
TypeAnywhere: A QWERTY-Based Text Entry Solution for
Ubiquitous Computing

Mingrui "Ray" Zhang Shumin Zhai Jacob O. Wobbrock
The Information School Google The Information School
University of Washington Mountain View, CA University of Washington

Seattle, WA zhai@acm.org Seattle, WA
mingrui@uw.edu wobbrock@uw.edu

Figure 1: TypeAnywhere’s core concepts. (a) Users wear lightweight devices on their fngers that detect fnger taps. (b) With
TypeAnywhere, users can type on any surface such as a tabletop or their lap. (c) Users type with their own QWERTY key-to-
fnger mappings, resembling physical keyboard typing.

ABSTRACT
We present a QWERTY-based text entry system, TypeAnywhere,
for use in of-desktop computing environments. Using a wearable
device that can detect fnger taps, users can leverage their touch-
typing skills from physical keyboards to perform text entry on any
surface. TypeAnywhere decodes typing sequences based only on
fnger-tap sequences without relying on tap locations. To achieve
optimal decoding performance, we trained a neural language model
and achieved a 1.6% character error rate (CER) in an ofine evalua-
tion, compared to a 5.3% CER from a traditional n-gram language
model. Our user study showed that participants achieved an aver-
age performance of 70.6 WPM, or 80.4% of their physical keyboard

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3517686

speed, and 1.50% CER after 2.5 hours of practice over fve days on a
table surface. They also achieved 43.9 WPM and 1.37% CER when
typing on their laps. Our results demonstrate the strong potential
of QWERTY typing as a ubiquitous text entry solution.

CCS CONCEPTS
• Human-centered computing → Text input; Gestural input.

KEYWORDS
Text entry, neural networks, ubiquitous computing, wearable, QW-
ERTY.

ACM Reference Format:
Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock. 2022. TypeAny-
where: A QWERTY-Based Text Entry Solution for Ubiquitous Computing.
In CHI Conference on Human Factors in Computing Systems (CHI ’22), April
29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3491102.3517686

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491102.3517686
https://doi.org/10.1145/3491102.3517686

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

1 INTRODUCTION
Computing is now almost ubiquitous [54], from wearables and
Internet-of-Things devices to smartphones and virtual reality head-
sets, computers are woven into nearly every aspect of modern life.
Since the earliest days of interactive computing, a fundamental
method of communication with computers has been text entry. But
as we move further of the desktop, of tablets, of smartphones,
and indeed onto devices of almost every kind, satisfying text entry
solutions remain elusive [69]. There is as-yet no unifed text entry
solution that is efcient, efective, and always available. Existing
text entry solutions either are not mobile enough (e.g., a full-size
hardware keyboard), or require the user to learn new typing skills
(e.g., [26, 33, 48, 64]), or ofer painfully low throughput (e.g., watch-
based methods [5, 17, 55]). While speech-based input is sometimes
an option, it is often not socially acceptable and can be a risk to
privacy [37].

QWERTY-based touch-typing on physical keyboards remains
the most common text input skill of computer users [11], utiliz-
ing multiple hands and fngers and relying on tacit knowledge of
learned key positions. Although the QWERTY layout was not in-
vented for optimal speed [9], the fact that people are so familiar
with the layout has motivated text entry researchers to build upon
QWERTY [2, 19, 53, 60, 61, 65]. We therefore want to leverage the
physical QWERTY keyboard typing experience in our efort to dis-
cover a solution for ubiquitous computing text entry, but without
presuming the availability of mechanical keys. What if we could
type on an imaginary QWERTY keyboard on any surface, just like
we type a physical keyboard?

To explore this question, our work developed TypeAnywhere, a
QWERTY-based text entry solution for everyday use in ubiquitous
computing contexts (Figure 1). TypeAnywhere employs wearable
sensors on two hands that detect fnger-tap actions, a decoder that
converts tap sequences into text, and a corresponding interface
for text editing. TypeAnywhere’s hardware is the commercial Tap
Strap1 product, which uses accelerometers for tap detection. We
feed a detected fnger-tap sequence to a neural decoder modifed
from the BERT model [10], which then displays the output text on
the typing interface. Similar to Type, then Correct [71], we also de-
signed a text correction interaction for TypeAnywhere that avoids
the need for cursor navigation.

An important feature of TypeAnywhere is that it does not rely
on position information to decode the intended letters being typed
by the user. Rather, TypeAnywhere relies only on the index of the
fnger being tapped and the context provided by the text entered
thus far. Because TypeAnywhere only uses the index of the tap-
ping fnger without relying on (x ,y) position information, the user
can perform the tap at any location, so long as they use the cor-
rect fnger. This scheme simplifes the design space, enabling us to
both generalize the decoder easily for diferent fnger-to-key map-
pings, and to achieve high accuracy on text decoding. Unlike other
QWERTY-based text entry research projects [14, 15, 63, 65, 76],
which had to conduct user studies to collect spatial information for
model-building, we were able to train the model without collecting
data from user studies. Instead, we curated the training data by
converting each letter in a phrase set to its corresponding fnger

1https://www.tapwithus.com/

ID. In this way, we were able to train the model on a large text
corpus containing over 3.6 million samples [75] and adapt diferent
fnger-to-key mappings by altering the fnger IDs in the training set.
We performed computational evaluations on the neural decoder,
achieving a 1.6% character error rate (CER) on the Cornell Movie-
Dialogue Corpus [8], compared to a 5.3% CER using a conventional
n-gram language model.

Without the tactile feedback provided by mechanical keys, whether
users can efectively take advantage of TypeAnywhere’s neural de-
coding power required us to conduct an empirical evaluation. So to
evaluate TypeAnywhere, we performed a longitudinal user study
with fve participants over fve days. In our study, participants used
TypeAnywhere on a table surface for a half-hour each day, achiev-
ing an average of 70.6 WPM and 1.50% CER. The best performer
achieved 91.4 WPM and 3.15% CER after fve days of use (or 2.5
total hours). To test the convenience of TypeAnywhere, partici-
pants also performed typing on their laps, reaching 43.9 WPM and
1.37% CER. Our results demonstrate that users can quickly learn Ty-
peAnywhere with minimal practice and achieve high performance
after practicing for a total of 2.5 hours. As a result, we think Ty-
peAnywhere has potential as a text entry solution for ubiquitous
computing environments. To support TypeAnywhere’s adoption,
we provide an open-source implementation including our neural
language model.2

2 RELATED WORK
There have been many projects aiming to provide alternative text
entry solutions beyond the traditional desktop [67]. In this section,
we frst review existing text entry interactions with wearable de-
vices. We then ofer a deeper look at QWERTY-style interactions
that mimic the physical keyboard typing experience. Finally, we
provide a brief review of recent advances in neural decoders and
language models.

2.1 Text Entry with Wearable Devices
Text entry research for wearable devices has gained a lot of atten-
tion because of the potential for always available input. One text
entry design for wearables involves typing on an external device.
For example, Twiddler [33] used a one-handed chording keyboard,
where the user gripped the device and pressed multiple keys si-
multaneously to enter a character. The reported average speed was
26 WPM after 400 minutes (6.67 hours) of practice. Yu et al. [66]
demonstrated one-dimensional gestures for text entry on smart
glasses. Smartwatch text entry also falls into the wearables category
[19, 24, 29, 39, 63, 64], where the user performs text entry through
the interface of the watch device. For example, COMPASS [64] uti-
lized a rotary dial on the watch for character selection, reaching
12.5 WPM with a dynamically positioned cursor. WatchWriter [19]
implemented both tap- and swipe-based [26] text entry on a watch,
achieving 24 WPM with 3.7% character error rate (CER). Veloci-
tap [51] studied committing one word, multiple words, and one
sentence at a time for smartwatch input.

Another category of text entry interactions for wearables is
freehand typing with external sensors. For example, TipText [61]
(average speed 13.3 WPM) and BiTipText [60] mapped the QWERTY

2https://github.com/DrustZ/TenFingerTyping

https://github.com/DrustZ/TenFingerTyping
https://1https://www.tapwithus.com

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

layout onto a user’s index fnger and enabled “subtle” text entry
with thumb-to-index taps sensed by capacitive overlays. BiTipText
reached an average speed of 23.4 WPM. QwertyRing [21] was a
ring that detected taps of the index fnger and reached 21 WPM.
Finger-T9 [58] (average speed 5.42 WPM) mapped the layout of
a 9-key number pad to a user’s fnger segments for the thumb to
tap. WrisText [17] detected wrist motions by proximity sensors
and enabled joystick-like whirling input for text entry, reaching
an average of 15.2 WPM. PinchType [12] (average speed 12.54
WPM) grouped letters that would be typed by the same fnger on
a QWERTY keyboard, and detected fnger pinches for QWERTY-
style input. SCURRY [25] was a glove-like device that detected
fnger taps with gyroscopes and accelerometers, and users entered
text by pointing and clicking. ARKB [28] projected a see-through
augmented reality keyboard using a head-mounted display, and
tracked fnger movements through cameras. TelemetRing [49] was
a wireless ring-shaped keyboard that detected fnger taps, similar to
the fnger-worn devices used in this project. However, TelemetRing
used a chording system for text entry and did not report users’
performance (as neither did SCURRY and ARKB).

In sum, the search for efective text entry methods with wearable
devices is both longstanding and ongoing. Challenges to fnding
satisfactory methods include learning new skills [17, 33, 66] and
slow performance (i.e., less than 20 WPM). One promising direc-
tion for overcoming these challenges is to leverage users’ existing
QWERTY keyboard typing skills, as we do in this work.

2.2 QWERTY Touch Typing
Ten-fnger touch-typing on a QWERTY layout has been studied
extensively since at least the 1970s [20, 43–45]. To understand how
people perform touch typing with diferent fnger-to-key mappings,
Feit et al. [13] observed 30 participants typing on a physical key-
board. They found that people who did not type with the standard
fnger-to-key mapping (Figure 2)3 could also reach high levels of
performance, over 70 WPM. Through clustering they identifed six
mapping strategies for the right hand and four strategies for the
left. In a follow-up study [11], they found that rollover key-pressing
was a key factor for fast typing, and faster typists often used more
fngers to type. In other work, Findlater et al. [15] performed em-
pirical studies of ten-fnger typing on touch screens and found that
the typing speed (58.5 WPM) was 31% slower than the physical
keyboard without any feedback.

There are several projects also trying to enable QWERTY-style
10-fnger typing without using a keyboard. The most similar con-
cept to TypeAnywhere is from Goldstein et al. [16], where they
proposed a QWERTY-style typing interaction using a pair of gloves.
However, their evaluation was only conducted on a mock-up with-
out a functioning prototype. In our work, we realized the TypeAny-
where concept in a fully working system, including with personal-
ization, editing interactions, and advanced language models. The
Canesta prototype [42] projected a keyboard on a table to enable
QWERTY-style typing. TOAST [46] was an eyes-free keyboard that
enabled the user to type on large touch screens without a visible
keyboard. With its Markov-Bayesian algorithm for spatial decoding,

3The standard fnger-to-key mapping can be found at https://agilefngers.com/articles/
touch-typing-fnger-placement

Figure 2: The standard fnger-to-key mapping of the letters
on a QWERTY keyboard. The mapping of the thumbs to the
spacebar is not shown.

participants reached an average speed of 44.6 WPM. However, this
technique could only be applied on devices with large touch screens.
Relatedly, Findlater et al. [14] showed how machine learning could
be used to design touch screen keyboards on interactive table-
tops that adapt at runtime to evolving fnger positions. ATK [65]
provided for mid-air typing using computer vision hand-tracking,
reaching an average speed of 29.2 WPM. However, mid-air typing
lacks tactile feedback and can easily cause fatigue. Richardson et al.
[41] implemented a vision-based text entry system relevant to this
project, where hand motion captured by cameras was fed into a
neural network decoder that then output the decoded text corrected
by another neural language model. Although they did not perform
a user study to evaluate their system, the ofine CER was reported
to be 2.22%. While promising, such computer vision-based systems
still require fxed-position cameras overlooking the hands wearing
arrays of markers, making such systems impractical for ubiquitous
computing.

Another common barrier for of-desktop QWERTY-style 10-
fnger typing systems is the training usually required. All of the
projects mentioned above need to collect typing data from users
to train spatial models [41]. This need for training data can hinder
the generalizability of the approaches, as people type with difer-
ent fnger motion characteristics and even diferent fnger-to-key
mappings [13]. In contrast, TypeAnywhere only utilizes the fnger-
tap sequence for decoding, eliminating the need for motion data
collection for model training. The fexibility of TypeAnywhere’s
minimal training process makes it easy to generalize through dif-
ferent fnger-to-key mapping strategies.

2.3 Statistical Language Decoders
Traditional statistical decoding methods for soft keyboards were
proposed by Goodman et al. [18], who applied a bivariate Gauss-
ian distribution to model the touch positions of each key and a
character n-gram language model for auto-correction. Subsequent
work generally has focused on improving the spatial model, such
as adding constraints on the key regions [22]. The main language
modeling method for text entry remains n-gram models [4, 19, 53],
although some projects have explored phrase-level decoding where
the model decodes the input not only by its preceding text, but also
by the text that follows [53, 73].

Recent advances in Natural Language Processing (NLP) have
demonstrated the power of neural networks. Deep neural network

https://agilefingers.com/articles/touch-typing-finger-placement
https://agilefingers.com/articles/touch-typing-finger-placement

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

language models (NNLM) trained on large amounts of text have
achieved impressively low perplexity [3, 10, 50], and state-of-the-
art performance on many language understanding tasks. Unlike
traditional n-gram models, neural networks can take more textual
context into account during the modeling process. In this work, we
applied the BERT [10] language model for input sequence decoding.
The model was pre-trained on 3.3 billion words and fne-tuned for
the fnger-to-text task with extra training data, which is explained
in Section 4.3, below.

3 ENABLING THE TYPEANYWHERE
EXPERIENCE

TypeAnywhere aims to provide users with a QWERTY-style typing
experience similar to typing on a physical QWERTY keyboard,
except that typing occurs on any surface without the beneft of
mechanical keys. The TypeAnywhere system contains the following
building blocks: the hardware that detects fnger taps, the neural
language model that decodes the input sequence into text, and the
interface that allows text composition and editing. In this section,
we describe TypeAnywhere’s interaction and user interface. In
Section 4, we describe TypeAnywhere’s neural language decoder.

3.1 Typing Interaction
TypeAnywhere’s hardware interface comprises two wearable de-
vices called Tap Straps,4 which each have fve connected rings that
can be worn on each fnger (Figure 3). Each ring contains a three-
axis accelerometer that detects when a fnger performs a tap action,
the detection of which it is reported to have over 98% accuracy.5

The intended purpose of Tap Strap is for one-handed text entry with
a proprietary chording system.6 https://www.tapwithus.com/wp-
content/uploads/2018/09/Tap-Alphabet-Glossary-2.pdf As prior
chording-based text entry systems have shown (e.g., [33]), chords
can take considerable time to learn and master. The reported best
performance using the default Tap Strap chording system is 62
WPM, which was achieved after three weeks’ practice.7 To the
best of our knowledge, Tap Strap is the most afordable and ac-
curate commodity device for fnger-tap detection on the market.
Because of Tap Strap’s small form factor, users can wear the device
comfortably. However, due to the requirement that users learn a
proprietary one-handed chording scheme, Tap Strap’s widespread
adoption seems extremely unlikely absent eforts like ours to enable
familiar QWERTY-style typing.

TypeAnywhere’s typing interaction resembles the same typing
interaction as one would use on a physical QWERTY keyboard.
Specifcally, users perform fnger taps based on their own personal
fnger-to-key mappings, and the most likely character is produced.
Users can perform fnger taps on hard surfaces such as tabletops or
walls, or on soft surfaces such as their stomachs or laps. The tap
of the two thumbs is mapped to the spacebar, as most people use a
thumb for spacebar pressing [15]. Essential text editing functions
are also mapped to certain multi-fnger chords, as shown in Figure 4.

4https://www.tapwithus.com/
5https://www.tapwithus.com/how-to-the-tap-strap-works/
6The default chording scheme of TapStrap is provided at
7See https://www.tapwithus.com/wpm-contest. Note that this is advertised as a com-
mercial contest and the reported performance is therefore the best achieved from
among all customers.

The backspace gesture was the same as the default Tap Strap gesture,
and we assigned symmetrical gestures to both hands to improve
learnability [1]. We also assigned gestures only to neighboring
fngers (for example, index + middle + ring) to make them easy to
perform. We did not assign backspace to any specifc fnger because
(1) each fnger was already assigned with a set of letters, and (2)
people were inconsistent with which fnger they used to press
backspace [13]. Assigning a backspace fnger would add too much
ambiguity to the typing process, as there was no clear indication of
whether the user wanted to type a letter or backspace text.

Figure 3: The hardware used in TypeAnywhere. (a) The Tap
Strap device. (b) The user wearing two Tap Strap devices.

Figure 4: The tap-chords for text editing in TypeAnywhere.
For the rightmost gesture, which performs candidate selec-
tion from a word list, the user can either tap the thumb and
index fnger, or perform a pinch gesture.

3.2 Typing Interface
To evaluate TypeAnywhere’s interaction, we designed a web app
implemented in JavaScript as an evaluative user interface (Figure
5). There are four components of this interface: (1) the test area,
which displays the target string for evaluation, used in lab studies
only; (2) the commit area, which displays the committed text cor-
responding to the text view in apps; (3) the compose area, which
contains the text that is being decoded; and (4) the candidate list,
which displays the word candidates of the current typing sequence.
Alternatively, the compose area could be integrated into the com-
mit area by diferentiating its content with underlines or diferent
colors [73].

When the user starts typing, the fnger-tap sequence is decoded
in real-time and the output text is displayed in the compose area.
Text in the compose area might change as the user taps more letters
because the decoder can utilize the full tapping sequence as context
to improve decoding quality. For example, if the user taps the right
index fnger (YHNUJM) and then the left middle fnger (EDC) under
the standard fnger-to-key mapping, the decoded text will be “me”.

https://www.tapwithus.com/wp-content/uploads/2018/09/Tap-Alphabet-Glossary-2.pdf
https://www.tapwithus.com/wp-content/uploads/2018/09/Tap-Alphabet-Glossary-2.pdf
https://www.tapwithus.com/wpm-contest
https://5https://www.tapwithus.com/how-to-the-tap-strap-works
https://4https://www.tapwithus.com

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 5: The TypeAnywhere web app. There are four main
components in the interface. Note that the test area, redo
button, and next button are for user study purposes only,
and would not be present when just using TypeAnywhere.

If the user continues typing with a thumb, right middle fnger, and
then left ring fnger, the decoded text becomes “he is”.

When the user is ready to “commit” a string of decoded text, she
can tap the space key twice to output the text from the compose
area to the commit area. This type of design is commonly seen in
typing interfaces for Asian languages, such as Chinese and Japanese,
which usually contain a temporary textbox holding intermediate
input before it is committed. The user can also delete the text in
the commit area if the compose area is empty. An example of the
user’s typing fow is depicted in Figure 6.

The user can also select a candidate for the currently typed word
from a candidate selection list as shown in Figure 6d. If the user
performs the selection gesture shown at the far right of Figure 4,
the candidate selection function will be triggered and the candidate
word will be highlighted in orange. The user can use the selection
gesture to navigate through the candidates and then tap space to se-
lect the candidate, which copies it into the compose area (Figure 6e);
or, the user can tap the backspace chord to cancel the candidate se-
lection. (Candidate word lists raise the specter of out-of-vocabulary
words. We describe how the user can enter such words in Section
3.4, below.)

3.3 Text Editing with “Type, then Correct”
As the user fnger-taps with TypeAnywhere, the text in the compose
area often changes, as the decoder continually processes entered
fnger-taps in light of surrounding textual context. At times, the
text in the compose area will not be what the user intends, but by
providing more textual context, the resolved text might conform
to the user’s desires. Therefore, the user is encouraged to continue
typing in TypeAnywhere, even when the currently decoded text
is not (yet) what the user wants. However, in cases where further
context does not resolve the decoded text to match the user’s in-
tentions, the user can edit the text; however, at this point, they
will be well ahead of the error position. This situation can result in
user uncertainty and editing inefciencies that are not desirable in
TypeAnywhere.

To address this issue—that is, letting users continue to type,
which provides the decoder with valuable additional context, but

Figure 6: The typing fow of TypeAnywhere. The user is typ-
ing the sentence “he is begging” with the standard fnger-
to-key mapping. (a) After typing the frst word, the decoder
outputs “me” as the most probable text. (b) With more in-
put context, the decoder is able to decode the tap sequence
to “he is”. (c) The user frst double-taps space to commit “he
is” to the commit area, then types the last word decoded as
“getting”. (d) The user then performs a selection gesture to
trigger candidate selection and navigate to “begging”. (e) The
word “begging” is now entered in the compose area after the
user presses space.

also avoids costly error correction situations—we employ the text
correction scheme from Type, then Correct [7, 71], which lets the
user type a correction at the end of their current text stream and
then apply it directly and retroactively to a previous error without

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

Figure 7: The correction interaction fow: (a) After committing the text containing the error word “came”, the user types the
correction “come” in the compose area. (b) The user then triggers the correction function. Possible errors are highlighted: both
“came” and “home” have one fnger-sequence edit distance with “come”, hence the last word, “home”, is highlighted in orange.
(c) The user then employs the selection gesture to navigate between the candidates. (d) After the user presses the (virtual)
spacebar, “came” is corrected to “come”.

any cursor navigation. In the context of TypeAnywhere, if there are
errors perhaps multiple words behind the current typing position,
the user can commit all current compose area text to the commit area,
and then type the corresponding correction in the compose area. The
user can then tap the chord to trigger the correction function (Figure
4, left). The function compares the similarity of the correction word
and the words in the commit area based on their fnger-sequence
edit distances, as described in the next paragraph. All words that are
less than or equal to two edit-distance will be highlighted in yellow,
with the shortest distance word being highlighted in orange. The
user can then navigate through the possible errors and tap their
virtual spacebar to commit the correction. To cancel correction
mode, the user simply taps their virtual backspace. The whole
correction interaction fow is demonstrated in Figure 7.

Edit distance refers to the minimum number of character edit
operations (substitute, insert, delete) to change one string into an-
other [30]. In TypeAnywhere, because the text is decoded based on
fnger-tap sequences, we compare the fnger-sequence edit distance
to implement our correction function. For example, in the standard
fnger-to-key mapping, the word “far” (left index - left pinky - left
index) has the same fnger sequence as the word “rat”, and has
a fnger-sequence edit distance of one with the word “get” (left
index - left middle - left index). Note that in our fnger-sequence
edit distance calculation, along with substitutions, insertions, and
deletions, we also added transpositions, thereby handling cases
when fnger-taps are interchanged, such as typing the sequence
“information” as “infromation”).

3.4 Out of Vocabulary Words
As the provided word candidates are all in-dictionary words, typing
out-of-vocabulary (OOV) words takes a little more efort. With
TypeAnywhere, to enter an OOV word, the user needs to type the
word character by character, and select the correct character in the
candidate list each time. For example, to type the string “zmr” with
the standard fnger-to-key mapping, the user presses his left pinky
frst and selects “z”; then presses his right index and selects “m”;
and fnally presses the left index and selects “r”.

4 THE NEURAL LANGUAGE DECODER
We now present the neural language decoder that converts a fnger-
tap sequence to text output in TypeAnywhere. Below, we explain
the data processing and model training procedures, and report the
model evaluation results.

4.1 Converting Text into Finger Sequences
Preparing the training data for the TypeAnywhere model is straight-
forward. As it only requires fnger-tap sequences, we can reverse
the decoding step to generate the training data: take the fnger ID
sequences corresponding to the character sequences in a corpus
as the network input data, and the character sequence itself as the
label. We assigned a unique ID to each fnger: 2 – 5 for pinky to
index fnger of the left hand, and 6 – 9 for index to pinky fnger of
the right, and 1 for the two thumbs. For example, if we are creating
the training data for the standard fnger-to-key mapping, the phrase
“sunny day” would be converted to “366661426”. Because the model
does not need fnger motion information, generalizing the data to
other fnger-to-key mappings is easy, as we just need to change
the fnger ID for certain characters. For people who type the same
letter with multiple fngers (such as typing the letter “u” with their
index or middle fngers [13]), we can generate multiple training
samples for each combination of the mapping. (Usually, people type
one key with no more than two fngers [13], meaning the number
of combinations will not be too large.)

4.2 BERT-Based Neural Language Model
The neural language model used for decoding fnger-tap sequences
in TypeAnywhere is based on the BERT model [10]. To fne-tune
the model for our task, we used the fnger-tap sequence as the input
to make the BERT model output the corresponding characters 8.
Specifcally, we added a linear classifcation layer on top of the
BERT base model to generate the character for each input code. We

8We needed to fnetune the BERT model for the fnger mapping purpose as the language
model itself could not be directly used for the mapping purpose, otherwise the system
would query the model for every fnger tap, which was very computational expensive

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 8: Input and output of the BERT decoder model.

decided to decode on the character level to provide real-time feed-
back for each tap action, even if the user has not yet fnished typing
the entire word. Another important motivation for decoding on
the character level is that such a model can be used to type out-of-
vocabulary (OOV) words not in the training data (see Section 3.4).
Our implementation is based on the open-sourced transformers
library [57]. Specifcally, we used the bert-base-uncased pre-trained
model. The model employed the multi-layer bidirectional trans-
former structure [50] with 12 transformer blocks, 769 hidden layers
and 12 self-attention heads. It was pre-trained with a masked lan-
guage model (i.e., predicting a hidden word with its surrounding
context) and next-sentence prediction tasks on 3.3 billion words
[10]. BERT was reported to achieve state-of-the-art performance
on many language understanding tasks, and became the basis for
many subsequent language models [27, 31, 62].

The fow of the model input and output is illustrated in Figure
8. Given a fnger-tap sequence, our model will classify each tap in
the sequence as a corresponding character. Because the committed
text also provides useful contextual information for the decoder, we
also include the text in the commit area (we call this pre-text) in the
typing sequence. For example, if the user taps "right middle – left
ring – thumb – left index – right ring – right ring – left middle" after
committing the text “the weather”, then the input to the model will
be:

[CLS] the weather [SEP] 7 3 1 5 8 8 4 [SEP]

Here "[CLS]" and "[SEP]" are special tokens representing the
start of the input and the separator of diferent parts of the input.
The pre-text is then tokenized by the model at a sub-word level [59]
while the fnger IDs are all special tokens, and the decoded text will
be “the weather is good”. In the TypeAnywhere interface (Figure
5), the text in the commit area is treated as the pre-text.

4.3 Data Collection
We used the Yelp and Amazon review dataset generated by Zhang et
al. [75] containing over 3.6 million reviews. For each review in the
dataset, we cropped consecutive sequences containing 5 – 25 words,
and removed all numbers and special characters so that sequences
only contained the 26 Roman letters and the space character. For
each sequence with n words, we then randomly selected m words
as the pre-text (0 ≤ m < n), with the rest of the text converted to a

fnger sequence. For the test dataset, we used the Cornell Movie-
Dialogs Corpus [8], which contained conversational exchanges
from movie scripts. The purpose was to test the performance in
a conversational setting so that the evaluation could refect real
usage scenarios for ubiquitous text entry. We randomly selected
10,000 phrases containing fewer than 25 words from the corpus. In
all, we gained 44 million training samples and 10,000 test samples.

4.4 Training Process
We fne-tuned the BERT-based model with a linear classifcation
layer (similar to a token classifcation task in NLP [10]). We cal-
culated the cross-entropy loss of the output characters versus the
ground truth text from the fnger sequence. We used the AdamW
optimizer [32] with a learning rate of 3e-5, and trained the model
for one epoch. We applied weight clipping of [−1.0, +1.0], and the
batch size was set to 12 due to hardware limitations.

4.5 Model Evaluation
The best performance of the model on the test dataset (Cornell
Movie-Dialogs Corpus[8]) reached 1.6% character error rate (CER)
for an average sentence. To compare its performance with tradi-
tional language models, we also trained a 5-gram word-level lan-
guage model using the KenLM library [23] on the same training
dataset, and we excluded the punctuation and special characters
other than Roman letters and space. We also applied Kneser-Ney
smoothing [38]. The fnal binary model was 12 GB, which was large
compared to the 440 MB BERT model. For evaluation purposes, we
pruned the KenLM model by fltering out the words that were not
in the test dataset (the movie corpus) to speed computation. The
pruned version contains 27,000 1-grams, 0.8 million 2-grams, 2.7
million 3-grams, 4.2 million 4-grams and 4.6 million 5-grams.

To test the 5-gram model, for each word in a test phrase, we
frst found all possible candidate words based on the word’s fnger
sequence. Candidate words were searched from the Open American
National Corpus (OANC) word frequency dictionary [36], which
contained over 22 million words of written American English. We
then selected the best word candidate based on probabilities from
the language model using the back-of strategy. Both neural and
5-gram decoders were given whole fnger-tap sequences, and they
both had access to all contextual information. The 5-gram model

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

Figure 9: Finger-tap sequence beam search example. The original sequence is “6489” with the last fnger being ‘9’. Seventeen
extra combinations are then added to the sequence list, and each possible sequence is processed by the decoder. The decoder
outputs the probability for each sequence, and beam search then selects the top-K (here, K=3) sequences. If the user taps a
new fnger, for example, fnger ‘4’, the new tap sequences would be “64894”, “64884”, and “6484”. Each of the three sequences
then go through the procedure again; this time, there will be 3 × 18 = 54 total possible sequences, and beam search will select
the top-K sequences from among all candidates.

achieved 5.3% CER. The results showed that the neural language
model was both lighter and more accurate than a traditional n-gram
model.

4.6 Candidate Generation and Auto-Correction
with Beam Search

Of course, TypeAnywhere’s neural decoder is not 100% accurate,
and users may also type an incorrect fnger-tap sequence for their in-
tended word. We devised and implemented a few simple algorithms
to complete TypeAnyWhere in order to address these challenges.
To provide alternative word candidates for a fnger-tap sequence,
we searched the sequence in the OANC word frequency dictionary
[36] (e.g., search the words whose character sequence is the same as
the fnger sequence), and collected the fve most frequent of these
words as alternate candidates. We did not use the BERT model
for candidates, as it was designed to output character-level results,
which did not work well for generating alternate word candidates.

We also needed to deal with situations in which the user typed
the word incorrectly, such as missing a tap or interchanging the tap
sequence. We developed an auto-correction feature based on beam
search for the neural language model. Each time the user performed
a tap, we searched through all possible hypotheses for diferent
error types [56]. Besides decoding the detected fnger-tap sequence,
we also substituted the last fnger ID with other fnger IDs to detect
substitution errors, omitted the last fnger ID to detect insertion
errors, interchanged the last two fnger IDs for transposition errors,
and appended one extra fnger ID for omission errors. In total, 17
extra sequences were decoded alongside the original sequence.

As an example (Figure 9), consider when the user taps the fnger
sequence “6489”. (Recall that fnger IDs ranged from ‘2’ to ‘9’ in
the model, and we here excluded the thumb IDs of ‘1’ for spacebar

in beam search.) The possible combinations then include seven
sequence substitution errors (“648x” where ‘x’ is ‘2’ to ‘8’), one
sequence for insertion errors (“648”), eight sequences for omis-
sion errors (“6489x” where ‘x’ is ‘2’ to ‘9’), and one sequence for
transposition errors (“6498”).

If we maintain all possible sequences each time a new fnger-tap
is detected, the number of the sequences will explode as tapping
continues. We therefore applied beam search to reduce the number
of sequences, similar to the surface touch-decoding algorithm [41],
where we only kept the top K sequences with the highest probabili-
ties for each step. When a new tap was detected, we generated new
sequences for error corrections based on the K sequences. In this
project, K was set to 3, meaning for each tap, TypeAnywhere takes
the top-3 sequences thus far. In this way, the model was able to de-
tect most user errors caused by fnger mis-taps. The best candidate
of the current tap sequence was then displayed in the compose area
of the interface in Figure 5.

5 EVALUATION OF TYPEANYWHERE
To evaluate the performance of TypeAnywhere in realistic settings,
we conducted a longitudinal user study. Although TypeAnywhere
utilized a QWERTY style of typing, we anticipated that it still would
take time for users to acclimate to the fnger-worn devices and the
feeling of typing without a keyboard.

5.1 Participants
We recruited 10 participants (aged 23 – 28, all men9) for the study
via word-of-mouth and online forums. The study was longitudinal
over fve days, resulting in 50 participant sessions and the ability

9We recognize the limitation of only having men in this study. We had all men because
of the size of Tap strap, which ft men’s hands better than women’s.

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

to observe learning. We required that participants were able to
perform desktop QWERTY typing without looking at the keyboard,
and that they were consistent with their own personal fnger-to-key
mappings, i.e., they always used the same fnger to type a given
letter. Due to the COVID-19 pandemic, it was extremely difcult to
recruit participants; we therefore included one participant (“P1”)
who was not consistent with his fnger-to-key mappings, but was
able to commit his time to the study. P1 could type on a physical
keyboard without looking, but he used multiple fngers to press
certain letters, such as “uio”, for diferent words. Therefore, we can
regard P1 as a novice learner for TypeAnywhere, as he needed to
learn fxed fnger-to-key mappings for the study.

Among the other nine participants, six typed with standard
QWERTY fnger-to-key mappings, while the other three typed the
letter “b” with the right index fnger and “c” with the left index
fnger. We therefore trained two decoding models for the study; the
models’ performance was similar for the ofine data.

Our study was approved by our university’s Institutional Review
Board, and all participants provided consent to participate.

5.2 Apparatus
The typing device used was the Tap Strap mentioned in Section 3.1.
We built a server written in Python to handle the HTTP communi-
cation between the web interface, the hardware, and the decoder.
The model ran on a machine with a GTX 1080 graphics card. The
testing software was from the TextTest++ open-source text entry
evaluation project [72, 74].

5.3 Procedure
The study was a fve-day longitudinal study. After a participant
signed an online consent form, the experimenter sent the hardware
apparatus to the participant’s home, and instructed the partici-
pant on the use of the device and the web interface via Zoom
videoconferencing.10 Specifcally, the typing interaction, the text
editing gestures, and the correction function were demonstrated.
Participants then started to practice typing with the device in the
TextTest++ web application. The phrase sets for both practicing
and testing were from the MacKenzie and Soukoref phrase set [34]
and the Enron email phrase set [52]. We randomized and divided
the phrases so that they were diferent for practicing and testing in
any given session, and also diferent from one session to the next.

Separate sessions occurred over fve consecutive days. In each
session, participants would practice typing with TypeAnywhere
for 30 minutes on their desk surfaces, and then start testing. During
practice, the web interface also displayed a QWERTY layout for the
participants to refer to. For testing, 20 diferent phrases were used
each day. Participants were instructed to type as fast and accurately
as possible. The “enter” gesture was used to submit a completed
phrase. During the evaluation, the participants were told that they
could rest before typing each phrase, but needed to fnish without
stopping a phrase once they began typing it. We logged participants’
typing using the transcription sequence model [72], which recorded
all the intermediate text during the typing procedure to enable a

10Due to the COVID-19 pandemic, we conducted the study remotely via Zoom. Our
hardware apparatus was shipped to each participant and sanitized between each use.

thorough analysis of the input. After the evaluation, participants
sent their log fle to the experimenter.

On Day 1, the frst day, participants performed the same typ-
ing test on their desktop keyboards to provide a baseline of their
typing performance on a mechanical QWERTY keyboard. On Day
5, the last day, participants also performed a typing-on-their-lap
evaluation with TypeAnywhere. The evaluation for the desktop
keyboard session contained 30 phrases, while the evaluation for
the typing-on-lap session contained 20 phrases, the same as the
tabletop condition. At the end of the study on day 5, we conducted a
debriefng session with participants, gathering their feedback from
using TypeAnywhere. They also took a NASA Task Load Index
(TLX) questionnaire on TypeAnywhere.

6 RESULTS
We gathered 1500 phrases in total (5×20×10 = 1000 phrases for the
tabletop condition, 10 × 30 = 300 phrases for the desktop keyboard
condition, 10 × 20 = 200 phrases for the typing-on-lap condition).

The average performance in each condition is shown in Table 1.
We also report each participant’s performance individually to reveal
more insights. We refer to the three conditions, respectively, as
tabletop, on-lap, and keyboard (i.e., typing on a mechanical desktop
keyboard).

6.1 Text Entry Speed
Overall performance. Participants’ average typing speed is shown
in Table 1, with the corresponding learning curve shown in Figure
10. Their speed on Day 1 was 41.6 WPM, already comparable to
mobile phone touch or gesture typing after fve days of practice [40].
Their speeds increased each day with this trend still continuing by
the end of the study. Compared to the mechanical desktop QW-
ERTY keyboard (87.8 WPM), participants reached 70.6 WPM with
TypeAnywhere on the last day. The 19.6% (17.2 WPM) diference be-
tween TypeAnyWhere and the desktop keyboard was smaller than
the previously reported diference between touchscreen tabletop
keyboards [15] and desktop keyboards.

Figure 10: The average words per minute and its ftted learn-
ing curve for TypeAnywhere being used by participants
fnger-tapping on a desk. The extrapolated curve is limited
to twice the number of sessions [35]

Typing-on-lap performance. The 43.9 WPM speed of the typing-
on-lap condition also demonstrated the feasibility of TypeAny-
Where to be used in of-desktop conditions: As long as there is a
surface, the user can perform QWERTY-style text entry with reason-
able speed. However, as people’s laps are softer than table surfaces,

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

Table 1: The average words per minute (WPM) and character error rate (CER) and standard deviations (SD) on each day for
all participants with TypeAnywhere. Performance with the mechanical desktop QWERTY keyboard and in the typing-on-lap
conditions are also shown.

Day 1 Day 2 Day 3 Day 4 Day 5 Keyboard On-lap

WPM 41.6 (16.3) 52.6 (19.5) 59.5 (21.4) 68.2 (18.9) 70.6 (19.9) 87.8 (27.8) 43.9 (17.2)
CER (%) 1.05 (7.34) 1.71 (3.75) 0.95 (2.67) 1.54 (4.06) 1.50 (3.42) 1.77 (4.31) 1.37 (3.52)

Figure 11: Words per minute (WPM) over fve days for each participant. Higher is better. The upper horizontal line in each
graph represents the desktop keyboard speed; the lower line in each graph represents the typing-on-lap speed. The vertical
bar on each data point represents the 95% confdence interval.

TypeAnywhere’s fnger-tap detection performed less accurately on
laps, causing some false-negative non-detections. That said, typing
on laps is an odd but potentially useful scenario compared to typing
on frm table surfaces, so some degradation of performance is to be
expected.

Individuals’ performance. Figure 11 shows each participant’s
performance across the fve days. All participants increased their
typing speeds over time, although there were some small drops
due to the vagaries of the test phrases and human performance.
With TypeAnywhere, participants reached between 73.7% and 98.3%

(mean 80.4%) of their desktop QWERTY keyboard typing speeds
on the last day. The fastest typist (P5) reached 91.4 WPM, while
P2 even reached a typing speed with TypeAnywhere very close
to his desktop keyboard typing speed on the ffth day, about 80
WPM. The novice learner P1 reached 84.2% of his desktop keyboard
typing speed, although he had to learn both the interaction and
the fnger-to-key mappings in the study. The results suggest that
people can learn TypeAnywhere in a relatively short period of time,
even if they do not follow fxed fnger-to-key mappings.

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 12: Character error rates (CER) over the fve day study for each participant. Lower is better. Here we use Uncorrected
Error Rate (UER) [47, 72] as CER. The upper horizontal lines in each graph represent the desktop keyboard CER; the lower
lines represent the typing-on-lap CER. The vertical bars on each data point represent 95% confdence intervals.

6.2 Error Rate
Overall performance. Participants’ average character error rates
(CER) are shown in Table 1. These error rates were operationalized
as uncorrected errors in the fnal transcribed text, as such errors
trade-of against speed [74]; in contrast, corrected errors were not
counted in CER, since any errors made but fxed during entry
take time and are thus subsumed by speed. There is no obvious
trend for the error rates, but the desktop keyboard condition had
the biggest CER on average. From our log fles, we observed that
participants generally made more corrections (i.e., they pressed
more backspaces) when typing with TypeAnywhere than in the
desktop keyboard condition. However, since they left fewer errors
in their fnal transcriptions, their resultant CER was lower.

Individual performance. Figure 12 shows each participant’s
error rate across the fve days. The CER of all participants remained
low for all fve days. P2, P3, and P4 were even able to achieve lower
error rates than the desktop keyboard condition for all sessions,
despite the lack of physical keys for TypeAnywhere. Because of

auto-correction, participants tended to leave few typos with Ty-
peAnywhere.

Utilization of “Type, Then Correct”. We logged the frequency
of participants using the Type, Then Correct (TTC) [71] correction
feature in the study, fnding that only four participants (P0, P2,
P4 and P8) used this interaction method for making corrections.
Among the 1000 phrases entered, only 16 phrases were completed
with this method. As the interaction was a new concept to the
participants, it was not surprising that participants still heavily
relied on backspace and word-delete functions for text correction.
Although the TTC method can be cognitively demanding for new
users, with more practice, we expect that participants might make
greater use of TTC style corrections, since it is more efcient.

6.3 Error Behavior Analysis
Although error rates were small for each participant, we observed
several common error types such as omitting characters and typing
with the wrong fngers, which could be caused by the device itself
(not recognizing the taps), or the user while trying to adapt to the

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

new interface. We therefore performed a more detailed behavior
analysis for errors made during the study.

From the text logs, we located 513 total typing errors made by all
participants. We identifed those typing errors by fnding the mis-
matches between fnger sequences, corresponding text sequences
(the transcribed text), and the ground truth text sequences (the
presented text). Among the 513 errors that were typed incorrectly
by participants, 224 errors were auto-corrected, with 112 (50%) of
those fxed to become the correct text, indicating the usefulness of
the auto-correction algorithm.

Table 2: Count of diferent error types each day for all par-
ticipants.

Error Type Day 1 Day 2 Day 3 Day 4 Day 5 Total
Substitution 80 69 54 48 48 299
Omission 48 25 19 19 16 127
Insertion 20 10 18 8 7 63

Transposition 10 4 2 5 3 24

The distribution of errors is shown in Table 2. The most common
error was typing with the wrong fnger (i.e., 299 substitution er-
rors11), followed by omitting a fnger tap (i.e., 127 omission errors).
Although the latter error type was mostly caused by the device not
recognizing fnger-taps, omissions accounted for less than 50% of
wrong-fnger errors, which were caused by the user.

The decrease in omission errors also indicated that the partic-
ipants learned how to make a recognizable tap during practice.
Although Tap Strap was reported to have over 98% tap recogni-
tion accuracy, not all taps were recognized well during the initial
practice session. The Tap Strap company also has a video tutorial
on how to perform a proper tap,12 where it mentions, “tap gen-
tly, and you don’t need a lot of force to tap.” In our study, it took
some time for the participants to learn how to tap properly. Specif-
cally, in the frst practice session, some participants tended to move
their whole hands instead of their fngers to “tap”, which caused
non-recognitions, as the straps sense the movement of fngers, not
the whole hands. Another failure case was when our participants
performed “roll-over” actions when typing [13] (e.g., pressing one
fnger before another fnger lifts; this action was common among
fast typists). The roll-over fnger usually exerted a light touch on
the surface instead of a tap. Over the fve days of learning, partic-
ipants successfully adjusted their typing style to make sure that
taps were recognized by the straps.

We also examined the error dynamics of P1, who was a novice
learner of the QWERTY keyboard layout. Wrong-fnger errors de-
creased from Day 1 to Day 5 (i.e., 11, 9, 3, 2, 1), indicating that P1
was adapting to the TypeAnywhere interaction gradually.

6.4 Subjective Feedback
The NASA TLX workload results are shown in Figure 13. The mental
load and the overall efort were perceived as high, as participants
had to explicitly think about the keyboard layout during typing. (By
contrast, when typing on a physical desktop QWERTY keyboard,
11The error type defnitions can be found in [56].
12https://www.youtube.com/watch?v=XCI7D3IkA6E

Figure 13: Average NASA TLX ratings of the participants
(scale 1 - 7). For mental / physical / temporal / efort / frus-
tration, high score means high task load; for performance,
high score means participants are highly satisfed with their
performance. The vertical bars on each data point represent
95% confdence intervals.

participants can rely upon muscle memory without thinking about
which fnger is striking each key [6].) The temporal taskload (i.e.,
time pressure) was also perceived as a bit high, as our participants
tried to type as fast and accurately as possible during our study.
However, their perceived performance was rated as very successful,
indicating that participants were quite satisfed with their typing
performance by the end of the study.

We also collected feedback from participants during a debriefng
session at the end of Day 5. Specifcally, we asked how well they
liked (or disliked) TypeAnywhere, and what they thought could
be improved. Overall, participants were all enthusiastic about the
system and thought that it could be practical in actual use. The
most touted beneft of TypeAnywhere by participants was that they
no longer needed to concern themselves with (x ,y) locations when
typing: “I can just tap the fnger without caring about whether the
position was right or not” (P3), which “actually enabled me to spread
my fngers a bit so that when I tap my pinky, I don need to worry
about moving my ring fnger together. And I do not need to keep my
both hands together, which is nice.” (P5). The other beneft was that
the user could perform typing on any surface similar to typing on
a desktop QWERTY keyboard, without the need to “learn a new
coding system” (P2). Three participants also appreciated the simple
gesture designs, such as the backspace gesture, commenting that
the gestures were “easy to perform and intuitive” (P6).

Five participants mentioned that they needed to adjust their
typing style to make the device recognize their taps. For example,
P5 said, “Initially I was imagining there was a keyboard and my
fngers would follow the positions, but gradually I felt that I only need
to listen to my fngers and not worry about the positions. I also learned
how to tap to make the device work smoothly.” P8 struggled a bit
when he was using the device for the frst two days, as he moved
the whole hand rather than the fnger to perform his taps. After he
adjusted his typing style, his performance was much better: “I’m
used to the [physical] keyboard for a long time and I need a bit [of]
mental training to adjust my taps.”

As for aspects of TypeAnywhere that participants wanted to
improve, all participants felt they needed to think about their fnger-
to-key mappings explicitly while typing, which increased their

https://www.youtube.com/watch?v=XCI7D3IkA6E

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

cognitive load. Our novice learner, P1, commented that, “I used to
type without even knowing what my fnger-to-key mapping was. It
just happened naturally. Now I need to have a keyboard map in my
mind during typing.” Participants also complained that the Tap Strap
hardware device failed to detect taps sometimes, especially in the
typing-on-lap condition. Finally, as the text dynamically changed in
the composition area during typing, participants mentioned feeling
unsure when they were in the middle of a word, as the intermediate
results were not always as they expected. This uncertainty added
to participants’ occasional confusion, so sometimes they would just
delete a word and retype it.

7 DISCUSSION
Combining of-the-shelf wearable fnger-tap sensors, the pre-trained
deep learning language model BERT, and custom software to en-
able a novel interaction design, TypeAnywhere has achieved the
highest reported performance among manual text input methods
other than the desktop physical keyboard 1. Although TypeAny-
where does not have the beneft of tactile feedback from mechanical
desktop QWERTY keyboards, the design of TypeAnywhere has the
beneft of several factors: (1) Its QWERTY-style typing interaction
provided for a relatively easy-to-learn system, enabling users to
transfer their years of keyboard typing skills to a new system within
a short period; (2) Unlike previous work [46, 61, 65, 76], which also
required position information, only fnger-tap sequences are re-
quired in TypeAnywhere, enabling us to utilize an existing large
corpus as the training data without the need of collecting real typ-
ing data; (3) The neural language decoder took advantage of current
advances in natural language processing by incorporating more
context during the decoding process and achieving better decoding
accuracy compared to a traditional n-gram model, for n = 5; (4)
To improve the usability of TypeAnywhere, we also implemented
auto-correction and alternative candidates based on beam search
and Type, then Correct [71] correction interactions, both of which
reduce the penalties incurred with making mistakes.

All participants were able to adapt their typing to the device
without a real keyboard. In fact, on the frst day, most participants
were able to successfully transfer their typing style from the me-
chanical QWERTY keyboard, moving their fngers to imaginary key
positions on a QWERTY keyboard layout. Participants also tried to
intentionally make heavy taps in order to get them recognized by
the device. However, after one or two sessions practicing with the
device, participants learned how to tap their fngers in a relaxed
manner without moving the fnger very far to hit the intended
imaginary “key”. To be clear, this is not to say that participants
only moved their fngers up and down; they still moved them to the
relative key positions, but they did so with less efort and motion.
Participants’ rapid adaptation to minimize their necessary move-
ments was actually surprising to the authors, as participants not
only transferred their existing typing skills, but also learned a more
efcient way to operate their fngers for the interaction.

Participants also learned our specifc gestures quickly. They were
able to perform delete and selection gestures in the frst test session,
and four participants went on to use the correction gesture quite
frequently. On average, participants performed 11.7 (SD = 12.8)
backspace gestures, and 17.7 (SD = 10.9) word-delete gestures for

each section (20 phrases). This use of gestures indicated that both
delete gestures were useful for text editing. For candidate selection
gestures (select next/last), participants, on average, performed 5.4
(SD = 2.4) candidate selections over the fve days of the study.

Another noticeable result was the performance degradation in
the typing-on-lap condition. A reduction in performance was ex-
pected, as participants only performed on-lap typing on the last day,
and the surface was softer and smaller compared to the tabletop.
Participants also adjusted their sitting postures several times dur-
ing the test and changed the part of the lap on which they tapped,.
P3 observed a “lack of the feeling of taps as the laps and pants
are soft.” Due to the softness of the lap, it was also harder for the
device to detect a “tap” action. Nevertheless, all participants were
able to fnish the on-the-lap typing and reached an average 43.9
WPM, which is still a considerable entry rate compared to most
of-desktop text entry solutions [68]. The on-lap condition was
included to demonstrate TypeAnywhere’s ability to enable the user
to type on most any surface, such as on a wall, a bicycle handlebar,
or a user’s leg or lap.

The era of ubiquitous computing is here, and we no longer only
interact with computers in traditional desktop settings. TypeAny-
where enables users to type without a physical keyboard, while
nonetheless resembling a QWERTY keyboard typing experience. It
can be potentially used on-the-go with smart glasses or earbuds,
with AR/VR devices, or as a unifed input solution for multiple de-
vices such as televisions, tablets, smartwatches, or mobile phones.

7.1 Limitations
This paper describes what we might call the frst attempt at achiev-
ing the “type anywhere hypothesis,” namely testing whether using
neural decoding to translate fnger-taps on an imaginary QWERTY
keyboard can achieve efcient typing on (almost) any surface. The
answer appears to be “yes” thus far, but this research project still
has several limitations:

There is still room for the hardware devices we used to improve
tap-detection accuracy. In our study, participants performed tap-
ping with diferent gestures, even when using the same fnger on
the same key. For example, we observed that some participants
preferred moving and tapping their whole hand instead of moving
the fnger, which added difculty to tap detection.

We only conducted the study with ten participants, albeit lon-
gitudinally over fve sessions. Although having multiple sessions
helps to compensate for the small number of participants, our gen-
eralizability could be improved further by a larger study. Also,
participants were still improving after fve sessions; more sessions
would illuminate their performance further. On the other hand,
a fve-day longitudinal study with fve participants produces 50
study sessions, which for most text entry evaluations is a reason-
able size. In fact, many text entry studies (e.g., [26, 39, 41, 42]) have
had smaller participant numbers, and most were not longitudinal.

The phrase sets we used in the study were extracted from stan-
dard text entry test sets. The phrase sets did not include any out-of-
vocabulary (OOV) words, which might not align well with actual
usage scenarios for TypeAnywhere. It would be worthwhile to con-
duct composition tasks instead of transcription tasks to evaluate
the interaction in a comprehensive manner.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

We did not conduct a formal study of the default commerical text
entry interaction of the Tap Strap, or any other chording keyboards.
This is because the experience of chording keyboards is very dif-
ferent from that of typing, including on TypeAnywhere. Chording
systems are unfamiliar to novice users and are often designed for
single-hand use. In contrast, TypeAnywhere focuses on utilizing
users’ existing two-hand typing skills, where they can pick up and
type without days or weeks of learning.

We also did not explicitly measure the accuracy of the tap actions
or the editing gestures. As we show in section 6.3, the accuracy of
the gestures relies not only on how well the device was, but also on
how participants performed their taps. And throughout the study,
all participants adjusted their typing style for better performance.

Finally, the BERT-based neural decoding implementation was
not optimized. Possible optimizations include adding weights to
diferent errors during the beam-search auto-correction procedure;
outputting words instead of characters so that the model could also
provide alternative candidates; condensing the model size so that it
could incorporate larger context and run faster.

8 FUTURE WORK
Along with addressing the limitations mentioned above, we see
several possible directions for future work. We could add compre-
hensive support for special characters, since currently, only letters
and the space character are supported in TypeAnywhere. Numbers,
punctuation, symbols, and modifer keys must also be included in
a full solution capable of supporting everyday use. One possible
solution could be assigning diferent symbols to diferent chords
and users would perform a mode gesture to switch between typ-
ing and symbol-entry modes. Another possible solution could be
query-style entry, such as for emojis: the user simply performs a
chord to trigger the search mode, and then types the description of
the symbol or emoji to search and enter it [70]. For example, typing
a “q” in search mode could make a question mark (“?”) immedi-
ately available for entry. We also could utilize gestures beyond just
fnger-tapping. TypeAnywhere’s current design only involves tap-
ping, whether by a single fnger or chorded for editing operations.
Motion gestures, such as swipe, pinch, snap, or open/close hand
could be used for various purposes in future iterations. We also
might imagine improving the form factor of the hardware device.
The devices we used for the project were two fnger-worn ring
straps. In the future, we expect smartwatches and other wrist-worn
devices, or a computer vision-based system, to detect fnger taps to
avoid the need to wear specialized devices on fngers for text entry.
Even with alternate hardware, our fnger-tap encoding scheme,
neural language decoder, and interaction design all could be reused.

9 CONCLUSION
We have presented TypeAnywhere, a system that enables QWERTY-
style typing on just about any surface as a general text entry so-
lution for ubiquitous computing. TypeAnywhere applies a neural
language decoder that accepts only fnger-tap sequences as the in-
put, which eases both the process of training and the generalization
to diferent fnger-to-key mappings. We trained the decoder with
a large corpus and achieved 1.6% character error rate (CER) in an

ofine evaluation. To enable interactive use, we also designed auto-
correction and Type, then Correct [71] style interaction to lower
the risk and cost of making and correcting errors. Our longitudinal
study showed that participants were able to learn TypeAnywhere
with relative ease, reaching 70.6 WPM on average after fve ses-
sions or about 2.5 hours of practice, with the fastest person reaching
91.4 WPM. We hope that TypeAnywhere can serve as a frst step
towards a usable text entry solution for wearable and ubiquitous
computing devices, and will inspire future research to design faster
yet intuitive text entry methods for the ubiquitous computing era.

ACKNOWLEDGMENTS
Anonymized for review. We thank Moti Kdoshim from TapWithUs
for providing device related assistance; Tianyu Gao for helping
designing the language model training methods; Mingyuan Zhong
for helping training neural network models; Google for providing
TAP devices; and we thank all the participants. This work was
supported in part by Baidu. Any opinions, fndings, conclusions or
recommendations expressed in our work are those of the authors
and do not necessarily refect those of any supporter.

REFERENCES
[1] Michelle Annett and Walter F. Bischof. 2013. Your Left Hand Can Do It Too!

Investigating Intermanual, Symmetric Gesture Transfer on Touchscreens. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY,
USA, 1119–1128.

[2] Xiaojun Bi, Barton A. Smith, and Shumin Zhai. 2012. Multilingual Touchscreen
Keyboard Design and Optimization. Human–Computer Interaction 27, 4 (2012),
352–382.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jefrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[4] Ciprian Chelba, Mohammad Norouzi, and Samy Bengio. 2017. N-gram Language
Modeling using Recurrent Neural Network Estimation. arXiv:1703.10724 [cs.CL]

[5] Xiang ’Anthony’ Chen, Tovi Grossman, and George Fitzmaurice. 2014.
Swipeboard: A Text Entry Technique for Ultra-Small Interfaces That Supports
Novice to Expert Transitions. In Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST ’14).
Association for Computing Machinery, New York, NY, USA, 615–620.

[6] Matthew J. C. Crump and Gordon D. Logan. 2010. Warning: This keyboard
will deconstruct— The role of the keyboard in skilled typewriting. Psychonomic
Bulletin & Review 17 (2010), 394–399.

[7] Wenzhe Cui, Suwen Zhu, Mingrui Ray Zhang, H. Andrew Schwartz, Jacob O.
Wobbrock, and Xiaojun Bi. 2020. JustCorrect: Intelligent Post Hoc Text Correction
Techniques on Smartphones. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. Association for Computing Machinery,
New York, NY, USA, 487–499.

[8] Cristian Danescu-Niculescu-Mizil, Justin Cheng, Jon Kleinberg, and Lillian Lee.
2012. You Had Me at Hello: How Phrasing Afects Memorability. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Jeju Island, Korea,
892–901.

[9] Paul A David. 1985. Clio and the Economics of QWERTY. American Eco-
nomic Review 75, 2 (May 1985), 332–337. https://ideas.repec.org/a/aea/aecrev/
v75y1985i2p332-37.html

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[11] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018.
Observations on Typing from 136 Million Keystrokes. Association for Computing
Machinery, New York, NY, USA, 1–12.

[12] Jacqui Fashimpaur, Kenrick Kin, and Matt Longest. 2020. PinchType: Text En-
try for Virtual and Augmented Reality Using Comfortable Thumb to Fingertip

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1703.10724
https://ideas.repec.org/a/aea/aecrev/v75y1985i2p332-37.html
https://ideas.repec.org/a/aea/aecrev/v75y1985i2p332-37.html
https://arxiv.org/abs/1810.04805

TypeAnywhere: A QWERTY-Based Text Entry Solution for Ubiquitous Computing CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Pinches. In Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing
Machinery, New York, NY, USA, 1–7.

[13] Anna Maria Feit, Daryl Weir, and Antti Oulasvirta. 2016. How We Type: Move-
ment Strategies and Performance in Everyday Typing. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (San Jose, California,
USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA,
4262–4273.

[14] Leah Findlater and Jacob Wobbrock. 2012. Personalized Input: Improving Ten-
Finger Touchscreen Typing through Automatic Adaptation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)
(CHI ’12). Association for Computing Machinery, New York, NY, USA, 815–824.

[15] Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor. 2011. Typing on Flat Glass:
Examining Ten-Finger Expert Typing Patterns on Touch Surfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 2453–2462.

[16] Mikael Goldstein, Robert Book, Gunilla Alsiö, and Silvia Tessa. 1999. Non-
Keyboard QWERTY Touch Typing: A Portable Input Interface for the Mobile
User. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99). Association for Computing
Machinery, New York, NY, USA, 32–39.

[17] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang ’Anthony’ Chen, Xiaojun
Bi, and Xing-Dong Yang. 2018. WrisText: One-Handed Text Entry on Smart-
watch Using Wrist Gestures. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for
Computing Machinery, New York, NY, USA, 1–14.

[18] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International Con-
ference on Intelligent User Interfaces (San Francisco, California, USA) (IUI ’02).
Association for Computing Machinery, New York, NY, USA, 194–195.

[19] Mitchell Gordon, Tom Ouyang, and Shumin Zhai. 2016. WatchWriter: Tap and
Gesture Typing on a Smartwatch Miniature Keyboard with Statistical Decoding.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 3817–3821.

[20] Jonathan T. Grudin. 1983. Error Patterns in Novice and Skilled Transcription Typing.
Springer New York, New York, NY, 121–143.

[21] Yizheng Gu, Chun Yu, Zhipeng Li, Zhaoheng Li, Xiaoying Wei, and Yuanchun
Shi. 2021. QwertyRing: Text Entry on Physical Surfaces Using a Ring. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 2 (March 2021), 1.

[22] Asela Gunawardana, Tim Paek, and Christopher Meek. 2010. Usability Guided
Key-Target Resizing for Soft Keyboards. In Proceedings of the 15th International
Conference on Intelligent User Interfaces (Hong Kong, China) (IUI ’10). Association
for Computing Machinery, New York, NY, USA, 111–118.

[23] Kenneth Heafeld. 2011. KenLM: Faster and Smaller Language Model Queries. In
Proceedings of the Sixth Workshop on Statistical Machine Translation. Association
for Computational Linguistics, Edinburgh, Scotland, 187–197.

[24] Jonggi Hong, Seongkook Heo, Poika Isokoski, and Geehyuk Lee. 2015. SplitBoard:
A Simple Split Soft Keyboard for Wristwatch-Sized Touch Screens. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New
York, NY, USA, 1233–1236.

[25] Yoon Sang Kim, Byung Seok Soh, and Sang-Goog Lee. 2005. A new wearable
input device: SCURRY. IEEE Transactions on Industrial Electronics 52, 6 (2005),
1490–1499. https://doi.org/10.1109/TIE.2005.858736

[26] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary
Shorthand Writing System for Pen-Based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology (Santa Fe,
NM, USA) (UIST ’04). Association for Computing Machinery, New York, NY, USA,
43–52.

[27] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised Learn-
ing of Language Representations. CoRR abs/1909.11942 (2019), 1. arXiv:1909.11942

[28] Minkyung Lee and Woontack Woo. 2003. ARKB: 3D vision-based Augmented
Reality Keyboard. In Online Proceeding of the 13th International Conference on
Artifcial Reality and Telexistence. IEEE, Keio University, Tokyo, Japan, 1.

[29] Luis A. Leiva, Alireza Sahami, Alejandro Catala, Niels Henze, and Albrecht
Schmidt. 2015. Text Entry on Tiny QWERTY Soft Keyboards. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul,
Republic of Korea) (CHI ’15). Association for Computing Machinery, New York,
NY, USA, 669–678.

[30] V. I. Levenshtein. 1965. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet physics. Doklady 10 (1965), 707–710.

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019), 1.

arXiv:1907.11692
[32] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

arXiv:1711.05101 [cs.LG]
[33] Kent Lyons, Thad Starner, Daniel Plaisted, James Fusia, Amanda Lyons, Aaron

Drew, and E. W. Looney. 2004. Twiddler Typing: One-Handed Chording Text En-
try for Mobile Phones. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Vienna, Austria) (CHI ’04). Association for Computing
Machinery, New York, NY, USA, 671–678.

[34] I. Scott MacKenzie and R. William Soukoref. 2003. Phrase Sets for Evaluating Text
Entry Techniques. In CHI ’03 Extended Abstracts on Human Factors in Computing
Systems (Ft. Lauderdale, Florida, USA) (CHI EA ’03). Association for Computing
Machinery, New York, NY, USA, 754–755.

[35] I. Scott MacKenzie and Shawn X. Zhang. 1999. The Design and Evaluation of
a High-Performance Soft Keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99).
Association for Computing Machinery, New York, NY, USA, 25–31.

[36] Catherine Macleod, Nancy Ide, and Ralph Grishman. 2000. The American National
Corpus: A Standardized Resource for American English. In Proceedings of the
Second International Conference on Language Resources and Evaluation (LREC’00).
European Language Resources Association (ELRA), Athens, Greece, 1.

[37] Aarthi Easwara Moorthy and Kim-Phuong L. Vu. 2015. Privacy Concerns for Use
of Voice Activated Personal Assistant in the Public Space. International Journal
of Human–Computer Interaction 31, 4 (2015), 307–335.

[38] H. Ney, U. Essen, and Reinhard Kneser. 1994. On structuring probabilistic de-
pendences in stochastic language modelling. Comput. Speech Lang. 8 (1994),
1–38.

[39] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. 2013. ZoomBoard:
A Diminutive Qwerty Soft Keyboard Using Iterative Zooming for Ultra-Small
Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New
York, NY, USA, 2799–2802.

[40] Shyam Reyal, Shumin Zhai, and Per Ola Kristensson. 2015. Performance and
User Experience of Touchscreen and Gesture Keyboards in a Lab Setting and
in the Wild. In Proceedings of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for
Computing Machinery, New York, NY, USA, 679–688.

[41] Mark Richardson, Matt Durasof, and Robert Wang. 2020. Decoding Surface
Touch Typing from Hand-Tracking. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST
’20). Association for Computing Machinery, New York, NY, USA, 686–696.

[42] Helena Roeber, John Bacus, and Carlo Tomasi. 2003. Typing in Thin Air: The
Canesta Projection Keyboard - a New Method of Interaction with Electronic
Devices. In CHI ’03 Extended Abstracts on Human Factors in Computing Systems
(Ft. Lauderdale, Florida, USA) (CHI EA ’03). Association for Computing Machinery,
New York, NY, USA, 712–713.

[43] T. Salthouse. 1984. Efects of age and skill in typing. Journal of experimental
psychology. General 113 3 (1984), 345–71.

[44] T. Salthouse. 1986. Perceptual, cognitive, and motoric aspects of transcription
typing. Psychological bulletin 99 3 (1986), 303–19.

[45] L. H. Shafer. 1978. Timing in the Motor Programming of Typing. Quarterly
Journal of Experimental Psychology 30 (1978), 333 – 345.

[46] Weinan Shi, Chun Yu, Xin Yi, Zhen Li, and Yuanchun Shi. 2018. TOAST: Ten-
Finger Eyes-Free Typing on Touchable Surfaces. Proc. ACM Interact. Mob. Wear-
able Ubiquitous Technol. 2, 1, Article 33 (March 2018), 23 pages.

[47] R. William Soukoref and I. Scott MacKenzie. 2003. Metrics for Text Entry
Research: An Evaluation of MSD and KSPC, and a New Unifed Error Metric. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Ft.
Lauderdale, Florida, USA) (CHI ’03). Association for Computing Machinery, New
York, NY, USA, 113–120.

[48] Srinath Sridhar, Anna Maria Feit, Christian Theobalt, and Antti Oulasvirta. 2015.
Investigating the Dexterity of Multi-Finger Input for Mid-Air Text Entry. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Comput-
ing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing
Machinery, New York, NY, USA, 3643–3652.

[49] Ryo Takahashi, Masaaki Fukumoto, Changyo Han, Takuya Sasatani, Yoshiaki
Narusue, and Yoshihiro Kawahara. 2020. TelemetRing: A Batteryless and Wireless
Ring-Shaped Keyboard Using Passive Inductive Telemetry. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 1161–1168.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[51] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould, and Per Ola Kris-
tensson. 2018. The Impact of Word, Multiple Word, and Sentence Input on Virtual
Keyboard Decoding Performance. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, 1–12.

https://doi.org/10.1109/TIE.2005.858736
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1706.03762

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[52] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text
Entry Evaluations Based on Genuine Mobile Emails. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile Devices
and Services (Stockholm, Sweden) (MobileHCI ’11). Association for Computing
Machinery, New York, NY, USA, 295–298.

[53] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-
tensson. 2015. VelociTap: Investigating Fast Mobile Text Entry Using Sentence-
Based Decoding of Touchscreen Keyboard Input. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
659–668.

[54] Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE
Mob. Comput. Commun. Rev. 3, 3 (July 1999), 3–11.

[55] Jacob Wobbrock, Brad Myers, and Brandon Rothrock. 2006. Few-Key Text Entry
Revisited: Mnemonic Gestures on Four Keys. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (Montréal, Québec, Canada) (CHI
’06). Association for Computing Machinery, New York, NY, USA, 489–492.

[56] Jacob O. Wobbrock and Brad A. Myers. 2006. Analyzing the Input Stream for
Character- Level Errors in Unconstrained Text Entry Evaluations. ACM Trans.
Comput.-Hum. Interact. 13, 4 (Dec. 2006), 458–489.

[57] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. ArXiv abs/1910.03771 (2019), 1.

[58] Pui Chung Wong, Kening Zhu, and Hongbo Fu. 2018. FingerT9: Leveraging Thumb-
to-Finger Interaction for Same-Side-Hand Text Entry on Smartwatches. Association
for Computing Machinery, New York, NY, USA, 1–10.

[59] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jef
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Clif Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduf Hughes, and Jefrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. arXiv:1609.08144 [cs.CL]

[60] Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong,
Sicheng Yin, Jialun Zhai, and Xing-Dong Yang. 2020. BiTipText: Bimanual Eyes-
Free Text Entry on a Fingertip Keyboard. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 1–13.

[61] Zheer Xu, Pui Chung Wong, Jun Gong, Te-Yen Wu, Aditya Shekhar Nittala,
Xiaojun Bi, Jürgen Steimle, Hongbo Fu, Kening Zhu, and Xing-Dong Yang. 2019.
TipText: Eyes-Free Text Entry on a Fingertip Keyboard. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology (New Orleans,
LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
883–899.

[62] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.
Curran Associates, Inc., ., 1.

[63] Xin Yi, Chen Wang, Xiaojun Bi, and Yuanchun Shi. 2020. PalmBoard: Leverag-
ing Implicit Touch Pressure in Statistical Decoding for Indirect Text Entry. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–13.

[64] Xin Yi, Chun Yu, Weijie Xu, Xiaojun Bi, and Yuanchun Shi. 2017. COMPASS:
Rotational Keyboard on Non-Touch Smartwatches. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 705–715.

[65] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun, and Yuanchun Shi. 2015.
ATK: Enabling Ten-Finger Freehand Typing in Air Based on 3D Hand Tracking
Data. In Proceedings of the 28th Annual ACM Symposium on User Interface Soft-
ware & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing
Machinery, New York, NY, USA, 539–548.

[66] Chun Yu, Ke Sun, Mingyuan Zhong, Xincheng Li, Peijun Zhao, and Yuanchun
Shi. 2016. One-Dimensional Handwriting: Inputting Letters and Words on Smart
Glasses. In Proceedings of the 2016 CHI Conference on Human Factors in Comput-
ing Systems (San Jose, California, USA) (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 71–82.

[67] Shumin Zhai, Per-Ola Kristensson, and Barton A. Smith. 2004. In search of
efective text input interfaces for of the desktop computing. Interacting with
Computers 17, 3 (02 2004), 229–250.

[68] Shumin Zhai, Per-Ola Kristensson, and Barton A. Smith. 2004. In search of
efective text input interfaces for of the desktop computing. Interacting with
Computers 17, 3 (02 2004), 229–250.

Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock

[69] Shumin Zhai, Per-Ola Kristensson, and Barton A. Smith. 2005. In search of
efective text input interfaces for of the desktop computing. Interacting with
Computers 17, 3 (2005), 229–250. Special Theme - Papers from Members of the
Editorial Boards.

[70] Mingrui Ray Zhang, Ruolin Wang, Xuhai Xu, Qisheng Li, Ather Sharif, and
Jacob O. Wobbrock. 2021. Voicemoji: Emoji Entry Using Voice for Visually
Impaired People. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
Article 37, 18 pages.

[71] Mingrui Ray Zhang, He Wen, and Jacob O. Wobbrock. 2019. Type, Then Cor-
rect: Intelligent Text Correction Techniques for Mobile Text Entry Using Neural
Networks. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for
Computing Machinery, New York, NY, USA, 843–855.

[72] Mingrui Ray Zhang and Jacob O. Wobbrock. 2019. Beyond the Input Stream:
Making Text Entry Evaluations More Flexible with Transcription Sequences.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing
Machinery, New York, NY, USA, 831–842.

[73] Mingrui Ray Zhang and Shumin Zhai. 2021. PhraseFlow: Designs and Empirical
Studies of Phrase-Level Input. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, 32–39.

[74] Mingrui Ray Zhang, Shumin Zhai, and Jacob O. Wobbrock. 2019. Text Entry
Throughput: Towards Unifying Speed and Accuracy in a Single Performance
Metric. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–13.

[75] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-Level Convolutional
Networks for Text Classifcation. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems - Volume 1 (Montreal, Canada)
(NIPS’15). MIT Press, Cambridge, MA, USA, 649–657.

[76] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an
Invisible Keyboard. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–13.

https://arxiv.org/abs/1609.08144

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Text Entry with Wearable Devices
	2.2 QWERTY Touch Typing
	2.3 Statistical Language Decoders

	3 ENABLING THE TYPEANYWHERE EXPERIENCE
	3.1 Typing Interaction
	3.2 Typing Interface
	3.3 Text Editing with ``Type, then Correct''
	3.4 Out of Vocabulary Words

	4 THE NEURAL LANGUAGE DECODER
	4.1 Converting Text into Finger Sequences
	4.2 BERT-Based Neural Language Model
	4.3 Data Collection
	4.4 Training Process
	4.5 Model Evaluation
	4.6 Candidate Generation and Auto-Correction with Beam Search

	5 EVALUATION OF TYPEANYWHERE
	5.1 Participants
	5.2 Apparatus
	5.3 Procedure

	6 RESULTS
	6.1 Text Entry Speed
	6.2 Error Rate
	6.3 Error Behavior Analysis
	6.4 Subjective Feedback

	7 Discussion
	7.1 Limitations

	8 Future Work
	9 Conclusion
	Acknowledgments
	References

