
A Systematic Review of Gesture Elicitation Studies:
What Can We Learn from 216 Studies?

Santiago Villarreal-Narvaez1, Jean Vanderdonckt1, Radu-Daniel Vatavu2, Jacob O. Wobbrock3

1Université catholique de Louvain (UCLouvain), LouRIM, Louvain-la-Neuve, Belgium
2University Stefan cel Mare of Suceava, MintViz Lab |MANSiD Research Center,Suceava, Romania

3The Information School, DUB Group | University of Washington, Seattle, WA 98195, USA
santiago.villarreal, jean.vanderdonckt@uclouvain.be, radu.vatavu@usm.ro, wobbrock@uw.edu

ABSTRACT
Gesture elicitation studies represent a popular and resourceful
method in HCI to inform the design of intuitive gesture com-
mands, reflective of end-users’ behavior, for controlling all
kinds of interactive devices, applications, and systems. In the
last ten years, an impressive body of work has been published
on this topic, disseminating useful design knowledge regarding
users’ preferences for finger, hand, wrist, arm, head, leg, foot,
and whole-body gestures. In this paper, we deliver a systematic
literature review of this large body of work by summarizing
the characteristics and findings of N=216 gesture elicitation
studies subsuming 5,458 participants, 3,625 referents, and
148,340 elicited gestures. We highlight the descriptive, com-
parative, and generative virtues of our examination to provide
practitioners with an effective method to (i) understand how
new gesture elicitation studies position in the literature; (ii)
compare studies from different authors; and (iii) identify oppor-
tunities for new research. We make our large corpus of papers
accessible online as a Zotero group library at https://www.
zotero.org/groups/2132650/gesture_elicitation_studies.
Author Keywords
Gesture elicitation; Survey; Systematic Literature Review.
CCS Concepts
•Human-centered computing → Gestural input; User in-
terface design; Participatory design; Empirical studies in
interaction design;
INTRODUCTION
Gesture elicitation studies (GES) were introduced in 2005 by
Wobbrock et al. [122] in the form of a “guessability method,”
designed to enable the collection of end users’ preferences
for symbolic input, such as for the letter-like stroke gestures
of the EdgeWrite alphabet [124]. The first application of the
guessability method to hand-gesture input was conducted four
years later by Wobbrock et al. [123] in the context of surface
computing. Since then, GES have become a popular tool to
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Figure 1. Heatmap representations of the number of GES that elicited
gestures performed with specific body parts. Left: gestures involving one
body part only, e.g., face or feet gestures. Right: gestures produced as
the combination of at least two body parts, e.g., hand and head gestures
or wrist and forearm gestures.

inform the gesture user interface (UI) design, reflective of end
users’ behavior and preferences, for a variety of devices [7,
39,40,90,116], applications [42,78,81,105], environments [32,
54,58,66,92], and contexts of use [25,35,65,104,110]. To
date, we were able to identify N=216 such studies published
in peer-reviewed journals and conferences, reporting users’
preferences for finger, hand, wrist, arm, head, leg, foot, and
whole-body gestures for interactive devices, applications, and
systems of all kinds; see Figure 1 for heatmap representations.

Consequently, an impressive amount of knowledge has re-
sulted from the application of the GES method regarding:
(i) the magnitude of users’ agreement over gesture com-
mands they would use for interactive applications, (ii) con-
sensus gesture sets, (iii) design guidelines and recommen-
dations [4,59], (iv) software tools [2,3,61,76,102], and (v)
methodological variations and improvements of the original
GES method [71,109,113–115]. However, while the com-
munity has been busy accumulating design knowledge re-
garding new types of gestures [21,28,110] or high-consensus
gesture commands for new prototype devices [104,116,121]
and new environments [17,24,30,32,54,95], the result was an
ever-growing list of GES scattered through the various dissem-
ination venues of the HCI scientific literature. In this context,
it is high time to systematize all this knowledge in a rigorous
way for the community to be able to identify best practices and
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use them effectively to advance scientific discovery in end-user
gesture elicitation as well as the capacity to transfer results
into actual user interfaces and applications.

In this work, we analyze the body of work on gesture elicita-
tion in the form of a systematic literature review (SLR). The
SLR method [12,49,56] is radically different from conducting
a survey or from free-form discussion of related literature in
that it follows a rigorous, well-defined procedure guaran-
teed to produce reliable, reproducible results. Moreover, we
adopt the generic principles of “designing interactions, not
interfaces” [8], which we distill into three virtues of our SLR:
V1. The descriptive virtue: our SLR provides practitioners

with a method to describe the underlying characteristics
of any GES, including new studies to be published in the
future and, thus, position them precisely in the literature.
For instance, a practitioner may be interested in forming a
clear understanding of the design and results of some new
GES addressing gestures for smart rings [39], for which
clear dimensions of analysis are needed. The correspond-
ing research questions addressed by the descriptive virtue
of our SLR with respect to some GES are: What are the
main meta-data of such GES?, What is the scope of the
study?, and How were the results reported and analyzed?

V2. The comparative virtue: our SLR enables a method to
compare GES from different authors. In our previous
example, the practitioner may come across different GES
for smart rings. By clearly describing those studies along
various dimensions, the practitioner will be able to assess
their overlapping degree, similarities, and key differences.
The corresponding research questions for this virtue are:
In what ways are two or more GES similar?, How can one
identify similar GES studies?, and Which studies relate
to a specific topic?

V3. The generative virtue: our SLR makes it possible to iden-
tify areas of investigation in end-user gesture elicitation
that were not covered or have been little explored by pre-
vious work. For example, after comparing previous work
on gesture elicitation for smart rings, the practitioner
should be able to identify new investigative opportuni-
ties. The corresponding research questions are: Which
areas require new or more GES? and Which areas need
verification, validation, or consolidation?

The contributions of this paper are as follows:
C1. We conduct the first systematic literature review on ges-

ture elicitation, for which we examine, characterize, and
compare N=216 published, peer-reviewed studies. To
this end, we introduce a detailed research method to guide
our systematic literature review. We report findings from
5,458 participants, who were elicited for 3,625 referents,
and proposed 148,340 gestures in response.

C2. We focus on the descriptive, comparative, and generative
virtues of our examination to provide the community with
an effective method to (i) understand how current and
new GES position in the literature; (ii) compare GES pub-
lished by different authors; and (iii) identify opportunities
for unexplored areas in gesture elicitation or areas in need
of knowledge validation.

SURVEYS OF GESTURE ELICITATION STUDIES
A few papers discussed the literature on GES, but are all lim-
ited in their scope. For example, Vuletic et al. [107] conducted
a SLR on hand gestures for user interfaces and mentioned
the GES method, but GES were not the main goal of their
investigation. Software tools for gesture elicitation were also
surveyed [61], but with a focus on features and software qual-
ities from the perspective of engineering interactive comput-
ing systems. The work closest to ours is Vogiatzidakis and
Koutsabasis [118], who discussed GES for mid-air interaction,
and analyzed a corpus of N=47 papers. While an impressive
effort, their scope was limited to mid-air gestures only; in
contrast, our examination addresses the entire GES literature,
representing a scope five times larger (N=216).

CONCEPTS AND TERMINOLOGY
We present an example of a GES study to illustrate the princi-
ples of the method and summarize the main concepts.

Illustrative Example of a Gesture Elicitation Study
Imagine a designer that wishes to implement a gesture UI
for a new smart ring prototype to enable users to control the
lights of a smart home environment with commands such as
turn lights on and off, dim lights, and make lights brighter.
The designer assembles a group of potential users P, perhaps
20 in number, i.e., |P|=20, to participate in a study. Each
participant is presented with the effect of each function, e.g.,
the intensity of the lights is increased for the “make lights
brighter” function, and the participant is asked to propose a
gesture command using the smart ring that would generate the
effect just witnessed. At the end of the study, the designer has
collected a set of 80 gestures = 4 (functions) × 20 (proposals).
The designer now looks at the set of gestures elicited for
each function to understand whether there are any gestures in
agreement. If agreement turns out substantial and the sample
of participants is representative of the population of end-users
targeted by the smart ring application, then the designer can
be confident that the elicited gestures are intuitive, and new
users, not part of the original study, will likely guess, easily
learn, and perhaps prefer the same types of gestures.

Glossary of Concepts and Terminology
We provide below an alphabetically ordered list of definitions
for the concepts and terminology employed in GES.

Agreement: The situation in which the gestures of two or more
participants are evaluated as identical or similar according to a
set of rules, criteria, or similarity function and, thus, equivalent
from the perspective of the target application. Example: The
designer may consider that gesture direction and speed are
more important than the amplitude of the finger movement,
since the smart ring embeds an accelerometer, but not a sensor
for measuring absolute position in space.

Measure of agreement: A numerical measure quantifying the
magnitude of agreement among the gestures elicited from par-
ticipants. Example: From the 20 participants of the study,
three subgroups of sizes 9, 7, and 5 emerge for the “dim
lights” referent, so that all the participants from each sub-
group are in agreement. The agreement score [122] com-
putes (9/20)2+(7/20)2+(5/20)2 = .388, and the agreement
rate [114] returns (9 ·8+7 ·6+5 ·4)/(20 ·19) = .353.
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Agreement score/rate: Various measures of agreement have
been referred to as a “score” [122] or a “rate” [114].

Command: A signal that actuates the execution of a function
in the user interface. Also referred to as a “gesture command,”
where the signal is represented by gesture input. Example:
In response to the “dim lights” referent, a participant may
propose a downwards movement of the finger.

Consensus rate: A measure of agreement [113] that employs
dissimilarity functions and tolerances.

Consensus gesture set: The set of gestures that reached the
largest agreement for the referents examined in the study. Ex-
ample: Say that 11 participants believe that a downwards
movement of the finger is best to effect “dim lights”; 9 par-
ticipants consider than an upwards movement should effect
“make lights brigher”; and 15 participants propose clockwise
and counter-clockwise circle movements to turn the lights on
an off. In that case, the consensus gesture set is composed of
the downwards, upwards, clockwise, and counter-clockwise
gestures of the finger wearing the smart ring.

Dissimilarity function: A numerical function that computes
a real, positive value reflecting how dissimilar two gestures
are [113]. Example: If the designer collects gestures numeri-
cally, e.g., as a set of linear acceleration points, the Euclidean
distance or the Dynamic Time Warping functions [112] could
be used to automate the evaluation of agreement measures.

Elicitation: The process of making participants respond to
referents and propose gestures to effect those referents.

End user: A potential user of the interactive device, applica-
tion, or system for which gestures are designed; a sample of
end users forms the “participants” of the GES.

Function: A feature of the user interface that can be con-
trolled independently using a command; the same as “referent.”
Example: make lights brighter.

Gesture: A movement of a part of or the whole body per-
formed in response to a referent.

Referent: A feature of the user interface that can be controlled
independently using a command; the same as “function.” Ex-
ample: make lights brighter.

Symbol: Any artifact that evokes a referent in the form of
a computer function, e.g., stroke gestures, surface gestures,
mid-air gestures, command keywords, voice commands, icons,
button labels, menu items. Synonym: sign.

Participant: A subject, representative of the population of end
users, that volunteered to participate in the GES.

RESEARCH METHOD
We outline our method for conducting the SLR, which we
organized as a four-phase flow procedure consisting of Identi-
fication, Screening, Eligibility, and Inclusion phases, inspired
by the approach of Liberati et al. [56]. We took specific care to
implement each phase, so that our results could be readily re-
produced. Fig. 2 shows an overview of our method represented
in the form of a PRISMA1 diagram [56].

1Preferred Reporting Items for Systematic reviews and Meta-Analyses.
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Figure 2. The four-phase flow diagram of our SLR examination.

Phase 1: Identification
We searched for papers potentially relevant to our topic of
investigation using the following query:

Q = (“Gesture” AND “Elicitation” AND “Study”)

which we ran on both single-publisher libraries (e.g., IEEE
Xplore) and multi-publisher engines (e.g., Google Scholar).

We selected the following five major Computer Science dig-
ital libraries: (1) ACM DL2; (2) IEEE Xplore3; (3) Elsevier
ScienceDirect4; (4) Elsevier Ei Compendex (also referred to
as Engineering Village5); and (5) SpringerLink.6 We also
used two multi-publisher sources to ensure the completeness
and coherence of the GES references, validate independent
query results, and cover other publishers as well: (6) DBLP
CompleteSearch7 and (7) Google Scholar.8 These two engines
were employed more as a verification mechanism than for
reference identification purposes.

To ensure the stability and constancy of our queries, we down-
loaded all the resources during one week. First, the list of
references was compiled in one day (August 15, 2019), which
we set as the last day for considering GES in our SLR. Individ-
ual papers were then progressively retrieved from the digital
libraries over several subsequent days (until August 21, 2019)
to avoid excessive requests that might forbid our authorized

2https://dlnext.acm.org
3http://ieeexplore.ieee.org/
4http://www.sciencedirect.com/
5https://www.elsevier.com/solutions/engineering-village/
6http://www.springerlinks.com
7http://www.dblp.org/search/
8http://scholar.google.com/
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access to those libraries. The results of each query Q were
retained according to the following rules:

1. The “advanced search” rule. Queries were run using the
most advanced search feature of the digital libraries, and
results were sorted in decreasing order of their relevance.

2. The “minimum number of references” rule. If the query
returned a small number of references (less than 400), all
those references were automatically retained.

3. The “no missing references” rule. If the query returned
more than 400 references, the first 400 were automatically
selected for further screening, and a manual check of the
next 200 references was performed to make sure no relevant
papers were discarded.

Table 1 shows the results of executing query Q for each source
of references. For example, the ACM DL returned a number of
2,859 references in full-text search mode, of which 400 were
retained; from those, 151 duplicates were identified when com-
paring against the results of other queries, and 198 references
were excluded based on further screening criteria (see next),
leaving 51 papers; see the second row of Table 1. Overall, our
queries identified 1,938 references across all seven sources.
Phase 2: Screening
Each paper was evaluated with respect to its relevance to GES
using criteria of form and contents, as follows:

Form. We retained only papers written in English that under-
went a peer-review process, and for which the full text and the
resulting gesture set was available. These included research pa-
pers published in peer-reviewed journals, conferences, sympo-
siums, workshops, and excluded unreviewed references where
the full gesture set was not published or accessible, such as
patent descriptions, standards, extended abstracts, slideshows.
PhD and Master theses were not considered, although they
could in a future version. Contents. We retained only those
papers that (1) explicitly introduced a GES for UI design; or
(2) discussed GES, emphasizing at least one discriminating
feature (e.g., , scale [80], memorability [73], etc.); or (3) ex-
plicitly used a method to examine GES. A number of 1,640
irrelevant references were excluded by our screening, leaving
1,938 - 1,640 = 298 papers.
Phase 3: Eligibility
We considered ineligible and further excluded those papers
that matched any of the following situations: (1) independent
research question: the paper explicitly mentioned a GES,
but did not report its results, or the goal of the GES was
not gesture UI design, e.g., Yin and Davis [127] conducted
a GES to collect data for training a gesture recognizer; (2)
methodology-oriented: the paper addressed methodological
aspects of GES, but did not report an actual study, e.g., Morris
et al. [71] discussed legacy bias for gesture elicitation; or (3)
field mismatch: the paper reported an actual elicitation study,
but for another discipline, e.g., a GES conducted to elicit user-
defined gestures to train a robot. By using these rules, we
further removed 82 papers, leaving a final corpus of N=216
studies for our examination.

Phase 4: Inclusion
This phase consisted in verifying quantitative and qualitative
aspects of our corpus of papers, as follows.
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Figure 3. Number of authors per paper (a), over time (b).

Quantitative analysis. We employed the following tools to
create a collection of papers and generate summary statistics:

1. Zotero,9 a multi-platform bibliography management soft-
ware tool use for managing our corpus publicly avail-
able at https://www.zotero.org/groups/2132650/gesture_

elicitation_studies.
2. PaperMachines,10 a Zotero extension for visualizations.
3. PDF2Text,11 software for automatic extraction of text from

PDF files. The extracted text was submitted to automatic
language processing and analysis.

Qualitative analysis. The list of N=216 references was ex-
ported from Zotero into a spreadsheet, and qualitative classifi-
cations of each GES were manually performed with regards to
various dimensions of analysis, e.g., , number of participants,
measures of agreement, etc.; see next section for details. An
inter-judge agreement procedure was employed for this, as
follows. Two HCI researchers, with 5 and 20 years of experi-
ence, respectively, and who were both authors of this paper,
independently classified each paper based on the set of criteria.
In case of disagreement, a third researcher with 9 years of
experience, who was not an author of this paper, arbitrated a
discussion between the first two researchers until consensus
was reached.

RESULTS: DESCRIPTIVE VIRTUE
We present in this section an overview of the characteristics
of published GES according to various dimensions of analy-
sis, such as the number of participants involved, the types of
gestures addressed, any complementary input modalities, and
more. We seek to understand the audience of GES by looking
where those studies were published and which studies have
been most influential.

Authors, Venues, and Hot Topics in Gesture Elicitation
Figure 3b shows the number of GES conducted between 2009,
the year when the first hand-gesture elicitation paper of Wob-
brock et al. [123] was published, and 2019. The increasing
number of studies (we found a linear regression with R2=.90)
suggests that the peak of GES has not been reached yet. Fig-
ure 3a highlights the number of authors involved in conducting
and reporting GES. While a typical GES paper has three au-
thors (60 studies, representing 27.8%), a number of studies
were conducted by single authors [46,64,111], while others
by up to eight [53,78], nine [4,74], or even ten authors [101],
when multiple classification criteria or domains of expertise
were needed [20,74].
9http://www.zotero.org/

10http://www.papermachines.org/
11http://www.pdf2text.com/
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Source Query Rules Duplicates Excluded Included References

1. ACM DL (metadata) 112 112 2 22 88 [1–4,6,7,10,14,17,18,21,23–26,28,30,32–35,37–39,45–48,52–54,61,64–66,68,70,
73,75,79–81,85,86,89–91,93–98,100,101,103–105,111,113,115,116,121,123,129,
133,138,140,141,144,147,149–153,160,165,166,170,187,188,191,193,195–197,
199–201,203,204,208,209,211,214,217–222,224,227,229,233–235,238,242,249,
261–263,266,274,275,279,280,283,287–289,294,295,298–300,304,306,307,309,
313,318,322,329,341–343]2. ACM DL (full-text) 2,859 400 151 198 51

3. IEEExplore 507 507 0 499 8 [27,78,92,163,184,267,314,328]
4. ScienceDirect >6,000 400 0 394 6 [51,99,145,146,243,320]
5. SpringerLink 1,662 400 0 370 30 [42,44,55,58,74,82,110,125,128,135,154,156,161,171,178,182,205,206,236,239,

252,256,268,273,282,319,333,334,339,340]

6. DBLP 25 25 21 3 1 [119]
7. Google Scholar 405 405 137 236 32 [5,20,59,63,72,84,126,134,143,158,168,176,189,192,210,215,216,226,231,250,

251,257,258,272,284,308,317,326,327,330,336,338]

Total >11,570 2,249 311 1,722 216

Table 1. Number of references returned by running queries on digital libraries and search engines.

Conference proceedings: 171 79%

CHI 38 17.6
ITS 10 4.6
MobileHCI 9 4.2
DIS 8 3.7
AVI 5 2.3
AutomotiveUI 5 2.3
NordiCHI 5 2.3
OzCHI 5 2.3
INTERACT 4 1.8
3 studies per venue: AISC, EICS, HCII, ICMI, IDC,
PerDis, SUI, UbiComp, UIST

9 × 3 = 27 12.5

2 studies per venue: AHA, DAP, EuroITV, HFES, HMI,
HRI, ISS, IUI, TEI, TVX

10 × 2 = 20 9.2

One study per venue: 3DUI, APCHI, ASSETS, CASA,
CCHI, CHIuXID, CNS, DAA, DAD, DC, DIGI, EuroVis,
FDG, GI, HCC, HCIK, ICTD, Interaccion, ISCC, ITIE,
MC, Mindtrek, MM, MMUI, MobiSys, MoMM, MS, MUM,
Perspective, Reco, ROMAN, SA, SAICSIT, SCIS, UIC

35×1 = 35 16.2

Journals: 45 21%

MTA 6 2.8
IJHCS 5 2.3
JAIS 3 1.4
IEEE Access, IJHCI, TOCHI, UAHCI 4 × 2 = 8 1.8
One study per venue: AS, BIT, CHB, CTW, EDAM,
HF, IJMHCI, IMW, Informatics, Information, JCH, JCST,
JIFS, JMUI, JUS, Machines, MTI, Pervasive, PLOS,
Presence, PUC, TiiS, Visual

23 × 1 = 23 10.6

Table 2. Distribution of GES in the literature.

In terms of dissemination venues, Table 2 lists conferences
and journals where GES have been published, with confer-
ences taking a major lead (79%). Of these, CHI (38 papers),
ITS (10), MobileHCI (9), and DIS (8 papers) had the highest
number of GES. Journal articles account for 21% of all pub-
lished GES, but no clear preferences can be identified. The
variety of dissemination venues shows a body of gesture de-
sign knowledge that is scattered through the literature of HCI
and, in some cases, of other disciplines, which is challenging
for practitioners to locate specific information.

Table 3 lists the twelve most influential GES in decreasing
order of their Google Scholar number of citations (from Au-
gust 15, 2019). The hot topics that received most citations
are directly proportional to the importance, the diffusion, or
the novelty of the device studied: tabletops [38,72,73,122,
123], smartphones and tablets [47,90], smart TVs and smart
homes [51,111], augmented reality [81], and shape-changing
interfaces [53] or a drone [17], two emerging fields. The

consideration of other categories of users than able-bodied
adults, along with the analysis of its influence, appeared for
blind participants [47], who analyzed the trade-off between the
users’ preference and the system’s performance. Memorabil-
ity [73] demonstrates the superiority of user-defined gestures
over designer-defined or system-defined gestures with with
respect to preference and recall rate. The body of GES knowl-
edge counts for 5,907 citations with 856 citations per year on
average.

Participants
Figure 4 presents a detailed overview of the number of GES in
relation to the number of participants involved (vertical axis)
and over time (horizontal axis)12.

We found that the average number of participants was M=25
(SD=4), and the most frequent choice was 20 participants,
a sample size that was adopted by 36% of the studies. This
preference is likely explained by the fact that Wobbrock et
al. [123] employed 20 participants in their original gesture
elicitation study. Starting from this value, we highlighted
three regions in Figure 4: (1) the “green” region, where the
number of participants is at least 20 (51%); (2) the “yellow”
region with less than 20 participants, but above 10 (38%); (3)
and the “orange” region, with studies reporting results from
a small number of participants, less than 10 (11%). Note,
however, that a small sample size is justifiable in some cases,
such as when the study examines end-users from populations
that are more challenging to access, such as users with im-
pairments, or populations of users under-represented, such as
small children. Large sample sizes were employed in studies
interested in cultural aspects [74], such as 340 participants to
test culturally-aware touch gestures [65] or 227 participants
involved in framed guessability for multiple devices [14]).

We also analyzed the ratio Male/Female13 and found an av-
erage of 2.10 (SD=2.18, Mdn=1.13). Most of the studies
(52%) involved more male than female participants; a parity
of gender was found in 15% of the studies, and 17% studies
had more female than males. A gender bias is clear from these
figures, probably due to availability or volunteering aspects.

12Years were omitted when GES were absent. Four studies did not report their
sample size and, thus, N=212 for this report.

13For the 183 GES studies that reported this information.
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Authors Study Application Year Cita-
tions

1. Wobbrock et al. [123] User-defined Gestures for Surface Computing interactive tabletops 2009 1070
2. Ruiz et al. [90] User-defined Motion Gestures for Mobile Interaction smartphones 2011 373
3. Kane et al. [47] Usable Gestures for Blind People: Understanding Preference and Performance tablets, smartphones 2011 256
4. Wobbrock et al. [122] Maximizing the Guessability of Symbolic Input hand-stroke gestures 2005 253
5. Morris et al. [72] Understanding Users’ Preferences for Surface Gestures interactive tabletops 2010 228
6. Vatavu [111] User-defined Gestures for Free-hand TV Control smart TVs 2012 169
7. Piumsomboon et al. [81] User-defined Gestures for Augmented Reality Augmented Reality 2013 165
8. Kühnel et al. [51] I’m home: Defining and evaluating a gesture set for smart-home control smart homes 2011 156
9. Lee et al. [53] How Users Manipulate Deformable Displays As Input Devices unconventional displays 2010 144
10. Nacenta et al. [73] Memorability of Pre-designed and User-defined Gesture Sets interactive tabletops 2013 143
11. Cauchard et al. [17] Drone & Me: An Exploration into Natural Human-Drone Interaction human-drone interaction 2015 134

12. Frisch et al. [38] Investigating Multi-touch and Pen Gestures for Diagram Editing on Interactive
Surfaces surface computing 2009 125

Table 3. The twelve most influential GES, authors, and application domains, according to the number of Google Scholar citations.

94 99 02 06 09 10 11 12 13 14 15 16 17 18 19 20
1 1 2 1 1 2 2

1 2 2 1 2 3 1
1 2 3 2 4 2 1 7 4 7

1 1 1 1 3 8 4 4 9 6 9
1 2 1 6 4 2 9 11 10 7

1 3 2 3 2 5 1
1 1 1 2 1 2 4

1 1 1 1 1 1 0
1 2 1 1

2 1
2 1

1 1 1 2
1 2 1 1 1

<5 : 10 (5%)
[5,10[ : 12 (6%)
[10,15[ : 33 (16%)
[15,20[ : 47 (22%)
[20,25[ : 53 (25%)
[25,30[ : 17 (8%)
[30,35[ : 12 (6%)
[35,40[ : 6 (3%)
[40,45[ : 5 (2%)
[45,50[ : 3 (1%)
[50,55[ : 3 (1%)
[55,60[ : 0
[60,100[ : 5 (2%)
>=100 : 6 (3%)

Age group: number (%)

Year of publication

Figure 4. Number of participants by age groups involved over time.

202 GES (93.5%) reported the age of the participants. Mean
age was 27.57 years (SD=14.62, Mdn=23.4). Seven studies
(3%) addressed children, 4 studies (2%) teenagers, and the vast
majority of GES studies focused on adults (93%), of which
4 (2%) addressed older adults. Often, the background or the
level of experience with technology is missing.

Body Parts Addressed by Gesture Elicitation
We found that some GES focused on specific body parts (e.g.,
legs [99]) or combinations of body parts [78], while other
studies examined gestures performed by the whole body [21].
From this perspective, we can identify a range of investigations
that start from a specific body part and progress to the whole
body, which we refer to as the “human gesture continuum.” We
consider this continuum as a structured mechanism, whereby
gestures performed by the human body can be uniquely ref-
erenced. For instance, gestures performed with upper-body
limbs can be decomposed into the various body parts that
were involved in the production of the gesture, such as the
face [89,93,99], head [28,99,120], head and shoulders [110],
eyes [62], nose [87], mouth [27], shoulders [87], torso [99],
and even belly gestures on the abdomen [117]. The arms
are themselves subject to a gesture continuum: fingers [18],
wrist [91], wrist and hand gestures [48], hands [5,37,82,116],
forearm [52,91], arms [57], and skin-based gestures [44]. In
terms of gestures produced by lower-body parts, we identified
foot gestures [1,33,34], legs [98,99], and whole-body ges-
tures [21,23]. To understand the coverage of body parts in the
GES literature, we computed two measures:

1. The Individual Frequency of Body Parts (IFBP), showing
often a part of the body, such as the hand [81] or head [28],
was employed in a GES study.

2. The Combination Frequency of Body Parts (CFBP) of body
parts, reporting how often specific body parts were com-
bined, such as head and hand gestures [20].

The first measure reports on the importance of individual body
parts, while the second on their combinations, including ges-
tures performed at the level of the entire human body.

Figure 1 illustrates individual frequency values in the form
of a heatmap directly on the human body, while the com-
bination frequency is shown as colored outline of various
body parts, e.g., feet are shown in yellow while the out-
line of the human body is shown in dark orange. We
found a number of 380 occurrences of individual body
parts, of which 241 were combined. The most frequent
gestures were distributed as follows: finger (144/380=38%;
39/241=16%), hand (139/380=37%; 28/241=12%), arm
(35/380=9%; 1/241<1%), body (30/380=8%; 30/241=13%),
wrist (8/380=2%; 8/241=3%), voice (7/380=2%; 7/241=3%),
head (5/380=1%; 5/241=2%). Face, feet, shoulders, torso, or
skin represent each 1% or less. However, hand and fingers are
covered by 77/241 = 32% of combinations, followed by arm +
hand + fingers (28/241=12%), and arm + hand (6/241=2%).

Referents
The average number of referents was M=20.10 (Mdn=22.03)
with a wide variance (SD=5.23) indicating that the num-
ber of referents varies from a few (Min=1 [85]) to many
(Max=70 [125]). Referents have been presented to partic-
ipants graphically using images (most of the time), animations,
videos, UI prototypes, either mock-ups or functional. This
finding concurs with a study identifying the most frequent and
efficient representations of referents [67]. Referents are often
decided according to standard sets of categories [116,128]:
basic functions (e.g., TV on/off, Next/previous channel, Vol-
ume Up/down/mute, Open/Hide menu, and Open/Close item),
generic functions (or context-independent: e.g., Select simple
choice, Select multiple choice, Select a date, Specify a num-
ber, an angle), and specific functions (or context-dependent:
e.g., TV Guide, Play/pause). Functions are described as be-
ing either analogue (when they induce a physical effect of
real world, such as move, select, rotate, shrink, enlarge, pan,
zoom/out, previous, next, maximize, and minimize) or ab-
stract (when no physical effect of real world is induced, such
as insert, delete, modify, cut, duplicate, paste, undo, menu
access, and open.
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Gesture Datasets
The average number of elicited gestures across all studies was
M=716 (SD=1438, Mdn=375) with a minimum of 4 ges-
tures [129] and a maximum of 12,240 [96,97]. After grouping
gestures into clusters of identical or similar types, the average
number of reported gestures was M=91 (SD=231, Mdn=24).
Of these, an average of C=21 were selected to form consensus
gestures sets. Often, C is smaller than the number of referents,
since one gesture may be assigned to more than one referent14.

Other Input Modalities
Besides gestures, other modalities have been elicited, either
independently or in combination with gesture input, such as
menu shortcuts [13], function keys [7], voice commands [55,
70], multi-device commands [6], and multimodal input [75]. In
particular, the “Web on the Wall” study of Morris [70] elicited
both gesture and voice commands, and was reproduced with
multimodal commands [75].

Analysis
The most frequently reported measures of agreement have
been: the agreement score A [122] (34%), the agreement rate
AR [114] (51%), the maximum consensus [70] (5%), the con-
sensus rate [70] (3%), the frequency of proposed gestures [89]
(2%), and others (less than 5%). Most studies did not specify
whether the measures were computed manually or automati-
cally from a gesture set (e.g., using tools such as AGaTE [114]
or via spreadsheet calculations [110]).

Other measures have been reported besides agreement, such
as: Goodness-of-Fit, a subjective assessment rating the partici-
pants’ confidence about how well the elicited gesture fit the ref-
erents [51,123]; Memorability, a recall rate of a gesture some
time after it has been elicited [73], Ease-of-Execution, a sub-
jective assessment expressing the participant’s perception of
the ease of producing physically a gesture elicited [123,128];
Ease-of-Conception, a rating of how it is easy to come up with
this gesture elicited for a referent [77]; Enjoyability, same for
the subjective perception of playfulness [28], and validation
through an identification study, which reverses an elicitation
study by showing a new set of participants elicited gestures and
asks them for the referent they think those gestures effect [3].

RESULTS: COMPARATIVE VIRTUE
All the words contained in the metadata of each paper, such as
in their title, abstract, internal and external keywords, and all
the terms contained in their corresponding PDF papers were
extracted11) to feed a database of indexed keywords and tags.
A visualization tool15 exploits this database to produce several
graphics and to browse the corpus along several structural di-
mensions, such as year, venue (e.g., CHI, DIS, ITS), keyword
(e.g., agreement), type of gesture (e.g., hand, motion gestures).

To determine important terms in the corpus, we built a Word
Cloud based on Term Frequency-Inverse Document Frequency

14In the original method [122], if the same gesture is being used
for multiple referents, then a conflict resolution process assigns the
gesture with the most agreement to its referent and the next referent
receives its second-most agreement gesture. Many studies did not
invoke this step, although it was part of the original procedure.

15See supplemental material for these outputs and for more details.

(TF-IDF), the most frequently applied weighting scheme in
recommender systems [9]. Besides common terms found in
this cloud (e.g., gesture, participant, elicitation), other terms
suggest that GES are indeed intended to design gestures for in-
teraction, then to train a gesture recognizer afterwards (though
not much covered), but not to consolidate gestures into a
database. The most frequent terms cover either a device type
(e.g., table, TV) or a gesture class (e.g., mobile, motion, mid-
air gestures), or some limb (e.g., hand, body, finger). However,
they do not denote the labelling or the definition of individual
gestures (e.g., Swipe is the only one standing out) neither do
they refer to a precise context of use. No common definition
of referents stands out.

To better understand how these terms evolve over time, we
computed a chronological tag cloud for every year from the
first GES identified [84] until the last one [63] based on Dun-
ning’s method [29]. In the beginning, GES were mostly fo-
cused an applying image processing to handle gestures, but
they progressively switched to other capture (like raw data,
video, manual recordings). Head and deictic gestures were the
first considered around 2005, then surface gestures from 2009.
From that time, full-body gestures appeared as well as the
first decyphering schemes (e.g., [69,77,81]) to systematically
classify gestures. Motion gestures appeared in 2010, as well
as the first considerations of various categories of user (e.g.,
sighted vs blind users), but these categories remained basic.

Physical aspects related to multi-touch gestures in a smart en-
vironment were significantly considered in 2011 with different
devices, but not really in a real context. The focus has been
primarily put on the evolution of devices (e.g., steering wheel
in 2013, deformable displays in 2014, tangible interaction in
2015, wristwatch in 2018), then on participant categories (e.g.,
different ages in 2016, visually impaired people in 2017).

The most emerging topics in 2019 concern the disagreement
problem, the more profound consideration of different age
groups (not just adults), public and social aspects, also raising
the need to better analyze data sources and to use them in
the rest of the development life cycle. This evolution is also
revealed in a topic modelling based on a Sankey diagram [88]
automatically generated from the GES contents: topics are
sorted by most common, most coherent, and most variable,
and can be presented as a stream, a stacked bar, a line graph,
or a categorical histogram.

Any stream can then be explored to list GES satisfying the
criteria selected and papers can be further explored. In particu-
lar, the flow representing the new gesture sets in new contexts
of use, necessarily promoted by the most recent devices, is
maintained over time. The interest for other topics, like finger-
based gestures, classification schemes, and semantic aspects
is decreasing to its minimum.
TAKEAWAYS: GENERATIVE VIRTUE
If the constraints imposed on the initial GES characterization
are relaxed, then this characterization can be generalized to
raise new ways of conducting and interpreting a GES, some
of which have been partially explored, some others are left to
be investigated. As takeaways, this section suggests several
new lines for conducting a GES.
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Figure 5. Suggestions for imaginary setups not covered in the SLR: with haptic modality (a), within a UI prototyping environment (b:by stroke gesture,
c: by mid-air gesture), for cross-device interaction (d:touch gesture on the source platform followed by, e: mid-air gesture on the target platform.

Eliciting other symbols than gestures, other modalities
Most GES reviewed produce gestures only. Other symbols
could be elicited as well, such as a command with parameters,
menu items along with their mnemonic, shortcut, or function
key, a function performed with one or many modalities (e.g.,
graphical, vocal, tactile, haptic). For example, Fig. 5a relies on
a physical grid with plots to elicit haptic feedback from a ultra-
haptic device. Among the five primary human senses, vision
and audition are covered much more than tactition, gustation,
and olfaction, probably because our human brain filters signals
so that the visual, auditory, and tactile channels respectively
occupy 80%, 10%, and 5% of the total bandwidth, thus leaving
less space for others. Beyond these senses, secondary senses,
such as thermoception (heat), nociception (pain), or equilibri-
oception (balance) could also serve for eliciting new ranges of
symbols. In these cases, the symbol should be captured easily
in a cost-effective way, such as by a device, a video or any
other recording system. Symbols are also ideally captured nu-
merically, that is, they can be compared computationally. For
a monomodal symbol, the modality conditions the recording
system. Gestures and vocal commands are straightforward to
capture, but nocipetion requires thermal devices. For a multi-
modal symbol, a minimal UI, e.g., a prototype, should provide
the participant with the right context of use to foster elicita-
tion. Fig. 5b-c depicts a running GUI prototyping environment
where the participant could elicit different symbols for the
same GUI command: a stroke gesture (b) and/or a mid-air
gesture (c). The participant elicits gestures according to the
CARE properties [22]: one gesture (assignment), alternate
gestures (equivalence), two combined gestures (redundancy)
or two gestures making a single function (complementarity).

Eliciting more than one symbol
Most GES reviewed elicit one gesture per participant for each
referent at a time, some repeat this procedure until a certain
condition is met, such as the participant is happy with the
final gesture, the score exceeds some threshold, a combina-
tion of measures reaches a certain value. GES should benefit
more from methods proposed to increase variations of sym-
bols elicited, such as the “Production principle” [71] where
participants should elicit a certain number of symbols before
they can move onto the next referent. The trial and error may
also inform the elicitation process, namely by computing mea-
sures taking into account different votes with different scores
ranking the alternatives. In this way, the agreement could be
assessed not only on one symbol, but also on all candidates
suggested by participants, not just the best one.

In the original GES, one symbol is finally assigned to each
function. When there is a small number of functions, the
consensus set remains reasonably small, therefore simple and
easy to use. When there is a larger number of functions,
the consensus set may confuse the end user because of too
many symbols to reproduce, thus exceeding people’s cognitive
limits. So, instead of mapping a single gesture or a single
symbol to a single function, multiple symbols could be com-
bined to trigger a function by relying on hierarchical structure
and congruence [16]. For example, Fig. 5d-e depicts a GES
for cross-device gesture interaction in which the participant
elicits a touch gesture on a 3DTouchPad to copy an object
on the source computer (d) and a mid-air gesture to paste
it on the target computer (e), thus eliciting a touch+air ges-
ture [19]. McNeill identifies two paradigms of interaction [69]:
the “function-object” paradigm in which a function is first des-
ignated and then an object on which this function will be
performed is identified, and the “object-function” paradigm
in which an object is first selected and then submitted to a
function that is subsequently specified. Multi-symbol elicita-
tion could therefore support both paradigms by eliciting an
symbol for the function and another for the object, whatever
their ordering is. This approach would be particularly suitable
for gestural interaction with a wide range of devices, like in
rich smart environments, where too many gestures could be
reduced to a smaller subset of gestures designating functions
(on/off, move) and another gesture for the object (TV, radio).

Eliciting for zero to many referents
Most GES reviewed target one referent at a time. Zero to
many gestures could be elicited as well for more than one
referent, especially over time to explore retention, but also to
investigate multimodality. The amount of elicited gestures that
can be remembered over time by a participant is a function
of frequency of usage, along with is relationship with phys-
ical and form factors. It is not because a participant elicits
a gesture that it will be accurately recognized (recording the
gesture raw data is useful to train a future recognizer and to
test its recognition rate [113]), effectively remembered (the
participant may have forgotten the gesture after some period
of non-usage), and efficiently produced (fatigue, confusion,
conflict may occur that prevent the participant to reproduce the
adequate gesture in context, especially in demanding condi-
tions). An empirical study could investigate the factors that in-
fluence the users’ preferences for gestures (e.g., effectiveness,
efficiency, but also naturalness, social acceptance) against the
system’s performance (e.g., how the recognizer will properly
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Figure 6. (In)formal, (Un)structured gesture representations.

work in context). Structured Equation Modelling (SEM) [106]
may be an appropriate research method for approaching this
question as it performs causal modelling between qualitative
and quantitative variables, such as between user’s preference
and system’s performance. A referent materializes a function
depending on its context [15] by providing a scene before and
after carrying out a function, with its description. A referent
presumes not making any reference to how the function could
be executed. A referent provides some guidance, but it can
bias the participant. Therefore, we suggest a function-less
or referent-less method, where participants are proposed to
elicit any symbol without referring to any function or refer-
ent: “Please give me ten gestures that you would like to use
with this new device”. We have to investigate whether any
significant difference exists between a referent-oriented and a
referent-free method [60].

Multiple representations of referents and symbols
Referents used in reviewed GES exploit a wide range of rep-
resentations [67], ranging from verbalizing the name of its
associated function to an almost real application of the func-
tion without showing the symbol. The influence of the referent
representation on the elicitation process should be further in-
vestigated depending on the context of use, such as whether
using alternate representations for the same referent (e.g., pre-
senting a vocal referent, then a graphical equivalent) would
affect the quality of elicitation. In most cases, a graphical
representation is sufficient. Representations that are specific
to a context could be used instead. Gestures elicited in GES
reviewed, apart when they also serve afterwards for recogni-
tion [102], are typically captured in an informal, unstructured
way, e.g., by a video to be further interpreted by an observer.
When the elicited gesture is really captured by the sensor, thus
producing raw data, this representation could be transformed
into an informal, structured representation (Fig. 6), and then
submitted to interpretation to derive a formal and structured
representation. Creating a gesture ontology, e.g., based on
an Extended Backus-Naur Form (EBNF) grammar leading
to a XML-compliant representation [79], would enable ex-
pressing any gesture in a common format for computational
analysis. This representation could automatically generate a
formal, structured representation, such as a 3D animation of a
gesture. The connections among these representations could
be explored via different mechanisms, such as computer vi-
sion, gesture recognition, ontology querying, automatic avatar
generation, image processing, and deep learning of the videos.

Closed vs. Open Elicitation
Most GES reviewed foster an open elicitation: participants pro-
pose whatever symbol they want in an unconstrained manner.
A closed elicitation invites participants to select symbols from
a predefined set, e.g., via a mapping procedure, thus constrain-
ing their choice. Open elicitation keeps the process as natural
and creative as possible, assuming that the elicitation captures
all variables at once. The symbol set is unlimited, sometimes
allowing too many symbols to be elicited, from which little or
no consensus emerges. Closed elicitation tends to increase the
agreement among participants due to their limited choice, but
prevents them from being creative. An open elicitation should
precede a closed one: after participants elicited their initial ges-
tures and after computing the initial agreement, they enter into
a closed elicitation to converge towards a better agreement or
better other measures, thus limiting the size of the consensus
set. This approach is proposed in framed guessability [14].
Reversing elicitation
GES reviewed all share at least a forward elicitation, which
was a condition for inclusion. Identification studies ( [123],
p. 1091) are the reverse of elicitation studies: the symbols
are presented to participants, who are asked what they think
those symbols would do or would cause to happen in the in-
teractive system. Identification studies can serve as validation
for elicited gesture sets, but this approach is rarely applied in
reviewed GES. Ali et al. [3] formalize and discuss this process.
With both elicitation and identification studies, more degrees
of freedom: participants either propose the symbols they want
with respect to a referent or not (e.g., a gesture out-of-the-blue,
a gesture associated to a known function) or vice versa (e.g.,
propose a function and/or a referent for a gesture they already
master). Legacy bias [71] prevents participants from propos-
ing original, creative gestures in some circumstances, even
modified [45], but could foster consistent gestures [50].
Multiple measures for elicited symbols
Although the agreement is the most frequent measure found
in GES reviewed, each symbol could be assessed by one or
many measures defined by a measurement method. A measure
could be qualitative (e.g., user satisfaction) or quantitative
(e.g., complexity of the symbol), objective or subjective. A
qualitative objective measure could could describe what the
gesture is, e.g., based on a textual representation (Fig. 6):
“The participant’s hand moves with five fingers across the ta-
ble.” Any measurement method should be appropriate for
the referent provided. While agreement is mostly computed
by scores [114,123] and rates [115], computing agreement
rigorously is not straightforward and alternate measurements
exist [35,59,109,113]. Recently, agreement has been progres-
sively superseded by disagreement computation [113,126].
Other measures could confirm or disconfirm the preferences
elicited, such as methods for consolidating votes from partici-
pants on symbols: the Condorcet method [83], the de Borda
method [31], and the Dowdall method [36]. Each method
ranks symbols based on votes (e.g., end users’ preferences)
and choose a winning symbol with their own rule: “select the
symbol that beats any other symbol in exhaustive pairwise
comparison” for Condorcet, “select the symbol that on aver-
age stands highest in the preferences” for de Borda. These
methods sort symbols in different orders.
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Other symbol assessment than with agreement
While (dis)agreement represents a key measure to be assessed
among participants in reviewed GES, the overall evaluation of
elicitation output could be assessed by other measures, which
then strives for a more holistic computational model of accept-
ability of elicited symbols, not just based on agreement. For
example, a GES could balance end users’ agreement with the
biomechanical capabilities of the gesture (e.g., hand supination
is more powerful than pronation). This approach reflects the
mobility of some limbs and the tendency to rely on the most
mobile limbs and gestures. Our SLR identified several other
measures beyond agreement which could feed a more general
weighted model. Such a model could express symbols as a
vector of pairs (property, value) and rely on similarity metrics
used in information retrieval and in artificial intelligence to
relate items to each other. Madapena et al. [59] consider an
overall assessment with other variables than merely agreement.
The identification of these variables, their values, and their
weightings remain to be determined in a cost function assess-
ing the elicited symbol as a whole. This cost function, based
on the Structured Equation Modelling, exhibits the capabil-
ity of model-based optimization of gesture experience based
on selected variables, such as agreement but not only (e.g.,
agreement AND (fatigue OR memorability)).

Restarting from the context of use and reproducibility
Some GES are stripped from the context of use and the con-
ditions in which the experiment took place, thus leaving the
correct application of its results uncertain for the designer. To
restore this importance, any GES should explicitly define this
context (e.g., user, device, environment) so that any repetition
for the same context or any variation along any contextual
dimension would facilitate the establishing of relationships
among GES: by repetition (same context), by generalization (a
dimension is more general than a previous one), by restriction
(a dimension is more specific that a previous one), by depen-
dency. Typical contextual variations include: conducting GES
simultaneously for multiple users (e.g., comparing sighted
vs. blind users for the same functions [47], how culture in-
fluence gestures for internationalization [30,100]), multiple
platforms/devices/sensors (e.g., measure the consistency of
gestures elicited by one participant for one referent on many
devices [119], designing consistent gestures across several de-
vices [26]), and in multiple environments (e.g., eliciting finger
gestures while standing vs. running [10]). Non-traditional de-
vices, such as drones [94], intelligent textiles and clothes, knit-
ted capacitive touch interfaces, shape-changing interfaces [68],
particularly foldable, bendable, rollable displays, should be
also investigated. For any very new device, a referent-free elic-
itation could be first conducted, especially when no gesture
taxonomy already exists for this device, for example a squeez-
able interactive cushion. No GES exists for non-classical
environments at home (e.g., a kitchen, a bathroom, a sleep-
ing room) and their furniture (e.g., a table, a chair, a cabinet,
a lamp), at work (e.g., collaborative gestures in a corporate
environment with analysis of spatial zones [86]), at leisure
(e.g., a sport room, a movie theater, outdoor sports). Thanks
to computer vision, gestures can be elicited on any interaction
surface beyond surface computing: floors (for foot-based inter-
action), walls, ceiling, windows [101], doors and their handles,

etc. An explicit definition of the GES context of use is the
cornerstone for reproducible research [41], defined by ACM
via three badges: repeatability (same team, same experimental
setup), replicability (different team with the same experimen-
tal setup), and reproducibility (different team and a different
experimental setup). We found only one GES for replicabil-
ity [103] and one for reproducibility [75], which seems very
little in regard to the empirical validation found for other as-
pects. The same question arises for any modification of the
GES procedure, such as in [45,71]. Software for conducting
a GES distributed in time and space also appears (e.g., [2,61]
for conducting studies, [3] for analyzing the results via the
crowd): participants propose symbols in their usual contexts
of use, but no study exists that investigates the usage and the
impact of such tools on a large scale.

Revisiting the elicitation procedure
Presentation of referents is independent of the experimenter,
who is less likely to ask questions that may affect the par-
ticipant. While examining the referent representation, the
participant is concentrated on coming up with a proposal, and
the experiment produces information that is grounded in the
phenomenology of the subject [43]: “A photograph, a literal
rendering of an element of the subject’s world, calls forth
associations, definitions, or ideas that would otherwise go un-
noticed.” Instead of providing the participant with predefined
referents, participants could produce them and bring them in
the experiment, thus making the experiment more natural to
them. Photo-elicitation [11] encompasses a wide use of graph-
ical material, such as pictures, but how and when that material
is exploited varies among users and even studies: photovoice,
photonarrative, photoessay, photofeedback, and photointer-
view. Photoessay [108] is typically a participatory design
method where participants take their own photographs and
arrange them with a scenario that make sense for them. This
method involves participants more deeply as they are continu-
ally defining their context and expressing to the experimenter
about how they behave in such a context. These methods
empower the end users so that they can tell their stories and
interpret their own user experience, culture or any other aspect
to the experimenter instead of the other way around.

CONCLUSION AND FUTURE WORK
In this paper, we conducted a systematic literature review of
the whole body of knowledge related to GES, resulting into
a corpus of N=216 gesture elicitation studies conducted with
5,458 participants and 3,625 referents, eliciting a grand total of
148,340 individual gestures, from which 10,752 were agreed
upon. We highlighted several results regarding the descriptive,
comparative, and generative virtues to provide researchers and
practitioners with concrete information on how to exploit and
to further investigate this huge body of knowledge. We give
access to our online collection along with its visualization tool
to enable any interested party to perform any other searching,
analysis, or other computations on the same corpus. We also
refer to our web site for accessing the various source and result
documents of this SLR, such as the base of initial documents,
the spreadsheet containing the comparison of the 216 GES,
and the full range of graphics. We are planning to continuously
update this SLR to keep the corpus up-to-date.
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