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Figure 1: TypeAnywhere’s core concepts. (a) Users wear lightweight devices on their fngers that detect fnger taps. (b) With 
TypeAnywhere, users can type on any surface such as a tabletop or their lap. (c) Users type with their own QWERTY key-to-
fnger mappings, resembling physical keyboard typing. 

ABSTRACT 
We present a QWERTY-based text entry system, TypeAnywhere, 
for use in of-desktop computing environments. Using a wearable 
device that can detect fnger taps, users can leverage their touch-
typing skills from physical keyboards to perform text entry on any 
surface. TypeAnywhere decodes typing sequences based only on 
fnger-tap sequences without relying on tap locations. To achieve 
optimal decoding performance, we trained a neural language model 
and achieved a 1.6% character error rate (CER) in an ofine evalua-
tion, compared to a 5.3% CER from a traditional n-gram language 
model. Our user study showed that participants achieved an aver-
age performance of 70.6 WPM, or 80.4% of their physical keyboard 
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speed, and 1.50% CER after 2.5 hours of practice over fve days on a 
table surface. They also achieved 43.9 WPM and 1.37% CER when 
typing on their laps. Our results demonstrate the strong potential 
of QWERTY typing as a ubiquitous text entry solution. 
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1 INTRODUCTION 
Computing is now almost ubiquitous [54], from wearables and 
Internet-of-Things devices to smartphones and virtual reality head-
sets, computers are woven into nearly every aspect of modern life. 
Since the earliest days of interactive computing, a fundamental 
method of communication with computers has been text entry. But 
as we move further of the desktop, of tablets, of smartphones, 
and indeed onto devices of almost every kind, satisfying text entry 
solutions remain elusive [69]. There is as-yet no unifed text entry 
solution that is efcient, efective, and always available. Existing 
text entry solutions either are not mobile enough (e.g., a full-size 
hardware keyboard), or require the user to learn new typing skills 
(e.g., [26, 33, 48, 64]), or ofer painfully low throughput (e.g., watch-
based methods [5, 17, 55]). While speech-based input is sometimes 
an option, it is often not socially acceptable and can be a risk to 
privacy [37]. 

QWERTY-based touch-typing on physical keyboards remains 
the most common text input skill of computer users [11], utiliz-
ing multiple hands and fngers and relying on tacit knowledge of 
learned key positions. Although the QWERTY layout was not in-
vented for optimal speed [9], the fact that people are so familiar 
with the layout has motivated text entry researchers to build upon 
QWERTY [2, 19, 53, 60, 61, 65]. We therefore want to leverage the 
physical QWERTY keyboard typing experience in our efort to dis-
cover a solution for ubiquitous computing text entry, but without 
presuming the availability of mechanical keys. What if we could 
type on an imaginary QWERTY keyboard on any surface, just like 
we type a physical keyboard? 

To explore this question, our work developed TypeAnywhere, a 
QWERTY-based text entry solution for everyday use in ubiquitous 
computing contexts (Figure 1). TypeAnywhere employs wearable 
sensors on two hands that detect fnger-tap actions, a decoder that 
converts tap sequences into text, and a corresponding interface 
for text editing. TypeAnywhere’s hardware is the commercial Tap 
Strap1 product, which uses accelerometers for tap detection. We 
feed a detected fnger-tap sequence to a neural decoder modifed 
from the BERT model [10], which then displays the output text on 
the typing interface. Similar to Type, then Correct [71], we also de-
signed a text correction interaction for TypeAnywhere that avoids 
the need for cursor navigation. 

An important feature of TypeAnywhere is that it does not rely 
on position information to decode the intended letters being typed 
by the user. Rather, TypeAnywhere relies only on the index of the 
fnger being tapped and the context provided by the text entered 
thus far. Because TypeAnywhere only uses the index of the tap-
ping fnger without relying on (x ,y) position information, the user 
can perform the tap at any location, so long as they use the cor-
rect fnger. This scheme simplifes the design space, enabling us to 
both generalize the decoder easily for diferent fnger-to-key map-
pings, and to achieve high accuracy on text decoding. Unlike other 
QWERTY-based text entry research projects [14, 15, 63, 65, 76], 
which had to conduct user studies to collect spatial information for 
model-building, we were able to train the model without collecting 
data from user studies. Instead, we curated the training data by 
converting each letter in a phrase set to its corresponding fnger 

1https://www.tapwithus.com/ 

ID. In this way, we were able to train the model on a large text 
corpus containing over 3.6 million samples [75] and adapt diferent 
fnger-to-key mappings by altering the fnger IDs in the training set. 
We performed computational evaluations on the neural decoder, 
achieving a 1.6% character error rate (CER) on the Cornell Movie-
Dialogue Corpus [8], compared to a 5.3% CER using a conventional 
n-gram language model. 

Without the tactile feedback provided by mechanical keys, whether 
users can efectively take advantage of TypeAnywhere’s neural de-
coding power required us to conduct an empirical evaluation. So to 
evaluate TypeAnywhere, we performed a longitudinal user study 
with fve participants over fve days. In our study, participants used 
TypeAnywhere on a table surface for a half-hour each day, achiev-
ing an average of 70.6 WPM and 1.50% CER. The best performer 
achieved 91.4 WPM and 3.15% CER after fve days of use (or 2.5 
total hours). To test the convenience of TypeAnywhere, partici-
pants also performed typing on their laps, reaching 43.9 WPM and 
1.37% CER. Our results demonstrate that users can quickly learn Ty-
peAnywhere with minimal practice and achieve high performance 
after practicing for a total of 2.5 hours. As a result, we think Ty-
peAnywhere has potential as a text entry solution for ubiquitous 
computing environments. To support TypeAnywhere’s adoption, 
we provide an open-source implementation including our neural 
language model.2 

2 RELATED WORK 
There have been many projects aiming to provide alternative text 
entry solutions beyond the traditional desktop [67]. In this section, 
we frst review existing text entry interactions with wearable de-
vices. We then ofer a deeper look at QWERTY-style interactions 
that mimic the physical keyboard typing experience. Finally, we 
provide a brief review of recent advances in neural decoders and 
language models. 

2.1 Text Entry with Wearable Devices 
Text entry research for wearable devices has gained a lot of atten-
tion because of the potential for always available input. One text 
entry design for wearables involves typing on an external device. 
For example, Twiddler [33] used a one-handed chording keyboard, 
where the user gripped the device and pressed multiple keys si-
multaneously to enter a character. The reported average speed was 
26 WPM after 400 minutes (6.67 hours) of practice. Yu et al. [66] 
demonstrated one-dimensional gestures for text entry on smart 
glasses. Smartwatch text entry also falls into the wearables category 
[19, 24, 29, 39, 63, 64], where the user performs text entry through 
the interface of the watch device. For example, COMPASS [64] uti-
lized a rotary dial on the watch for character selection, reaching 
12.5 WPM with a dynamically positioned cursor. WatchWriter [19] 
implemented both tap- and swipe-based [26] text entry on a watch, 
achieving 24 WPM with 3.7% character error rate (CER). Veloci-
tap [51] studied committing one word, multiple words, and one 
sentence at a time for smartwatch input. 

Another category of text entry interactions for wearables is 
freehand typing with external sensors. For example, TipText [61] 
(average speed 13.3 WPM) and BiTipText [60] mapped the QWERTY 

2https://github.com/DrustZ/TenFingerTyping 
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layout onto a user’s index fnger and enabled “subtle” text entry 
with thumb-to-index taps sensed by capacitive overlays. BiTipText 
reached an average speed of 23.4 WPM. QwertyRing [21] was a 
ring that detected taps of the index fnger and reached 21 WPM. 
Finger-T9 [58] (average speed 5.42 WPM) mapped the layout of 
a 9-key number pad to a user’s fnger segments for the thumb to 
tap. WrisText [17] detected wrist motions by proximity sensors 
and enabled joystick-like whirling input for text entry, reaching 
an average of 15.2 WPM. PinchType [12] (average speed 12.54 
WPM) grouped letters that would be typed by the same fnger on 
a QWERTY keyboard, and detected fnger pinches for QWERTY-
style input. SCURRY [25] was a glove-like device that detected 
fnger taps with gyroscopes and accelerometers, and users entered 
text by pointing and clicking. ARKB [28] projected a see-through 
augmented reality keyboard using a head-mounted display, and 
tracked fnger movements through cameras. TelemetRing [49] was 
a wireless ring-shaped keyboard that detected fnger taps, similar to 
the fnger-worn devices used in this project. However, TelemetRing 
used a chording system for text entry and did not report users’ 
performance (as neither did SCURRY and ARKB). 

In sum, the search for efective text entry methods with wearable 
devices is both longstanding and ongoing. Challenges to fnding 
satisfactory methods include learning new skills [17, 33, 66] and 
slow performance (i.e., less than 20 WPM). One promising direc-
tion for overcoming these challenges is to leverage users’ existing 
QWERTY keyboard typing skills, as we do in this work. 

2.2 QWERTY Touch Typing 
Ten-fnger touch-typing on a QWERTY layout has been studied 
extensively since at least the 1970s [20, 43–45]. To understand how 
people perform touch typing with diferent fnger-to-key mappings, 
Feit et al. [13] observed 30 participants typing on a physical key-
board. They found that people who did not type with the standard 
fnger-to-key mapping (Figure 2)3 could also reach high levels of 
performance, over 70 WPM. Through clustering they identifed six 
mapping strategies for the right hand and four strategies for the 
left. In a follow-up study [11], they found that rollover key-pressing 
was a key factor for fast typing, and faster typists often used more 
fngers to type. In other work, Findlater et al. [15] performed em-
pirical studies of ten-fnger typing on touch screens and found that 
the typing speed (58.5 WPM) was 31% slower than the physical 
keyboard without any feedback. 

There are several projects also trying to enable QWERTY-style 
10-fnger typing without using a keyboard. The most similar con-
cept to TypeAnywhere is from Goldstein et al. [16], where they 
proposed a QWERTY-style typing interaction using a pair of gloves. 
However, their evaluation was only conducted on a mock-up with-
out a functioning prototype. In our work, we realized the TypeAny-
where concept in a fully working system, including with personal-
ization, editing interactions, and advanced language models. The 
Canesta prototype [42] projected a keyboard on a table to enable 
QWERTY-style typing. TOAST [46] was an eyes-free keyboard that 
enabled the user to type on large touch screens without a visible 
keyboard. With its Markov-Bayesian algorithm for spatial decoding, 

3The standard fnger-to-key mapping can be found at https://agilefngers.com/articles/ 
touch-typing-fnger-placement 

Figure 2: The standard fnger-to-key mapping of the letters 
on a QWERTY keyboard. The mapping of the thumbs to the 
spacebar is not shown. 

participants reached an average speed of 44.6 WPM. However, this 
technique could only be applied on devices with large touch screens. 
Relatedly, Findlater et al. [14] showed how machine learning could 
be used to design touch screen keyboards on interactive table-
tops that adapt at runtime to evolving fnger positions. ATK [65] 
provided for mid-air typing using computer vision hand-tracking, 
reaching an average speed of 29.2 WPM. However, mid-air typing 
lacks tactile feedback and can easily cause fatigue. Richardson et al. 
[41] implemented a vision-based text entry system relevant to this 
project, where hand motion captured by cameras was fed into a 
neural network decoder that then output the decoded text corrected 
by another neural language model. Although they did not perform 
a user study to evaluate their system, the ofine CER was reported 
to be 2.22%. While promising, such computer vision-based systems 
still require fxed-position cameras overlooking the hands wearing 
arrays of markers, making such systems impractical for ubiquitous 
computing. 

Another common barrier for of-desktop QWERTY-style 10-
fnger typing systems is the training usually required. All of the 
projects mentioned above need to collect typing data from users 
to train spatial models [41]. This need for training data can hinder 
the generalizability of the approaches, as people type with difer-
ent fnger motion characteristics and even diferent fnger-to-key 
mappings [13]. In contrast, TypeAnywhere only utilizes the fnger-
tap sequence for decoding, eliminating the need for motion data 
collection for model training. The fexibility of TypeAnywhere’s 
minimal training process makes it easy to generalize through dif-
ferent fnger-to-key mapping strategies. 

2.3 Statistical Language Decoders 
Traditional statistical decoding methods for soft keyboards were 
proposed by Goodman et al. [18], who applied a bivariate Gauss-
ian distribution to model the touch positions of each key and a 
character n-gram language model for auto-correction. Subsequent 
work generally has focused on improving the spatial model, such 
as adding constraints on the key regions [22]. The main language 
modeling method for text entry remains n-gram models [4, 19, 53], 
although some projects have explored phrase-level decoding where 
the model decodes the input not only by its preceding text, but also 
by the text that follows [53, 73]. 

Recent advances in Natural Language Processing (NLP) have 
demonstrated the power of neural networks. Deep neural network 

https://agilefingers.com/articles/touch-typing-finger-placement
https://agilefingers.com/articles/touch-typing-finger-placement
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language models (NNLM) trained on large amounts of text have 
achieved impressively low perplexity [3, 10, 50], and state-of-the-
art performance on many language understanding tasks. Unlike 
traditional n-gram models, neural networks can take more textual 
context into account during the modeling process. In this work, we 
applied the BERT [10] language model for input sequence decoding. 
The model was pre-trained on 3.3 billion words and fne-tuned for 
the fnger-to-text task with extra training data, which is explained 
in Section 4.3, below. 

3 ENABLING THE TYPEANYWHERE 
EXPERIENCE 

TypeAnywhere aims to provide users with a QWERTY-style typing 
experience similar to typing on a physical QWERTY keyboard, 
except that typing occurs on any surface without the beneft of 
mechanical keys. The TypeAnywhere system contains the following 
building blocks: the hardware that detects fnger taps, the neural 
language model that decodes the input sequence into text, and the 
interface that allows text composition and editing. In this section, 
we describe TypeAnywhere’s interaction and user interface. In 
Section 4, we describe TypeAnywhere’s neural language decoder. 

3.1 Typing Interaction 
TypeAnywhere’s hardware interface comprises two wearable de-
vices called Tap Straps,4 which each have fve connected rings that 
can be worn on each fnger (Figure 3). Each ring contains a three-
axis accelerometer that detects when a fnger performs a tap action, 
the detection of which it is reported to have over 98% accuracy.5 

The intended purpose of Tap Strap is for one-handed text entry with 
a proprietary chording system.6 https://www.tapwithus.com/wp-
content/uploads/2018/09/Tap-Alphabet-Glossary-2.pdf As prior 
chording-based text entry systems have shown (e.g., [33]), chords 
can take considerable time to learn and master. The reported best 
performance using the default Tap Strap chording system is 62 
WPM, which was achieved after three weeks’ practice.7 To the 
best of our knowledge, Tap Strap is the most afordable and ac-
curate commodity device for fnger-tap detection on the market. 
Because of Tap Strap’s small form factor, users can wear the device 
comfortably. However, due to the requirement that users learn a 
proprietary one-handed chording scheme, Tap Strap’s widespread 
adoption seems extremely unlikely absent eforts like ours to enable 
familiar QWERTY-style typing. 

TypeAnywhere’s typing interaction resembles the same typing 
interaction as one would use on a physical QWERTY keyboard. 
Specifcally, users perform fnger taps based on their own personal 
fnger-to-key mappings, and the most likely character is produced. 
Users can perform fnger taps on hard surfaces such as tabletops or 
walls, or on soft surfaces such as their stomachs or laps. The tap 
of the two thumbs is mapped to the spacebar, as most people use a 
thumb for spacebar pressing [15]. Essential text editing functions 
are also mapped to certain multi-fnger chords, as shown in Figure 4. 

4https://www.tapwithus.com/
5https://www.tapwithus.com/how-to-the-tap-strap-works/
6The default chording scheme of TapStrap is provided at 
7See https://www.tapwithus.com/wpm-contest. Note that this is advertised as a com-
mercial contest and the reported performance is therefore the best achieved from 
among all customers. 

The backspace gesture was the same as the default Tap Strap gesture, 
and we assigned symmetrical gestures to both hands to improve 
learnability [1]. We also assigned gestures only to neighboring 
fngers (for example, index + middle + ring) to make them easy to 
perform. We did not assign backspace to any specifc fnger because 
(1) each fnger was already assigned with a set of letters, and (2) 
people were inconsistent with which fnger they used to press 
backspace [13]. Assigning a backspace fnger would add too much 
ambiguity to the typing process, as there was no clear indication of 
whether the user wanted to type a letter or backspace text. 

Figure 3: The hardware used in TypeAnywhere. (a) The Tap 
Strap device. (b) The user wearing two Tap Strap devices. 

Figure 4: The tap-chords for text editing in TypeAnywhere. 
For the rightmost gesture, which performs candidate selec-
tion from a word list, the user can either tap the thumb and 
index fnger, or perform a pinch gesture. 

3.2 Typing Interface 
To evaluate TypeAnywhere’s interaction, we designed a web app 
implemented in JavaScript as an evaluative user interface (Figure 
5). There are four components of this interface: (1) the test area, 
which displays the target string for evaluation, used in lab studies 
only; (2) the commit area, which displays the committed text cor-
responding to the text view in apps; (3) the compose area, which 
contains the text that is being decoded; and (4) the candidate list, 
which displays the word candidates of the current typing sequence. 
Alternatively, the compose area could be integrated into the com-
mit area by diferentiating its content with underlines or diferent 
colors [73]. 

When the user starts typing, the fnger-tap sequence is decoded 
in real-time and the output text is displayed in the compose area. 
Text in the compose area might change as the user taps more letters 
because the decoder can utilize the full tapping sequence as context 
to improve decoding quality. For example, if the user taps the right 
index fnger (YHNUJM) and then the left middle fnger (EDC) under 
the standard fnger-to-key mapping, the decoded text will be “me”. 

https://www.tapwithus.com/wp-content/uploads/2018/09/Tap-Alphabet-Glossary-2.pdf
https://www.tapwithus.com/wp-content/uploads/2018/09/Tap-Alphabet-Glossary-2.pdf
https://www.tapwithus.com/wpm-contest
https://5https://www.tapwithus.com/how-to-the-tap-strap-works
https://4https://www.tapwithus.com
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Figure 5: The TypeAnywhere web app. There are four main 
components in the interface. Note that the test area, redo 
button, and next button are for user study purposes only, 
and would not be present when just using TypeAnywhere. 

If the user continues typing with a thumb, right middle fnger, and 
then left ring fnger, the decoded text becomes “he is”. 

When the user is ready to “commit” a string of decoded text, she 
can tap the space key twice to output the text from the compose 
area to the commit area. This type of design is commonly seen in 
typing interfaces for Asian languages, such as Chinese and Japanese, 
which usually contain a temporary textbox holding intermediate 
input before it is committed. The user can also delete the text in 
the commit area if the compose area is empty. An example of the 
user’s typing fow is depicted in Figure 6. 

The user can also select a candidate for the currently typed word 
from a candidate selection list as shown in Figure 6d. If the user 
performs the selection gesture shown at the far right of Figure 4, 
the candidate selection function will be triggered and the candidate 
word will be highlighted in orange. The user can use the selection 
gesture to navigate through the candidates and then tap space to se-
lect the candidate, which copies it into the compose area (Figure 6e); 
or, the user can tap the backspace chord to cancel the candidate se-
lection. (Candidate word lists raise the specter of out-of-vocabulary 
words. We describe how the user can enter such words in Section 
3.4, below.) 

3.3 Text Editing with “Type, then Correct” 
As the user fnger-taps with TypeAnywhere, the text in the compose 
area often changes, as the decoder continually processes entered 
fnger-taps in light of surrounding textual context. At times, the 
text in the compose area will not be what the user intends, but by 
providing more textual context, the resolved text might conform 
to the user’s desires. Therefore, the user is encouraged to continue 
typing in TypeAnywhere, even when the currently decoded text 
is not (yet) what the user wants. However, in cases where further 
context does not resolve the decoded text to match the user’s in-
tentions, the user can edit the text; however, at this point, they 
will be well ahead of the error position. This situation can result in 
user uncertainty and editing inefciencies that are not desirable in 
TypeAnywhere. 

To address this issue—that is, letting users continue to type, 
which provides the decoder with valuable additional context, but 

Figure 6: The typing fow of TypeAnywhere. The user is typ-
ing the sentence “he is begging” with the standard fnger-
to-key mapping. (a) After typing the frst word, the decoder 
outputs “me” as the most probable text. (b) With more in-
put context, the decoder is able to decode the tap sequence 
to “he is”. (c) The user frst double-taps space to commit “he 
is” to the commit area, then types the last word decoded as 
“getting”. (d) The user then performs a selection gesture to 
trigger candidate selection and navigate to “begging”. (e) The 
word “begging” is now entered in the compose area after the 
user presses space. 

also avoids costly error correction situations—we employ the text 
correction scheme from Type, then Correct [7, 71], which lets the 
user type a correction at the end of their current text stream and 
then apply it directly and retroactively to a previous error without 
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Figure 7: The correction interaction fow: (a) After committing the text containing the error word “came”, the user types the 
correction “come” in the compose area. (b) The user then triggers the correction function. Possible errors are highlighted: both 
“came” and “home” have one fnger-sequence edit distance with “come”, hence the last word, “home”, is highlighted in orange. 
(c) The user then employs the selection gesture to navigate between the candidates. (d) After the user presses the (virtual) 
spacebar, “came” is corrected to “come”. 

any cursor navigation. In the context of TypeAnywhere, if there are 
errors perhaps multiple words behind the current typing position, 
the user can commit all current compose area text to the commit area, 
and then type the corresponding correction in the compose area. The 
user can then tap the chord to trigger the correction function (Figure 
4, left). The function compares the similarity of the correction word 
and the words in the commit area based on their fnger-sequence 
edit distances, as described in the next paragraph. All words that are 
less than or equal to two edit-distance will be highlighted in yellow, 
with the shortest distance word being highlighted in orange. The 
user can then navigate through the possible errors and tap their 
virtual spacebar to commit the correction. To cancel correction 
mode, the user simply taps their virtual backspace. The whole 
correction interaction fow is demonstrated in Figure 7. 

Edit distance refers to the minimum number of character edit 
operations (substitute, insert, delete) to change one string into an-
other [30]. In TypeAnywhere, because the text is decoded based on 
fnger-tap sequences, we compare the fnger-sequence edit distance 
to implement our correction function. For example, in the standard 
fnger-to-key mapping, the word “far” (left index - left pinky - left 
index) has the same fnger sequence as the word “rat”, and has 
a fnger-sequence edit distance of one with the word “get” (left 
index - left middle - left index). Note that in our fnger-sequence 
edit distance calculation, along with substitutions, insertions, and 
deletions, we also added transpositions, thereby handling cases 
when fnger-taps are interchanged, such as typing the sequence 
“information” as “infromation”). 

3.4 Out of Vocabulary Words 
As the provided word candidates are all in-dictionary words, typing 
out-of-vocabulary (OOV) words takes a little more efort. With 
TypeAnywhere, to enter an OOV word, the user needs to type the 
word character by character, and select the correct character in the 
candidate list each time. For example, to type the string “zmr” with 
the standard fnger-to-key mapping, the user presses his left pinky 
frst and selects “z”; then presses his right index and selects “m”; 
and fnally presses the left index and selects “r”. 

4 THE NEURAL LANGUAGE DECODER 
We now present the neural language decoder that converts a fnger-
tap sequence to text output in TypeAnywhere. Below, we explain 
the data processing and model training procedures, and report the 
model evaluation results. 

4.1 Converting Text into Finger Sequences 
Preparing the training data for the TypeAnywhere model is straight-
forward. As it only requires fnger-tap sequences, we can reverse 
the decoding step to generate the training data: take the fnger ID 
sequences corresponding to the character sequences in a corpus 
as the network input data, and the character sequence itself as the 
label. We assigned a unique ID to each fnger: 2 – 5 for pinky to 
index fnger of the left hand, and 6 – 9 for index to pinky fnger of 
the right, and 1 for the two thumbs. For example, if we are creating 
the training data for the standard fnger-to-key mapping, the phrase 
“sunny day” would be converted to “366661426”. Because the model 
does not need fnger motion information, generalizing the data to 
other fnger-to-key mappings is easy, as we just need to change 
the fnger ID for certain characters. For people who type the same 
letter with multiple fngers (such as typing the letter “u” with their 
index or middle fngers [13]), we can generate multiple training 
samples for each combination of the mapping. (Usually, people type 
one key with no more than two fngers [13], meaning the number 
of combinations will not be too large.) 

4.2 BERT-Based Neural Language Model 
The neural language model used for decoding fnger-tap sequences 
in TypeAnywhere is based on the BERT model [10]. To fne-tune 
the model for our task, we used the fnger-tap sequence as the input 
to make the BERT model output the corresponding characters 8. 
Specifcally, we added a linear classifcation layer on top of the 
BERT base model to generate the character for each input code. We 

8We needed to fnetune the BERT model for the fnger mapping purpose as the language 
model itself could not be directly used for the mapping purpose, otherwise the system 
would query the model for every fnger tap, which was very computational expensive 
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Figure 8: Input and output of the BERT decoder model. 

decided to decode on the character level to provide real-time feed-
back for each tap action, even if the user has not yet fnished typing 
the entire word. Another important motivation for decoding on 
the character level is that such a model can be used to type out-of-
vocabulary (OOV) words not in the training data (see Section 3.4). 
Our implementation is based on the open-sourced transformers 
library [57]. Specifcally, we used the bert-base-uncased pre-trained 
model. The model employed the multi-layer bidirectional trans-
former structure [50] with 12 transformer blocks, 769 hidden layers 
and 12 self-attention heads. It was pre-trained with a masked lan-
guage model (i.e., predicting a hidden word with its surrounding 
context) and next-sentence prediction tasks on 3.3 billion words 
[10]. BERT was reported to achieve state-of-the-art performance 
on many language understanding tasks, and became the basis for 
many subsequent language models [27, 31, 62]. 

The fow of the model input and output is illustrated in Figure 
8. Given a fnger-tap sequence, our model will classify each tap in 
the sequence as a corresponding character. Because the committed 
text also provides useful contextual information for the decoder, we 
also include the text in the commit area (we call this pre-text) in the 
typing sequence. For example, if the user taps "right middle – left 
ring – thumb – left index – right ring – right ring – left middle" after 
committing the text “the weather”, then the input to the model will 
be: 

[CLS] the weather [SEP] 7 3 1 5 8 8 4 [SEP] 

Here "[CLS]" and "[SEP]" are special tokens representing the 
start of the input and the separator of diferent parts of the input. 
The pre-text is then tokenized by the model at a sub-word level [59] 
while the fnger IDs are all special tokens, and the decoded text will 
be “the weather is good”. In the TypeAnywhere interface (Figure 
5), the text in the commit area is treated as the pre-text. 

4.3 Data Collection 
We used the Yelp and Amazon review dataset generated by Zhang et 
al. [75] containing over 3.6 million reviews. For each review in the 
dataset, we cropped consecutive sequences containing 5 – 25 words, 
and removed all numbers and special characters so that sequences 
only contained the 26 Roman letters and the space character. For 
each sequence with n words, we then randomly selected m words 
as the pre-text (0 ≤ m < n), with the rest of the text converted to a 

fnger sequence. For the test dataset, we used the Cornell Movie-
Dialogs Corpus [8], which contained conversational exchanges 
from movie scripts. The purpose was to test the performance in 
a conversational setting so that the evaluation could refect real 
usage scenarios for ubiquitous text entry. We randomly selected 
10,000 phrases containing fewer than 25 words from the corpus. In 
all, we gained 44 million training samples and 10,000 test samples. 

4.4 Training Process 
We fne-tuned the BERT-based model with a linear classifcation 
layer (similar to a token classifcation task in NLP [10]). We cal-
culated the cross-entropy loss of the output characters versus the 
ground truth text from the fnger sequence. We used the AdamW 
optimizer [32] with a learning rate of 3e-5, and trained the model 
for one epoch. We applied weight clipping of [−1.0, +1.0], and the 
batch size was set to 12 due to hardware limitations. 

4.5 Model Evaluation 
The best performance of the model on the test dataset (Cornell 
Movie-Dialogs Corpus[8]) reached 1.6% character error rate (CER) 
for an average sentence. To compare its performance with tradi-
tional language models, we also trained a 5-gram word-level lan-
guage model using the KenLM library [23] on the same training 
dataset, and we excluded the punctuation and special characters 
other than Roman letters and space. We also applied Kneser-Ney 
smoothing [38]. The fnal binary model was 12 GB, which was large 
compared to the 440 MB BERT model. For evaluation purposes, we 
pruned the KenLM model by fltering out the words that were not 
in the test dataset (the movie corpus) to speed computation. The 
pruned version contains 27,000 1-grams, 0.8 million 2-grams, 2.7 
million 3-grams, 4.2 million 4-grams and 4.6 million 5-grams. 

To test the 5-gram model, for each word in a test phrase, we 
frst found all possible candidate words based on the word’s fnger 
sequence. Candidate words were searched from the Open American 
National Corpus (OANC) word frequency dictionary [36], which 
contained over 22 million words of written American English. We 
then selected the best word candidate based on probabilities from 
the language model using the back-of strategy. Both neural and 
5-gram decoders were given whole fnger-tap sequences, and they 
both had access to all contextual information. The 5-gram model 
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Figure 9: Finger-tap sequence beam search example. The original sequence is “6489” with the last fnger being ‘9’. Seventeen 
extra combinations are then added to the sequence list, and each possible sequence is processed by the decoder. The decoder 
outputs the probability for each sequence, and beam search then selects the top-K (here, K=3) sequences. If the user taps a 
new fnger, for example, fnger ‘4’, the new tap sequences would be “64894”, “64884”, and “6484”. Each of the three sequences 
then go through the procedure again; this time, there will be 3 × 18 = 54 total possible sequences, and beam search will select 
the top-K sequences from among all candidates. 

achieved 5.3% CER. The results showed that the neural language 
model was both lighter and more accurate than a traditional n-gram 
model. 

4.6 Candidate Generation and Auto-Correction 
with Beam Search 

Of course, TypeAnywhere’s neural decoder is not 100% accurate, 
and users may also type an incorrect fnger-tap sequence for their in-
tended word. We devised and implemented a few simple algorithms 
to complete TypeAnyWhere in order to address these challenges. 
To provide alternative word candidates for a fnger-tap sequence, 
we searched the sequence in the OANC word frequency dictionary 
[36] (e.g., search the words whose character sequence is the same as 
the fnger sequence), and collected the fve most frequent of these 
words as alternate candidates. We did not use the BERT model 
for candidates, as it was designed to output character-level results, 
which did not work well for generating alternate word candidates. 

We also needed to deal with situations in which the user typed 
the word incorrectly, such as missing a tap or interchanging the tap 
sequence. We developed an auto-correction feature based on beam 
search for the neural language model. Each time the user performed 
a tap, we searched through all possible hypotheses for diferent 
error types [56]. Besides decoding the detected fnger-tap sequence, 
we also substituted the last fnger ID with other fnger IDs to detect 
substitution errors, omitted the last fnger ID to detect insertion 
errors, interchanged the last two fnger IDs for transposition errors, 
and appended one extra fnger ID for omission errors. In total, 17 
extra sequences were decoded alongside the original sequence. 

As an example (Figure 9), consider when the user taps the fnger 
sequence “6489”. (Recall that fnger IDs ranged from ‘2’ to ‘9’ in 
the model, and we here excluded the thumb IDs of ‘1’ for spacebar 

in beam search.) The possible combinations then include seven 
sequence substitution errors (“648x” where ‘x’ is ‘2’ to ‘8’), one 
sequence for insertion errors (“648”), eight sequences for omis-
sion errors (“6489x” where ‘x’ is ‘2’ to ‘9’), and one sequence for 
transposition errors (“6498”). 

If we maintain all possible sequences each time a new fnger-tap 
is detected, the number of the sequences will explode as tapping 
continues. We therefore applied beam search to reduce the number 
of sequences, similar to the surface touch-decoding algorithm [41], 
where we only kept the top K sequences with the highest probabili-
ties for each step. When a new tap was detected, we generated new 
sequences for error corrections based on the K sequences. In this 
project, K was set to 3, meaning for each tap, TypeAnywhere takes 
the top-3 sequences thus far. In this way, the model was able to de-
tect most user errors caused by fnger mis-taps. The best candidate 
of the current tap sequence was then displayed in the compose area 
of the interface in Figure 5. 

5 EVALUATION OF TYPEANYWHERE 
To evaluate the performance of TypeAnywhere in realistic settings, 
we conducted a longitudinal user study. Although TypeAnywhere 
utilized a QWERTY style of typing, we anticipated that it still would 
take time for users to acclimate to the fnger-worn devices and the 
feeling of typing without a keyboard. 

5.1 Participants 
We recruited 10 participants (aged 23 – 28, all men9) for the study 
via word-of-mouth and online forums. The study was longitudinal 
over fve days, resulting in 50 participant sessions and the ability 

9We recognize the limitation of only having men in this study. We had all men because 
of the size of Tap strap, which ft men’s hands better than women’s. 
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to observe learning. We required that participants were able to 
perform desktop QWERTY typing without looking at the keyboard, 
and that they were consistent with their own personal fnger-to-key 
mappings, i.e., they always used the same fnger to type a given 
letter. Due to the COVID-19 pandemic, it was extremely difcult to 
recruit participants; we therefore included one participant (“P1”) 
who was not consistent with his fnger-to-key mappings, but was 
able to commit his time to the study. P1 could type on a physical 
keyboard without looking, but he used multiple fngers to press 
certain letters, such as “uio”, for diferent words. Therefore, we can 
regard P1 as a novice learner for TypeAnywhere, as he needed to 
learn fxed fnger-to-key mappings for the study. 

Among the other nine participants, six typed with standard 
QWERTY fnger-to-key mappings, while the other three typed the 
letter “b” with the right index fnger and “c” with the left index 
fnger. We therefore trained two decoding models for the study; the 
models’ performance was similar for the ofine data. 

Our study was approved by our university’s Institutional Review 
Board, and all participants provided consent to participate. 

5.2 Apparatus 
The typing device used was the Tap Strap mentioned in Section 3.1. 
We built a server written in Python to handle the HTTP communi-
cation between the web interface, the hardware, and the decoder. 
The model ran on a machine with a GTX 1080 graphics card. The 
testing software was from the TextTest++ open-source text entry 
evaluation project [72, 74]. 

5.3 Procedure 
The study was a fve-day longitudinal study. After a participant 
signed an online consent form, the experimenter sent the hardware 
apparatus to the participant’s home, and instructed the partici-
pant on the use of the device and the web interface via Zoom 
videoconferencing.10 Specifcally, the typing interaction, the text 
editing gestures, and the correction function were demonstrated. 
Participants then started to practice typing with the device in the 
TextTest++ web application. The phrase sets for both practicing 
and testing were from the MacKenzie and Soukoref phrase set [34] 
and the Enron email phrase set [52]. We randomized and divided 
the phrases so that they were diferent for practicing and testing in 
any given session, and also diferent from one session to the next. 

Separate sessions occurred over fve consecutive days. In each 
session, participants would practice typing with TypeAnywhere 
for 30 minutes on their desk surfaces, and then start testing. During 
practice, the web interface also displayed a QWERTY layout for the 
participants to refer to. For testing, 20 diferent phrases were used 
each day. Participants were instructed to type as fast and accurately 
as possible. The “enter” gesture was used to submit a completed 
phrase. During the evaluation, the participants were told that they 
could rest before typing each phrase, but needed to fnish without 
stopping a phrase once they began typing it. We logged participants’ 
typing using the transcription sequence model [72], which recorded 
all the intermediate text during the typing procedure to enable a 

10Due to the COVID-19 pandemic, we conducted the study remotely via Zoom. Our 
hardware apparatus was shipped to each participant and sanitized between each use. 

thorough analysis of the input. After the evaluation, participants 
sent their log fle to the experimenter. 

On Day 1, the frst day, participants performed the same typ-
ing test on their desktop keyboards to provide a baseline of their 
typing performance on a mechanical QWERTY keyboard. On Day 
5, the last day, participants also performed a typing-on-their-lap 
evaluation with TypeAnywhere. The evaluation for the desktop 
keyboard session contained 30 phrases, while the evaluation for 
the typing-on-lap session contained 20 phrases, the same as the 
tabletop condition. At the end of the study on day 5, we conducted a 
debriefng session with participants, gathering their feedback from 
using TypeAnywhere. They also took a NASA Task Load Index 
(TLX) questionnaire on TypeAnywhere. 

6 RESULTS 
We gathered 1500 phrases in total (5×20×10 = 1000 phrases for the 
tabletop condition, 10 × 30 = 300 phrases for the desktop keyboard 
condition, 10 × 20 = 200 phrases for the typing-on-lap condition). 

The average performance in each condition is shown in Table 1. 
We also report each participant’s performance individually to reveal 
more insights. We refer to the three conditions, respectively, as 
tabletop, on-lap, and keyboard (i.e., typing on a mechanical desktop 
keyboard). 

6.1 Text Entry Speed 
Overall performance. Participants’ average typing speed is shown 
in Table 1, with the corresponding learning curve shown in Figure 
10. Their speed on Day 1 was 41.6 WPM, already comparable to 
mobile phone touch or gesture typing after fve days of practice [40]. 
Their speeds increased each day with this trend still continuing by 
the end of the study. Compared to the mechanical desktop QW-
ERTY keyboard (87.8 WPM), participants reached 70.6 WPM with 
TypeAnywhere on the last day. The 19.6% (17.2 WPM) diference be-
tween TypeAnyWhere and the desktop keyboard was smaller than 
the previously reported diference between touchscreen tabletop 
keyboards [15] and desktop keyboards. 

Figure 10: The average words per minute and its ftted learn-
ing curve for TypeAnywhere being used by participants 
fnger-tapping on a desk. The extrapolated curve is limited 
to twice the number of sessions [35] 

Typing-on-lap performance. The 43.9 WPM speed of the typing-
on-lap condition also demonstrated the feasibility of TypeAny-
Where to be used in of-desktop conditions: As long as there is a 
surface, the user can perform QWERTY-style text entry with reason-
able speed. However, as people’s laps are softer than table surfaces, 
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Table 1: The average words per minute (WPM) and character error rate (CER) and standard deviations (SD) on each day for 
all participants with TypeAnywhere. Performance with the mechanical desktop QWERTY keyboard and in the typing-on-lap 
conditions are also shown. 

Day 1 Day 2 Day 3 Day 4 Day 5 Keyboard On-lap 

WPM 41.6 (16.3) 52.6 (19.5) 59.5 (21.4) 68.2 (18.9) 70.6 (19.9) 87.8 (27.8) 43.9 (17.2) 
CER (%) 1.05 (7.34) 1.71 (3.75) 0.95 (2.67) 1.54 (4.06) 1.50 (3.42) 1.77 (4.31) 1.37 (3.52) 

Figure 11: Words per minute (WPM) over fve days for each participant. Higher is better. The upper horizontal line in each 
graph represents the desktop keyboard speed; the lower line in each graph represents the typing-on-lap speed. The vertical 
bar on each data point represents the 95% confdence interval. 

TypeAnywhere’s fnger-tap detection performed less accurately on 
laps, causing some false-negative non-detections. That said, typing 
on laps is an odd but potentially useful scenario compared to typing 
on frm table surfaces, so some degradation of performance is to be 
expected. 

Individuals’ performance. Figure 11 shows each participant’s 
performance across the fve days. All participants increased their 
typing speeds over time, although there were some small drops 
due to the vagaries of the test phrases and human performance. 
With TypeAnywhere, participants reached between 73.7% and 98.3% 

(mean 80.4%) of their desktop QWERTY keyboard typing speeds 
on the last day. The fastest typist (P5) reached 91.4 WPM, while 
P2 even reached a typing speed with TypeAnywhere very close 
to his desktop keyboard typing speed on the ffth day, about 80 
WPM. The novice learner P1 reached 84.2% of his desktop keyboard 
typing speed, although he had to learn both the interaction and 
the fnger-to-key mappings in the study. The results suggest that 
people can learn TypeAnywhere in a relatively short period of time, 
even if they do not follow fxed fnger-to-key mappings. 
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Figure 12: Character error rates (CER) over the fve day study for each participant. Lower is better. Here we use Uncorrected 
Error Rate (UER) [47, 72] as CER. The upper horizontal lines in each graph represent the desktop keyboard CER; the lower 
lines represent the typing-on-lap CER. The vertical bars on each data point represent 95% confdence intervals. 

6.2 Error Rate 
Overall performance. Participants’ average character error rates 
(CER) are shown in Table 1. These error rates were operationalized 
as uncorrected errors in the fnal transcribed text, as such errors 
trade-of against speed [74]; in contrast, corrected errors were not 
counted in CER, since any errors made but fxed during entry 
take time and are thus subsumed by speed. There is no obvious 
trend for the error rates, but the desktop keyboard condition had 
the biggest CER on average. From our log fles, we observed that 
participants generally made more corrections (i.e., they pressed 
more backspaces) when typing with TypeAnywhere than in the 
desktop keyboard condition. However, since they left fewer errors 
in their fnal transcriptions, their resultant CER was lower. 

Individual performance. Figure 12 shows each participant’s 
error rate across the fve days. The CER of all participants remained 
low for all fve days. P2, P3, and P4 were even able to achieve lower 
error rates than the desktop keyboard condition for all sessions, 
despite the lack of physical keys for TypeAnywhere. Because of 

auto-correction, participants tended to leave few typos with Ty-
peAnywhere. 

Utilization of “Type, Then Correct”. We logged the frequency 
of participants using the Type, Then Correct (TTC) [71] correction 
feature in the study, fnding that only four participants (P0, P2, 
P4 and P8) used this interaction method for making corrections. 
Among the 1000 phrases entered, only 16 phrases were completed 
with this method. As the interaction was a new concept to the 
participants, it was not surprising that participants still heavily 
relied on backspace and word-delete functions for text correction. 
Although the TTC method can be cognitively demanding for new 
users, with more practice, we expect that participants might make 
greater use of TTC style corrections, since it is more efcient. 

6.3 Error Behavior Analysis 
Although error rates were small for each participant, we observed 
several common error types such as omitting characters and typing 
with the wrong fngers, which could be caused by the device itself 
(not recognizing the taps), or the user while trying to adapt to the 
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new interface. We therefore performed a more detailed behavior 
analysis for errors made during the study. 

From the text logs, we located 513 total typing errors made by all 
participants. We identifed those typing errors by fnding the mis-
matches between fnger sequences, corresponding text sequences 
(the transcribed text), and the ground truth text sequences (the 
presented text). Among the 513 errors that were typed incorrectly 
by participants, 224 errors were auto-corrected, with 112 (50%) of 
those fxed to become the correct text, indicating the usefulness of 
the auto-correction algorithm. 

Table 2: Count of diferent error types each day for all par-
ticipants. 

Error Type Day 1 Day 2 Day 3 Day 4 Day 5 Total 
Substitution 80 69 54 48 48 299 
Omission 48 25 19 19 16 127 
Insertion 20 10 18 8 7 63 

Transposition 10 4 2 5 3 24 

The distribution of errors is shown in Table 2. The most common 
error was typing with the wrong fnger (i.e., 299 substitution er-
rors11), followed by omitting a fnger tap (i.e., 127 omission errors). 
Although the latter error type was mostly caused by the device not 
recognizing fnger-taps, omissions accounted for less than 50% of 
wrong-fnger errors, which were caused by the user. 

The decrease in omission errors also indicated that the partic-
ipants learned how to make a recognizable tap during practice. 
Although Tap Strap was reported to have over 98% tap recogni-
tion accuracy, not all taps were recognized well during the initial 
practice session. The Tap Strap company also has a video tutorial 
on how to perform a proper tap,12 where it mentions, “tap gen-
tly, and you don’t need a lot of force to tap.” In our study, it took 
some time for the participants to learn how to tap properly. Specif-
cally, in the frst practice session, some participants tended to move 
their whole hands instead of their fngers to “tap”, which caused 
non-recognitions, as the straps sense the movement of fngers, not 
the whole hands. Another failure case was when our participants 
performed “roll-over” actions when typing [13] (e.g., pressing one 
fnger before another fnger lifts; this action was common among 
fast typists). The roll-over fnger usually exerted a light touch on 
the surface instead of a tap. Over the fve days of learning, partic-
ipants successfully adjusted their typing style to make sure that 
taps were recognized by the straps. 

We also examined the error dynamics of P1, who was a novice 
learner of the QWERTY keyboard layout. Wrong-fnger errors de-
creased from Day 1 to Day 5 (i.e., 11, 9, 3, 2, 1), indicating that P1 
was adapting to the TypeAnywhere interaction gradually. 

6.4 Subjective Feedback 
The NASA TLX workload results are shown in Figure 13. The mental 
load and the overall efort were perceived as high, as participants 
had to explicitly think about the keyboard layout during typing. (By 
contrast, when typing on a physical desktop QWERTY keyboard, 
11The error type defnitions can be found in [56]. 
12https://www.youtube.com/watch?v=XCI7D3IkA6E 

Figure 13: Average NASA TLX ratings of the participants 
(scale 1 - 7). For mental / physical / temporal / efort / frus-
tration, high score means high task load; for performance, 
high score means participants are highly satisfed with their 
performance. The vertical bars on each data point represent 
95% confdence intervals. 

participants can rely upon muscle memory without thinking about 
which fnger is striking each key [6].) The temporal taskload (i.e., 
time pressure) was also perceived as a bit high, as our participants 
tried to type as fast and accurately as possible during our study. 
However, their perceived performance was rated as very successful, 
indicating that participants were quite satisfed with their typing 
performance by the end of the study. 

We also collected feedback from participants during a debriefng 
session at the end of Day 5. Specifcally, we asked how well they 
liked (or disliked) TypeAnywhere, and what they thought could 
be improved. Overall, participants were all enthusiastic about the 
system and thought that it could be practical in actual use. The 
most touted beneft of TypeAnywhere by participants was that they 
no longer needed to concern themselves with (x ,y) locations when 
typing: “I can just tap the fnger without caring about whether the 
position was right or not” (P3), which “actually enabled me to spread 
my fngers a bit so that when I tap my pinky, I don need to worry 
about moving my ring fnger together. And I do not need to keep my 
both hands together, which is nice.” (P5). The other beneft was that 
the user could perform typing on any surface similar to typing on 
a desktop QWERTY keyboard, without the need to “learn a new 
coding system” (P2). Three participants also appreciated the simple 
gesture designs, such as the backspace gesture, commenting that 
the gestures were “easy to perform and intuitive” (P6). 

Five participants mentioned that they needed to adjust their 
typing style to make the device recognize their taps. For example, 
P5 said, “Initially I was imagining there was a keyboard and my 
fngers would follow the positions, but gradually I felt that I only need 
to listen to my fngers and not worry about the positions. I also learned 
how to tap to make the device work smoothly.” P8 struggled a bit 
when he was using the device for the frst two days, as he moved 
the whole hand rather than the fnger to perform his taps. After he 
adjusted his typing style, his performance was much better: “I’m 
used to the [physical] keyboard for a long time and I need a bit [of] 
mental training to adjust my taps.” 

As for aspects of TypeAnywhere that participants wanted to 
improve, all participants felt they needed to think about their fnger-
to-key mappings explicitly while typing, which increased their 

https://www.youtube.com/watch?v=XCI7D3IkA6E
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cognitive load. Our novice learner, P1, commented that, “I used to 
type without even knowing what my fnger-to-key mapping was. It 
just happened naturally. Now I need to have a keyboard map in my 
mind during typing.” Participants also complained that the Tap Strap 
hardware device failed to detect taps sometimes, especially in the 
typing-on-lap condition. Finally, as the text dynamically changed in 
the composition area during typing, participants mentioned feeling 
unsure when they were in the middle of a word, as the intermediate 
results were not always as they expected. This uncertainty added 
to participants’ occasional confusion, so sometimes they would just 
delete a word and retype it. 

7 DISCUSSION 
Combining of-the-shelf wearable fnger-tap sensors, the pre-trained 
deep learning language model BERT, and custom software to en-
able a novel interaction design, TypeAnywhere has achieved the 
highest reported performance among manual text input methods 
other than the desktop physical keyboard 1. Although TypeAny-
where does not have the beneft of tactile feedback from mechanical 
desktop QWERTY keyboards, the design of TypeAnywhere has the 
beneft of several factors: (1) Its QWERTY-style typing interaction 
provided for a relatively easy-to-learn system, enabling users to 
transfer their years of keyboard typing skills to a new system within 
a short period; (2) Unlike previous work [46, 61, 65, 76], which also 
required position information, only fnger-tap sequences are re-
quired in TypeAnywhere, enabling us to utilize an existing large 
corpus as the training data without the need of collecting real typ-
ing data; (3) The neural language decoder took advantage of current 
advances in natural language processing by incorporating more 
context during the decoding process and achieving better decoding 
accuracy compared to a traditional n-gram model, for n = 5; (4) 
To improve the usability of TypeAnywhere, we also implemented 
auto-correction and alternative candidates based on beam search 
and Type, then Correct [71] correction interactions, both of which 
reduce the penalties incurred with making mistakes. 

All participants were able to adapt their typing to the device 
without a real keyboard. In fact, on the frst day, most participants 
were able to successfully transfer their typing style from the me-
chanical QWERTY keyboard, moving their fngers to imaginary key 
positions on a QWERTY keyboard layout. Participants also tried to 
intentionally make heavy taps in order to get them recognized by 
the device. However, after one or two sessions practicing with the 
device, participants learned how to tap their fngers in a relaxed 
manner without moving the fnger very far to hit the intended 
imaginary “key”. To be clear, this is not to say that participants 
only moved their fngers up and down; they still moved them to the 
relative key positions, but they did so with less efort and motion. 
Participants’ rapid adaptation to minimize their necessary move-
ments was actually surprising to the authors, as participants not 
only transferred their existing typing skills, but also learned a more 
efcient way to operate their fngers for the interaction. 

Participants also learned our specifc gestures quickly. They were 
able to perform delete and selection gestures in the frst test session, 
and four participants went on to use the correction gesture quite 
frequently. On average, participants performed 11.7 (SD = 12.8) 
backspace gestures, and 17.7 (SD = 10.9) word-delete gestures for 

each section (20 phrases). This use of gestures indicated that both 
delete gestures were useful for text editing. For candidate selection 
gestures (select next/last), participants, on average, performed 5.4 
(SD = 2.4) candidate selections over the fve days of the study. 

Another noticeable result was the performance degradation in 
the typing-on-lap condition. A reduction in performance was ex-
pected, as participants only performed on-lap typing on the last day, 
and the surface was softer and smaller compared to the tabletop. 
Participants also adjusted their sitting postures several times dur-
ing the test and changed the part of the lap on which they tapped,. 
P3 observed a “lack of the feeling of taps as the laps and pants 
are soft.” Due to the softness of the lap, it was also harder for the 
device to detect a “tap” action. Nevertheless, all participants were 
able to fnish the on-the-lap typing and reached an average 43.9 
WPM, which is still a considerable entry rate compared to most 
of-desktop text entry solutions [68]. The on-lap condition was 
included to demonstrate TypeAnywhere’s ability to enable the user 
to type on most any surface, such as on a wall, a bicycle handlebar, 
or a user’s leg or lap. 

The era of ubiquitous computing is here, and we no longer only 
interact with computers in traditional desktop settings. TypeAny-
where enables users to type without a physical keyboard, while 
nonetheless resembling a QWERTY keyboard typing experience. It 
can be potentially used on-the-go with smart glasses or earbuds, 
with AR/VR devices, or as a unifed input solution for multiple de-
vices such as televisions, tablets, smartwatches, or mobile phones. 

7.1 Limitations 
This paper describes what we might call the frst attempt at achiev-
ing the “type anywhere hypothesis,” namely testing whether using 
neural decoding to translate fnger-taps on an imaginary QWERTY 
keyboard can achieve efcient typing on (almost) any surface. The 
answer appears to be “yes” thus far, but this research project still 
has several limitations: 

There is still room for the hardware devices we used to improve 
tap-detection accuracy. In our study, participants performed tap-
ping with diferent gestures, even when using the same fnger on 
the same key. For example, we observed that some participants 
preferred moving and tapping their whole hand instead of moving 
the fnger, which added difculty to tap detection. 

We only conducted the study with ten participants, albeit lon-
gitudinally over fve sessions. Although having multiple sessions 
helps to compensate for the small number of participants, our gen-
eralizability could be improved further by a larger study. Also, 
participants were still improving after fve sessions; more sessions 
would illuminate their performance further. On the other hand, 
a fve-day longitudinal study with fve participants produces 50 
study sessions, which for most text entry evaluations is a reason-
able size. In fact, many text entry studies (e.g., [26, 39, 41, 42]) have 
had smaller participant numbers, and most were not longitudinal. 

The phrase sets we used in the study were extracted from stan-
dard text entry test sets. The phrase sets did not include any out-of-
vocabulary (OOV) words, which might not align well with actual 
usage scenarios for TypeAnywhere. It would be worthwhile to con-
duct composition tasks instead of transcription tasks to evaluate 
the interaction in a comprehensive manner. 
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We did not conduct a formal study of the default commerical text 
entry interaction of the Tap Strap, or any other chording keyboards. 
This is because the experience of chording keyboards is very dif-
ferent from that of typing, including on TypeAnywhere. Chording 
systems are unfamiliar to novice users and are often designed for 
single-hand use. In contrast, TypeAnywhere focuses on utilizing 
users’ existing two-hand typing skills, where they can pick up and 
type without days or weeks of learning. 

We also did not explicitly measure the accuracy of the tap actions 
or the editing gestures. As we show in section 6.3, the accuracy of 
the gestures relies not only on how well the device was, but also on 
how participants performed their taps. And throughout the study, 
all participants adjusted their typing style for better performance. 

Finally, the BERT-based neural decoding implementation was 
not optimized. Possible optimizations include adding weights to 
diferent errors during the beam-search auto-correction procedure; 
outputting words instead of characters so that the model could also 
provide alternative candidates; condensing the model size so that it 
could incorporate larger context and run faster. 

8 FUTURE WORK 
Along with addressing the limitations mentioned above, we see 
several possible directions for future work. We could add compre-
hensive support for special characters, since currently, only letters 
and the space character are supported in TypeAnywhere. Numbers, 
punctuation, symbols, and modifer keys must also be included in 
a full solution capable of supporting everyday use. One possible 
solution could be assigning diferent symbols to diferent chords 
and users would perform a mode gesture to switch between typ-
ing and symbol-entry modes. Another possible solution could be 
query-style entry, such as for emojis: the user simply performs a 
chord to trigger the search mode, and then types the description of 
the symbol or emoji to search and enter it [70]. For example, typing 
a “q” in search mode could make a question mark (“?”) immedi-
ately available for entry. We also could utilize gestures beyond just 
fnger-tapping. TypeAnywhere’s current design only involves tap-
ping, whether by a single fnger or chorded for editing operations. 
Motion gestures, such as swipe, pinch, snap, or open/close hand 
could be used for various purposes in future iterations. We also 
might imagine improving the form factor of the hardware device. 
The devices we used for the project were two fnger-worn ring 
straps. In the future, we expect smartwatches and other wrist-worn 
devices, or a computer vision-based system, to detect fnger taps to 
avoid the need to wear specialized devices on fngers for text entry. 
Even with alternate hardware, our fnger-tap encoding scheme, 
neural language decoder, and interaction design all could be reused. 

9 CONCLUSION 
We have presented TypeAnywhere, a system that enables QWERTY-
style typing on just about any surface as a general text entry so-
lution for ubiquitous computing. TypeAnywhere applies a neural 
language decoder that accepts only fnger-tap sequences as the in-
put, which eases both the process of training and the generalization 
to diferent fnger-to-key mappings. We trained the decoder with 
a large corpus and achieved 1.6% character error rate (CER) in an 

ofine evaluation. To enable interactive use, we also designed auto-
correction and Type, then Correct [71] style interaction to lower 
the risk and cost of making and correcting errors. Our longitudinal 
study showed that participants were able to learn TypeAnywhere 
with relative ease, reaching 70.6 WPM on average after fve ses-
sions or about 2.5 hours of practice, with the fastest person reaching 
91.4 WPM. We hope that TypeAnywhere can serve as a frst step 
towards a usable text entry solution for wearable and ubiquitous 
computing devices, and will inspire future research to design faster 
yet intuitive text entry methods for the ubiquitous computing era. 
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