9.46 WPM for Perkinput and 5.45
WPM for VoiceOver in the 14th session.

6.2.3 Error Rates
We calculated both uncorrected and corrected error rates [24].

Note that while uncorrected error rates are at odds with entry rate,
corrected errors take time to produce, and thus are subsumed by
entry rate. A successful text entry method could make and fix
mistakes “along the way” resulting in high corrected errors, but in
the end, produce more accurate text in less overall time having
low uncorrected errors [26]. Thus, uncorrected errors are of chief
importance. Figure 8 shows uncorrected error rates by method
over sessions.

Figure 8: Uncorrected error rates over sessions 1-7 for each input

method. Lower is better.

The average overall uncorrected error rate for Perkinput was
3.52% (SD = 5.87). For VoiceOver, it was approaching twice that,
at 6.43% (SD = 7.16). This difference was significant
(F1,1882 = 91.87, p < .0001). Furthermore, the overall uncorrected
error rate went down significantly over time (F6,1878 = 19.41,
p < .0001), and did so differentially by method (F6,1878 = 4.51,
p < .001). Thus, we see that not only was Perkinput faster than
VoiceOver initially and over sessions, but it resulted in fewer
errors initially and over sessions as well.

Corrected errors give insight into the amount of “error fixing”
taking place during entry. Despite Perkinput creating more
accurate text in less overall time, it did so while making more
errors and error corrections. Corrected error rates were 12.23%
(SD = 11.64) for Perkinput and 8.32% (SD = 10.53) for
VoiceOver. This difference was significant (F1,1881 = 41.97,
p < .0001). Overall, corrected error rates decreased significantly
over sessions (F6,1878 = 17.33, p < .0001), but did not do so
differently for each method (F6,1878 = 1.52, n.s.).

6.2.4 Subjective Performance
At the end of the longitudinal study, participants were asked

which method they preferred overall. In light of the performance
results in favor of Perkinput, it is perhaps not surprising that 6 of 8
participants preferred this method to VoiceOver. Nonetheless, a
one-sample Pearson Chi-Square test of proportions does not show

0

2

4

6

8

10

0 2 4 6 8 10 12 14

W
or

ds
 p

er
M

in
ut

e

Session

Perkinput

VoiceOver

U
nc

or
re

ct
ed

 E
rr

or
Ra

te

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7

Session

VoiceOver

Perkinput

126 2012

preference for Perkinput was significantly different than chance
(χ2

(1,N=8) = 2.00, p = .16).

7 STUDY 2: EXPERT PERFORMANCE WITH ONE-HANDED
PERKINPUT

We sought to assess expert performance on one-handed
Perkinput after additional hours of practice by focusing on one
participant who strongly preferred Perkinput to VoiceOver.

7.1 Method
We conducted a case study with one participant (female, age

59) from Study 1, who achieved the highest text entry rates with
Perkinput. We refer to this participant as P5. P5 was proficient in
Braille but had little experience with touch screens. We conducted
six additional sessions with P5, each consisting of 30 minutes of
entering phrases with Perkinput. We used a similar procedure to
that of Study 1, but we did not test VoiceOver.

We used the same Perkinput prototype from Study 1 but made
slight modifications according to feedback from P5. Instead of
using swipes to represent “blank” columns and spaces, we used a
tap by the “pinky” finger, which we call finger 4. A “blank”
column is entered by tapping finger 4 and a space is entered by
tapping finger 4 twice (like two “blank” columns). Also, a
backspace was given the Braille encoding of dots 1, 2, 3, 4, 5, and
6, instead of a three-finger swipe. We envision different ways of
inputting “blank” columns and characters that lack Braille
encodings to be set by the user in a preference dialog, since some
users may find it easier to use swipes than pinky-taps.

7.2 Results
Not surprisingly, P5 improved her entry rate significantly over

all sessions (F12,533 = 55.38, p < .0001). Her speed in the 13th
session was 15.96 WPM (SD = 4.10) over 61 trials, but this was
not her maximum session speed, which occurred in the 12th
session and was 17.56 WPM (SD = 3.36) over 66 trials. By
comparison, her speed in session 1 had just been 4.79 WPM
(SD = 1.93) over 22 trials. Thus, P5 more than tripled her entry
rate after 12 sessions, or about 6.5 total hours of one-handed
Perkinput usage.

P5’s single fastest phrase occurred in session 11, at 22.47 WPM
with no uncorrected or corrected errors (0.0%).

Figure 9 shows P5’s entry rates with Perkinput from sessions 1-
13 and extrapolated to session 26. For Study 1’s sessions (1-7), P5
averaged 8.09 WPM (SD = 3.60). For the additional sessions of
Study 2 (8-13), P5 averaged 14.12 WPM (SD = 4.88), an
improvement of 74.5%. The extrapolated speed in session 26 is
24.78 WPM, which is only about 2 WPM greater than P5’s fastest
phrase reported from her 11th session.

The power law equation for P5 is shown below. Note the
remarkably high exponent (b) of 0.6348, indicating a rapid rate of
improvement for P5 compared to the average over participants of
0.3812.
Perkinput: y = 3.1332x0.6348, R2 = .8435 (8)

P5 corrected almost all of her errors during entry, so error rates
for P5 were exceptionally low. P5’s average overall uncorrected
error rate for sessions 1-13 was 0.50% (SD = 1.87), compared to
3.52% for all participants for sessions 1-7. During entry, P5 made,
on average, 9.16% (SD = 9.63) corrected errors, not too far below
participants’ average of 12.23% for sessions 1-7. Thus, P5 shows
that Perkinput, while creating some errors during entry, enables
rapid enough error correction so as to achieve noteworthy speeds
with few uncorrected errors in the end.

Figure 9: Entry rates for P5 with one-handed Perkinput over

sessions 1-13, and extrapolated to session 26. Higher is better.
Note that unlike Figure 7 the Y-axis here reaches 25 WPM, not just

10 WPM.

8 STUDY 3: EVALUATING TWO-HANDED PERKINPUT
After evaluating one-handed Perkinput, we wanted to compare

text entry rates to those achieved using two hands.

8.1 Method
We conducted another case study with P5 who already had 6.5

hours of practice with one-handed Perkinput. The procedure was
similar to Study 1, but included only two sessions, the first of
which was a training session and not included in the results.
During the training session, P5 entered phrases with two hands for
30 minutes on a tablet and another 30 minutes on two phones.
During the latter session, P5 entered phrases for 30 minutes on
each device setup, preceded by 5 minutes of warm-up. As in
Study 1, P5 took a 5-minute break between methods.

P5 entered text on a Samsung Galaxy tablet. For two-device
input, we used two Samsung Galaxy phones.

8.2 Results
P5’s speeds with each method are shown in Figure 10. Recall

that the average WPM for one-handed entry from P5’s fastest
session (#12) was 17.56 WPM (SD = 3.36). With two devices, it
was 20.43 WPM (SD = 8.41). With two hands on one device, it
was 38.02 WPM (SD = 9.31). Overall, these differences were
significant (F2,222 = 171.92, p < .0001).

Figure 10: Entry rates in WPM for P5 with one-handed, two-device,
and two-handed-one-device entry with Perkinput. Higher is better.

Error bars represent ±1 SD.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Perkinput

W
or

ds
 p

er
M

in
ut

e

Session

1272012

Pairwise comparisons reveal that tablet entry was significantly
faster than both two-device (F1,222 = 149.86, p < .0001) and one-
handed entry (F1,222 = 287.48, p < .0001). Two-device entry,
however, was not quite significantly faster than one-handed entry,
although a trend is clear in that direction (F1,222 = 3.31, p = .07).
Recall that the two-device data was used only once for this
testing, while the data for one-handed Perkinput were taken from
P5’s fastest overall session.

P5’s error rates with each method are shown in Figure 11.
Uncorrected error rates were near zero for all three versions of
Perkinput. Average uncorrected error rates were 0.14%
(SD = 0.81) for one-handed Perkinput, 1.75% (SD = 3.18) for
two-device Perkinput, and 0.26% (SD = 1.43) for two-handed
Perkinput on a tablet. Corrected error rates were also low, at
3.10% (SD = 3.86), 6.81% (SD = 7.86), and 3.19% (SD = 4.74),
respectively. Thus, it seems two-device Perkinput was more error
prone than the other methods, although all methods exhibited low
uncorrected error rates, making speed measurements comparable.

Figure 11: Error rates for P5 with one-handed, two-device, and two-
handed-one-device entry with Perkinput. Lower is better. Error bars

represent ±1 SD.

9 DISCUSSION
In Study 1, our longitudinal study, we showed that one-handed

Perkinput outperforms VoiceOver, the de facto eyes-free text
entry method for touch screen devices, for users who are familiar
with Braille. Perkinput was faster and more accurate in the first as
well as the final sessions of the study, and was preferred by six
out of eight participants. Surprisingly, both users who preferred
VoiceOver had higher average entry rates with Perkinput, but also
higher corrected error rates. The errors seemed to frustrate these
participants, although they managed to correct many of them
quickly.

Performance on both methods in Study 1 was worse than we
had expected. Participants had difficulty remembering a phrase,
remembering how much of a phrase they had entered, and
remembering how to spell certain words. Also, participants often
touched the screen without intending to do so—a source of noise
that we did not consider in our IFD model. Some of the challenges
participants faced during the study were probably a result of age
(average age was 55) and lack of experience with touch screens
(all but one had little to no experience). We were concerned that
the lower-than-expected performance on VoiceOver was a result
of our prototype not fairly representing iPhone’s VoiceOver.
However, VoiceOver entry speeds in related work [3][16][17] are
even lower than in our findings. Our average VoiceOver entry rate

for Session 1 was 2.74 WPM, slightly higher than the rate found
by Oliveira et al. of 2.11 WPM [17].

The case studies we conducted provide insight into the potential
of expert performance with one- and two-handed Perkinput. Study
3 showed that two-handed text entry with Perkinput on a tablet is
dramatically faster than one-handed entry on a phone for a
participant who is proficient at typing on a Perkins Brailler. In
light of the high speeds achieved, we believe people may prefer to
use two-handed Perkinput on a phone-sized touch screen as well.
Perkinput is designed to accept input from one or two hands on
any device: a user simply sets six reference points (using both
hands) or three reference points (using one hand) to indicate
which encoding (six or three bits) the system should expect.

It would be interesting to compare performance of two-handed
Perkinput to a Perkins Brailler keyboard1. As with QWERTY
keyboards used by sighted people, it is likely that a “hard” Perkins
keyboard would be more efficient than two-handed Perkinput, a
“soft” counterpart. Efficient text entry on commodity touch
screens offers advantages over entry on a hard keyboard,
however, since people may not want to purchase and carry
additional specialized hardware.

As previously mentioned, we evaluated Perkinput with users
who were already familiar with Braille. A person who does not
know Braille would have to memorize the Braille character
encodings as she learns Perkinput, but learning how to read
Braille tactually is not required. It is likely that using VoiceOver
would be faster initially, especially if the user is familiar with a
QWERTY keyboard. There is no reason, however, for VoiceOver
to have an advantage to Perkinput after the user has memorized
the Braille character encodings. There are no known estimates of
the number of blind people who know Braille, but the National
Federation of the Blind reports that a declining number of children
are learning Braille [14]. One participant suggested Perkinput
would be a useful tool for learning Braille without specialized
devices.

Perkinput can potentially be used with other encodings that,
while not conforming to an existing standard, are designed to
optimize speed or minimize fatigue. For example, an encoding
that assigns more ergonomic finger patterns to frequent characters
may be faster after a user overcomes the initial task of
memorizing each character’s encoding.

10 FUTURE WORK
Since Perkinput is the first application of IFD, it can be

improved in many ways. We plan to dynamically estimate the
variance values for each of a user’s fingers and use this
information for the Maximum Likelihood detection. Our choice of
tracking constants was somewhat arbitrary. Instead, we plan to
learn the values of the adaptation coefficient and the correlation
coefficient matrix using machine learning techniques.
Additionally, both Maximum Likelihood and tracking can be
modified to learn from user reinforcement. In text entry, the
decoding algorithm receives negative reinforcement from the user
when the backspace key deletes a user’s input.

Perkinput can also be improved by adding support for
contracted Braille, word-level automatic corrections, and better
audio feedback. For example, when a user enters a space, the
previous word should be spoken to remind the user of what she
just entered and reveal possible mistakes.

1 There are no known evaluations of text entry on Perkins Braillers or
similar hard keyboards.

128 2012

Finally, we plan to use Input Finger Detection for other
applications, such as chording text entry that is not based on
Braille.

11 CONCLUSION
We have described a new approach to touch screen input called

Input Finger Detection (IFD) and its application for Braille-based
text entry in Perkinput. The three studies we conducted
demonstrate the potential of IFD. Our longitudinal evaluation
showed that Perkinput outperforms iPhone’s VoiceOver, reaching
entry rates that are far beyond those of any nonvisual text entry
method in the HCI literature, with low error rates. Enabling blind
people to enter text into mobile devices efficiently and accurately
represents an important step forward in making mobile computing
fully accessible to all.

ACKNOWLEDGEMENTS
The authors thank Rhonda Nelson and all participants. This

work was supported in part by Google, Intel, by the National
Science Foundation under grant IIS-0952786, and by the US
Department of Education under grant H327A100014. Any
opinions, findings, conclusions or recommendations expressed in
this work are those of the authors and do not necessarily reflect
those of any supporter listed above.

REFERENCES
[1] American Foundation for the Blind. “Braille Technology.”

http://www.afb.org/section.aspx?DocumentID=1282. Accessed on
March 6, 2012.

[2] American Foundation for the Blind. “Cell Phone Access: The
Current State of Cell Phone Accessibility.” http://www.afb.org
/afbpress/pub.asp?DocID=aw120602. Accessed on Sept. 16, 2011.

[3] Bonner, M., Brudvik, J., Abowd, G. Edwards, K. (2010). No-Look
Notes: Accessible Eyes-Free Multi-Touch Text Entry. IEEE
Pervasive Computing ’10. Heidelberg: Springer, 409--426.

[4] Frey, B., Southern, C., Romero, M. (2011) BrailleTouch: Mobile
Texting for the Visually impaired. Proc. HCII ’11. Springer, 19-25.

[5] Gardner, F. M. (2005) Phaselock Techniques. New York: John
Wiley & Sons.

[6] Higgins, J.J. and Tashtoush, S. (1994). An aligned rank transform
test for interaction. Nonlinear World 1 (2), 201-211.

[7] Kane, S.K., Bigham, J.P. and Wobbrock, J.O. (2008). Slide Rule:
Making mobile touch screens accessible to blind people using multi-
touch interaction techniques. In Proc. ASSETS '08. New York: ACM
Press, 73-80.

[8] Kane, S. K., Wobbrock, J. O. and Ladner, R. E. (2011). Usable
gestures for blind people: understanding preference and
performance. Proc. CHI '11. ACM, New York, NY, USA, 413-422.

[9] Laird, N.M. and Ware, J.H. (1982). Random-effects models for
longitudinal data. Biometrics 38 (4), 963-974.

[10] Littell, R.C., Henry, P.R. and Ammerman, C.B. (1998). Statistical
analysis of repeated measures data using SAS procedures. Journal of
Animal Science 76 (4), 1216-1231.

[11] Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A.
and Looney, E.W. (2004). Twiddler typing: One-handed chording
text entry for mobile phones. Proc. CHI '04. Vienna, Austria (April
2004). New York: ACM Press, 671-678.

[12] MacKenzie, I.S. and Zhang, S.X. (1999). The design and evaluation
of a high-performance soft keyboard. Proc. CHI '99. Pittsburgh,
Pennsylvania (May 15-20, 1999). New York: ACM Press, 25-31.

[13] Mascetti, S., Bernareggi, C., and Belotti, M. (2011). TypeInBraille: a
braille-based typing application for touchscreen devices. Proc.
ASSETS '11. ACM, New York, NY, USA

[14] National Federation of the Blind. "How many children in America
are not taught Braille?" http://www.nfb.org/nfb/Braille
_Initiative.asp. Accessed on Sept. 16, 2011.

[15] National Federation of the Blind, "Usable consumer electronics."
http://www.nfb.org/nfb/accessible_home_showcase.asp#Cell.
Accessed on Sept. 16, 2011.

[16] Oliveira, J., Guerreiro, T., Nicolau., H, Jorge, J., and Gonçalves, D.
(2011). BrailleType: Unleashing Braille over touch screen mobile
phones. INTERACT ’11. Heidelberg: Springer, 100-107.

[17] Oliveira, J., Guerreiro, T., Nicolau, H., Jorge, J., and Gonçalves, D.
(2011). Blind people and mobile touch-based text-entry:
acknowledging the need for different flavors. Proc. ASSETS '11.
ACM, New York, NY, USA, 179-186.

[18] Royal National Institute of Blind People, "A Guide to Talking
Mobile Phones and Mobile Phone Software." http://www.
rnib.org.uk/livingwithsightloss/Documents/Mobile_phone_software_
factsheet_PDF.pdf. Accessed on Sept. 16, 2011.

[19] Russel, S., and Norvig, P. (2011). "Learning Probabalistic Models."
Artificial Intelligence: A Modern Approach. Prentice Hall, 802-829.

[20] Salter, K.C. and Fawcett, R.F. (1993). The ART test of interaction:
A robust and powerful rank test of interaction in factorial models.
Communications in Statistics: Simulation and Computation 22 (1),
137-153.

[21] Sánchez, J. and Aguayo, F. (2006), Mobile messenger for the blind.
Proc. of Universal Access in Ambient Intelligence Environments.
Berlin: Springer, 369-385.

[22] Shannon, C.E. (1948). A mathematical theory of communication.
The Bell System Technical Journal 27, 379-423,

[23] Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for
normality (complete samples). Biometrika 52 (3 & 4), 591-611.

[24] Soukoreff, R.W. and MacKenzie, I.S. (2003). Metrics for text entry
research: An evaluation of MSD and KSPC, and a new unified error
metric. Proc. CHI '03. New York: ACM Press, 113-120.

[25] Tinwala, H, and MacKenzie, I. S. (2009). Eyes-free text entry on a
touchscreen phone. Proc. TIC-STH ‘09. New York: IEEE, . 83-88.

[26] Wobbrock, J.O. (2007). Measures of text entry performance. In Text
Entry Systems: Mobility, Accessibility, Universality, I. S. MacKenzie
and K. Tanaka-Ishii (eds.). San Francisco: Morgan Kaufmann, 47-
74.

[27] Wobbrock, J.O., Chau, D.H. and Myers, B.A. (2007). An alternative
to push, press, and tap-tap-tap: Gesturing on an isometric joystick for
mobile phone text entry. Proc. CHI '07. New York: ACM Press,
667-676.

[28] Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins, J.J. (2011).
The Aligned Rank Transform for nonparametric factorial analyses
using only ANOVA procedures. Proc. CHI '11. New York: ACM
Press, 143-146.

[29] Wobbrock, J.O. and Myers, B.A. (2006). Analyzing the input stream
for character-level errors in unconstrained text entry evaluations.
ACM Transactions on Computer-Human Interaction 13 (4), pp. 458-
489

[30] Yfantidis, G. and Evreinov, G. Adaptive blind interaction technique
for touchscreens, Universal Access in the Information Society, 4,
2006, 328-337.

1292012

