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ABSTRACT 
We present the frst large-scale longitudinal analysis of missing label 
accessibility failures in Android apps. We developed a crawler and 
collected monthly snapshots of 312 apps over 16 months. We use 
this unique dataset in empirical examinations of accessibility not 
possible in prior datasets. Key large-scale fndings include missing 
label failures in 55.6% of unique image-based elements, longitudinal 
improvement in ImageButton elements but not in more prevalent 
ImageView elements, that 8.8% of unique screens are unreachable 
without navigating at least one missing label failure, that app failure 
rate does not improve with number of downloads, and that efective 
labeling is neither limited to nor guaranteed by large software or-
ganizations. We then examine longitudinal data in individual apps, 
presenting illustrative examples of accessibility impacts of system-
atic improvements, incomplete improvements, interface redesigns, 
and accessibility regressions. We discuss these fndings and poten-
tial opportunities for tools and practices to improve label-based 
accessibility. 

CCS CONCEPTS 
• Human-centered computing → Accessibility systems and 
tools; Empirical studies in accessibility. 
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1 INTRODUCTION 
Mobile applications (apps) have become indispensable tools for 
access and participation across a wide variety of contexts (e.g., en-
tertainment, fnancial services, food and groceries, transportation). 
However, the frequent failure of app developers to implement acces-
sibility standards means that many app capabilities are inaccessible 
to people with disabilities. Recent analyses of the Android ecosys-
tem have found many apps do not properly expose data required by 
platform accessibility services [39, 40, 50], undermining the func-
tionality of these services and the accessibility of afected apps. 
For example, a person using a screen reader (e.g., Android Talk-
Back, iOS VoiceOver) who encounters an image button will expect 
a useful description (e.g., “Login, Button”), but a developer failure 
to provide a label will instead result in an unhelpful description 
(e.g., “Unlabeled, Button”). 

Many factors can contribute to the prevalence of app accessibility 
failures [38]. For example, an organization may not prioritize acces-
sibility, a developer may lack accessibility awareness or expertise, 
or platform resources and tools may be inconsistent in their support. 
Accessibility eforts target such factors, including improvements to 
platform developer guidelines [6, 19, 20], scanners to support de-
velopers in inspecting app accessibility [5, 18], and organizational 
statements promising more accessible apps [3, 16, 43, 49]. Given 
the many factors that can contribute to an app’s accessibility, it is 
generally difcult to gain an understanding of the impact of such 
accessibility eforts. 

With a goal to better understand and ultimately improve the 
ecosystem of apps, research has examined large-scale analyses of 
app accessibility [39, 40, 50]. As a complement to analyses of individ-
ual apps, large-scale analyses ofer the potential to reveal patterns 
across many apps. For example, prior large-scale analyses of app 
accessibility have measured the prevalence of specifc accessibility 
failures and identifed patterns that suggest contributors to those 
failures (e.g., inconsistent documentation and tooling across difer-
ent classes of image-based elements) [39, 40, 50]. A limitation of 
these prior analyses has been that they are largely based on a single 
snapshot of each app (i.e., analysis of each app is limited to data 
collected from that app at a single point in time). In contrast, large-
scale analyses of web accessibility have highlighted the potential 
for additional insight through longitudinal analyses (e.g., evolution 
of web accessibility over time, factors that have contributed to that 
evolution) [22, 34, 48]. We see a similar opportunity to examine 
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Figure 1: Two failure plots enabled by our unique longitudinal dataset, each visualizing a 16-month period of missing label 
failures in an app published by Zillow (i.e., a home buying app (top), and an apartment rental app (bottom)). An empty orange 
square indicates a unique element observed to have a missing label failure, a solid blue circle indicates a unique element 
observed as labeled, and a black point indicates the element was not observed in that snapshot. The June 2020 snapshot clearly 
shows repairs to longstanding missing label accessibility failures. The two apps also share four ViewIdResourceName values, 
suggesting these repairs may have been the result of a systematic accessibility improvement in shared code. 

the evolution of app accessibility to gain new understanding of 
accessibility failures and to inform opportunities for improving the 
accessibility of the app ecosystem. 

This research therefore presents a large-scale longitudinal analy-
sis of the accessibility of Android apps, based in data crawled from 
312 popular Android apps over the course of 16 months. Focusing 
on the prevalent and well-understood need to provide labels for 
image-based elements, we ask the following large-scale quantitative 
research questions: 
RQ1: How prevalent are missing label failures in unique image-
based elements? 
RQ2: How frequently do changes in image-based elements intro-
duce or repair missing label failures? 
RQ3: How do changes in image-based elements impact the overall 
prevalence of missing label failures over time? 
RQ4: How do changes in image-based elements impact per-app 
missing label failure rates over time? 
RQ5: How do missing label failures impact navigation within apps? 
RQ6: Do apps become more accessible as they become more popu-
lar? 
RQ7: Are large and mature software organizations more efective 
at labeling image-based elements? 

Key large-scale fndings include missing label failures in 55.6% 
of unique image-based elements, longitudinal improvement in Im-
ageButton elements but not in more prevalent ImageView elements, 
that 8.8% of unique screens are unreachable without navigating at 
least one missing label failure, that app failure rate does not improve 
with number of downloads, and that efective labeling is neither 
limited to nor guaranteed by large software organizations. We com-
plement our large-scale quantitative fndings with an examination 

of longitudinal failure plots in individual apps, presenting illustra-
tive real-world examples of the accessibility impacts of systematic 
improvements, incomplete improvements, interface redesigns, and 
accessibility regressions. Finally, we discuss these fndings and po-
tential opportunities for tools and practices to improve label-based 
accessibility. 

The specifc contributions of this work include: 

• A crawler to collect a unique large-scale longitudinal dataset 
on the accessibility of Android apps. This dataset contains a 
total of 3,775 crawls capturing the evolution of accessibility 
in 312 Android apps over 16 months. 1 

• Defnitions of screen equivalence and element equivalence 
for analyses of large-scale longitudinal data, developed to 
support longitudinal tracking of the accessibility of elements 
across multiple crawls. 

• An examination of missing-label accessibility failures in our 
large-scale longitudinal dataset. Labeling of image-based 
elements is a prevalent and well-understood accessibility 
need that focuses our 7 quantitative research questions while 
revealing broader implications. 

• An examination of longitudinal failure plots, presenting il-
lustrative real-world examples of the accessibility impacts 
of systematic improvements, incomplete improvements, in-
terface redesigns, and accessibility regressions. 

• The identifcation of opportunities for developer tools to 
improve support for systematic accessibility improvements, 
to reduce failures introduced through code duplication, and 
to support adoption of accessibility practices. 

1Code and dataset available at https://github.com/appaccess/LAMA-CHI2022. 

https://github.com/appaccess/LAMA-CHI2022
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2 RELATED WORK 
Our large-scale longitudinal research is primarily situated within 
prior work on mobile app accessibility, including analyses of factors 
impacting mobile app accessibility. Our motivation for pursuing 
large-scale longitudinal analyses is then based in part on prior 
examples of longitudinal analyses in web accessibility. 

2.1 Analyses of App Accessibility 
As mobile apps have become integrated into more aspects of every-
day life, research has examined accessibility within specifc classes 
of mobile apps, such as health apps [31, 51], smart city apps [8], 
and government services apps [42]. Other research has analyzed 
mobile apps generally to evaluate and extend existing accessibil-
ity guidelines for mobile form factors [11, 33]. These studies have 
been conducted through manual inspection of a small number of 
apps, generally fnding those apps fail to implement efective ac-
cessibility. Such results have helped motivate large-scale studies 
that seek to understand the state of accessibility in the Android 
ecosystem [2, 39, 40, 50]. For example, an accessibility analysis of 
the Rico dataset [13] found more than 45% of evaluated apps had 
missing label accessibility failures in more than 90% of their image-
based elements [39]. Additional large-scale analyses have similarly 
found high prevalence of various accessibility failures (e.g., missing 
labels, insufcient text or image contrast, insufcient touch target 
size) [2, 40, 50]. 

However, prior large-scale studies have largely focused on ex-
amining a single snapshot of each app (i.e., the accessibility of each 
app at a single moment in time). In the only known example of ex-
amining the accessibility of apps over time, Alshayban et al. present 
a small component of their overall analysis that considers a total 
of 181 crawls from 60 apps [2]. They do not report when analyzed 
versions were released, they note their methods cannot diferentiate 
true accessibility improvements from other changes to apps, and 
the only reported result of their analysis is a high-level claim that 
accessibility improved in 47% of app updates. Our research there-
fore improves upon prior large-scale studies by collecting a unique 
large-scale longitudinal dataset to allow us to examine mobile app 
accessibility over time. Our design of data collection explicitly for 
the purpose of longitudinal analyses provides a larger-scale dataset 
of much greater fdelity than that examined by Alshayban et al. [2], 
and our fndings are correspondingly more thorough (e.g., including 
a lack of support for overall improvement in missing label failures 
for image-based elements over the 16 months of our data collection). 

2.2 Improving App Accessibility 
Many eforts in research and practice aim to improve developer 
implementation of accessible apps. As part of promoting developer 
awareness and education, leading technology and accessibility or-
ganizations publish guidelines on best practices [6, 19, 20, 30, 47]. 
Major mobile platforms provide accessibility tests in their devel-
opment environments and interactive scanners for inspecting app 
accessibility (e.g., Google’s Accessibility Scanner [18], Apple’s Ac-
cessibility Inspector [5]). Third-party accessibility organizations 
also ofer products with similar goals (e.g., axe [15]). Research in 
related tools and platforms has explored higher-fdelity accessibil-
ity testing [41], the accessibility of mobile design and prototyping 

tools [28], and automated classifcation of app reviews to deter-
mine which might address accessibility [1]. Research in runtime 
enhancement of mobile app accessibility includes techniques for as-
sistive macros [35], for accessibility services based on system-level 
content and events [36], for pointing enhancement [55], for per-
sonalizable accessibility overlays [37], and for creating accessible 
screenshots by embedding accessibility data directly in images [32]. 
Closer to our focus on missing label accessibility failures, research 
has demonstrated runtime repair of missing labels using interaction 
proxies [53] together with third-party annotation [54]. Other work 
has explored how search or machine learning might automatically 
generate some accessibility data [10, 29, 52]. Amidst such research, 
our large-scale longitudinal analyses are motivated in part by op-
portunities to inform new tools and practices for improving mobile 
app accessibility. 

2.3 Longitudinal Analyses of Web Accessibility 
Large-scale longitudinal analysis of mobile app accessibility is moti-
vated in part by prior analyses of web accessibility. Several studies 
have analyzed web archives over a period of 1 to 5 years [7, 12, 21, 
26], generally fnding the prevalence of web accessibility failures 
increased over time. A longer-term analysis of web accessibility 
between 1999 and 2012 found many violations of accessibility stan-
dards, but observed that web accessibility overall showed slight im-
provement [22], likely driven by improvements in web technologies 
and tools rather than developer prioritization and implementation 
of accessibility [34]. Large-scale analyses in 2019 and 2020 found 
that web accessibility failures remain highly prevalent, even becom-
ing more prevalent from 2019 to 2020 [48]. Mobile app accessibility 
has lacked any similar large-scale longitudinal analyses, perhaps in 
part due to the greater difculty of collecting meaningful mobile 
app data over time. Our current data collection and analyses there-
fore both provide initial results and help to motivate additional 
large-scale longitudinal analyses of mobile app accessibility. 

3 ANDROID ACCESSIBILITY BACKGROUND 
We frst provide a brief technical overview of Android terminology 
and screen reader functionality. This background helps support 
brevity and clarity in terms used throughout our analyses. 

Android apps are composed of elements for layout and for inter-
active content (e.g., buttons, images, text), with each type of element 
defned in a class. For example, the android.widget.ImageView class 
in the Android API provides a commonly-used implementation for 
displaying images. A view hierarchy is the hierarchical representa-
tion of elements in an app at any given moment (i.e., analogous to 
the DOM in a web browser). Each element has a set of attributes 
defning its visual, functional, and accessibility data (e.g., its Class-
Name, whether it is clickable, its location on the screen, a Content-
Description). 

Screen readers are an example of an assistive technology that 
rely on access to the view hierarchy through Android’s Accessibil-
ity Service API. Screen readers such as Android’s native TalkBack 
are often preferred by people who are blind, have low vision, or 
otherwise prefer audio feedback when using an app. Such assistive 
technologies use the view hierarchy to determine which elements 
to focus (e.g., text to read, interactive buttons) and which to ignore 
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(e.g., elements used solely for layout). As further detailed in Sec-
tion 4.4, our analyses consider only focusable elements and therefore 
consider only elements that would be visited by a screen reader. 

If an app’s accessibility is not implemented correctly, the view hi-
erarchy fails to provide the data required by assistive technologies. 
For example, if an app developer does not provide a label for an 
ImageView, TalkBack will announce a generic description (e.g., “Un-
labeled, Button”). Such an accessibility failure can make it difcult 
for a person to fnd and interact with an app’s functionality. 

4 METHOD 
This section presents our collection of a unique dataset for examin-
ing large-scale longitudinal mobile app accessibility. We detail the 
selection criteria for apps included in data collection, our develop-
ment of a crawler for automated data collection, our development of 
equivalence metrics for interpreting resulting large-scale data, and 
our methods for assessing and analyzing missing label accessibility 
failures. 

4.1 App Inclusion and Exclusion Criteria 
To defne a set of apps for our analyses, we began by consider-
ing the 25 most-downloaded free Android apps from each of the 
Google Play Store’s 31 app categories (i.e., an initial set of 775 
apps). We chose this initial inclusion criterion to: (1) prioritize 
most-downloaded apps because such apps are likely to be used or 
desired by people who use screen readers or other accessibility 
services, (2) select uniformly from each app category to provide 
diversity of purpose in included apps. Although analyses on addi-
tional platforms would be valuable (e.g., Apple’s iOS), Android’s 
global market share (i.e., 70% of the global market in 2020 [44]) 
provides signifcance to Android-specifc results. Android fndings 
may also generalize to or at least warrant examination on other 
platforms. Similarly, inclusion of only free apps is a common prac-
tical limitation of large-scale data collection (e.g., also a limitation 
of [2, 13, 50]). 

From this initial set, we then excluded apps that did not expose 
a usable view hierarchy (i.e., as required for accessibility services 
and for our automated crawling and assessment). We made this 
determination by manually inspecting view hierarchy data in each 
app, obtained using an initial version of our automated crawler, 
excluding apps that lacked a view hierarchy exposing the majority 
of app content. Common classes of excluded apps were: (1) apps 
implemented using a gaming engine that did not expose a view hi-
erarchy, (2) apps that presented their primary content in a WebView 
that did not expose a view hierarchy for that content, and (3) apps 
defned largely or entirely by multimedia content. Prior research 
has noted such apps are generally inaccessible due to their lack of 
a usable view hierarchy (e.g., [39, 40]), so our current focus is on 
additional insights enabled by analyses of apps that expose a usable 
view hierarchy. Exclusion of apps without a usable view hierarchy 
means our data and analyses are expected to underestimate the 
overall prevalence of accessibility failures. 

Due to limitations of our automated crawling (i.e., as detailed 
in Section 5.1), we further excluded classes of apps for reasons un-
related to accessibility. Also identifed through manual inspection, 
these were: (1) apps that operated only in a landscape orientation, 

because our crawling executed on a phone locked in portrait ori-
entation, (2) apps that required a SIM card, because our crawling 
executed on a phone without a SIM, (3) apps that required a lo-
gin credential we could not efectively mock (e.g., a social security 
number, a company-issued code, a driver’s license number) or a 
verifcation we could not efectively mock (e.g., several dating apps 
required a verifcation photo in a specifc pose), and (4) apps with 
primary content based on an external device (e.g., a virtual reality 
headset, a watch). Any portion of these apps we could have crawled 
(e.g., a login or verifcation screen) would have been unlikely to 
correspond to their overall accessibility. Expanding data collection 
to additional apps is therefore an opportunity for future research. 
Applying our exclusion criteria yielded a set of 391 apps that we 
included in initial data collection. 

4.2 Data Collection Using Automated Crawling 
We implemented an automated crawler informed by strategies 
from prior research in security [9, 23], privacy [4], and interface 
design [13, 14]. The crawler programmatically explores an app 
and captures accessibility data for each visited state. We collected 
longitudinal data by executing a crawl of each app on a monthly 
basis. This section describes our crawler, and Section 5.1 describes 
results of crawling from December 2019 to March 2021. 

4.2.1 Crawling Devices. We collected app data using 4 identical 
Google Pixel 3a devices. Crawls were initially conducted with de-
vices running Android 10, then upgraded to Android 11 beginning 
with the October 2020 crawl. We selected physical devices because 
we found them faster, more responsive, and more consistent than 
emulators. 

4.2.2 Pre-Crawl Configuration. Before initiating each monthly 
crawl, we manually updated each app to its current version in 
the Google Play Store. We then disabled auto-update functionality 
(i.e., ensuring all data in a single crawl was from the same version). 
We reset each app’s language to English (i.e., if it had been changed 
in the previous crawl), but did not otherwise clear app storage or 
reset any settings. For each app, we recorded its version and number 
of downloads from the Google Play Store. 

4.2.3 Capturing Accessibility Data. We implemented data capture 
using a custom Android accessibility service, as in [54]. This ser-
vice captures a view hierarchy with standard attributes (e.g., each 
element’s location, ClassName), then augments the view hierarchy 
with accessibility data (e.g., ContentDescription, IsImportantForAc-
cessibility) and fags for determining whether each element was 
actionable (e.g., clickable, long-clickable, scrollable). The service 
was installed before data collection, ran in the background, and was 
activated by the crawler using a software button. When activated, 
the service stored a screenshot and the augmented view hierar-
chy. Devices were locked in portrait orientation, for consistency in 
both captured data and crawler access to the data capture software 
button. 

4.2.4 Crawler Strategy. Our crawler operated on a Linux worksta-
tion, connected to the physical devices via USB, communicating 
with each device using low-level Android Debug Bridge commands 
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for programmatic interaction and for retrieving captured accessi-
bility data. The crawler controlled devices to explore apps using a 
modifed depth-frst search. At each step, the crawler selected a next 
actionable element from the current state, performed the action, 
waited for an interface update, activated the data capture service, 
then retrieved and parsed the new view hierarchy. We found An-
droid’s app state change indicators frequently did not correspond 
to complete availability of a new interface state, so we implemented 
a fxed 5-second delay after each programmatic interaction. This 
strategy was conservative (i.e., we found the delay sufcient to 
ensure the crawler did not capture in-progress rendering of state 
changes). 

To support more thorough exploration, the crawler maintained a 
graph representation of its search. This is challenging because apps 
do not provide a well-defned representation of a screen (i.e., an 
app state that can be revisited and semantically corresponds to a 
node in a search). We approximate this using crawl-time equivalence 
heuristics, described in Section 4.3.1. This enables several optimiza-
tions for a more thorough search that would not be available in 
a random walk. First, upon exploring all actionable elements of a 
current screen, the crawler activated the system Back button to 
return to a previous screen. Second, upon revisiting a screen, the 
crawler prioritized actionable elements that were as-yet unexplored 
or led to regions of the graph that were as-yet unexplored. 

We also designed the crawler to be robust to relaunching the 
app during a crawl, including preservation of the crawl graph. Re-
launching was sometimes necessary when interaction exited the 
app (e.g., the crawler backed all the way out of an app, the crawler 
activated an actionable element that navigated to outside the app). 
Because any screen equivalence heuristic is only approximate, we 
also relaunched the app whenever the current view hierarchy was 
found inconsistent with the current expected node in the crawl 
graph (i.e., re-centering the crawl to the well-defned root of the 
app). Upon a restart, the crawler used the crawl graph to generate 
a simple action plan for reaching elements that had been encoun-
tered but not yet explored. Crawling terminated after activating all 
actionable elements in all discovered screens, or after reaching a 
timeout of two hours per app. 

4.2.5 Crawler Optimizations. We observed crawler performance 
on a smaller set of test apps for 2 months prior to data collection 
and then in the frst several months of data collection, implement-
ing several optimizations to consistency and coverage. First, we 
implemented an action prioritization strategy for actionable ele-
ments within each screen, calculated based on the element’s class 
(e.g., clicking an ImageButton is prioritized over text entry), ele-
ment purpose determined from context (e.g., back buttons are given 
a lower priority), and the number of times an element has previ-
ously been activated. Second, we enhanced the crawler to support 
dictionary-based text entry (e.g., inputting a valid address as re-
quired in a food delivery app). Third, we limited the crawler to con-
sider only the frst three actionable children within certain Android 
classes (e.g., android.widget.DatePicker, android.widget.TimePicker), 
a heuristic we found efective for avoiding unproductive explo-
ration of these types of elements. We implemented other minor 
optimizations whenever inspection of crawling data suggested an 
adjustment could improve consistency and coverage. 

4.2.6 Human-Guided Versus Automated Exploration. Because other 
data collection eforts have sometimes emphasized human-guided 
exploration (e.g., [14, 52]), we note that we did leverage our own 
manual navigation of app login processes, allowing us to mock 
necessary login credentials as part of exposing app content. We did 
not otherwise fnd human guidance necessary, and our data collec-
tion results in Section 5.1 demonstrate our automated crawling was 
sufciently thorough and consistent for our analyses (e.g., yielding 
more unique screens per app than prior crawls). 

4.3 Defning Screen and Element Equivalence 
Data collected in any exploration will include multiple captures 
of the same elements (e.g., captures of a screen before and after 
manipulating an element within that screen, captures of a screen 
encountered multiple times as part of exploration). Android apps do 
not provide a well-defned representation of a screen (e.g., analogous 
to a URL in well-defned web apps), so data collection and analyses 
require some heuristic for determining equivalence of two screens 
(e.g., matching 99.8% of pixels or all but 1 ViewIdResourceName 
in [13], a sequence of structure-based screen transformation and 
comparison heuristics in [54]). Our novel emphasis on longitudinal 
analyses introduces the additional challenge of relating elements 
across multiple explorations (e.g., the potential that elements of an 
app may be modifed between explorations). This section introduces 
heuristics we developed for addressing these challenges in data 
collection and analyses, specifcally in crawl-time equivalence, in 
screen equivalence, and in element equivalence. 

4.3.1 Crawl-Time Equivalence. As described in Section 4.2.4, our 
crawler maintains a graph of visited screens to support automated 
exploration. We implemented crawl-time equivalence based on heuris-
tics defned in [54]. Each heuristic tests for the presence of a com-
mon interface structure (e.g., a foating dialog, a navigation drawer, 
a tab layout), then potentially transforms the view hierarchy to 
normalize for comparison (e.g., transforming a view hierarchy to 
consider only the contents of a navigation drawer). Final equiva-
lence is then based on two view hierarchies having the same set of 
ViewIdResourceName values and the same set of ClassName values 
(i.e., equivalent structure agnostic to content within that structure). 
These heuristics were previously validated through inspection of 
2038 screens manually sampled from 50 apps [54], and our inspec-
tion of preliminary crawling data found them sufcient to support 
crawling. As part of adapting the heuristics to crawling, we modi-
fed the fnal comparison of ViewIdResourceName and ClassName 
values to use a hash-based lookup (i.e., improving performance 
over executing many pairwise comparisons). 

4.3.2 Screen Equivalence. As described in Section 5.1, our crawling 
collected several orders of magnitude more data than was originally 
considered when defning the screen equivalence heuristics in [54] 
(i.e., we collected data from a larger number of screens in a larger 
number of apps). Inspecting collected data in our analyses, we 
found otherwise equivalent screens that were considered diferent 
only because of one or more ViewIdResourceName values that were 
themselves hashes or random strings. These were generally due to 
advertising libraries and other external packages. 
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Our screen-based analyses are therefore based on an enhanced 
defnition of screen equivalence. After applying heuristic transfor-
mations of the view hierarchy (i.e., the frst 6 heuristics in [54]), 
we additionally flter any element with a ViewIdResourceName that 
does not contain android (i.e., a native Android resource) or the app 
package name. As before, equivalence is then determined based on 
the set of ViewIdResourceName values and ClassName values. This 
strictly reduces the number of unique screens in each crawl (i.e., all 
screens considered equivalent by our enhanced heuristics are also 
equivalent according to the original heuristics), and our inspec-
tion of data in our analyses found this yielded more meaningful 
grouping of crawl data into screens for additional analyses. 

4.3.3 Element Equivalence. Most of our analyses examine interface 
elements after applying a transformation for element equivalence, 
motivated by two challenges in examining large-scale longitudinal 
accessibility data. First, code re-use and templating make it unclear 
how to count occurrences of accessibility failures. For example, a 
“Back” arrow button might appear on multiple screens or a “Favorite” 
star button might appear next to every item in a list. Such recurring 
elements may be implemented in a single piece of code (i.e., a single 
ContentDescription may determine whether all are accessible) or 
may be similar in appearance but implemented in diferent code 
(e.g., each may require its own ContentDescription). Second, our 
desire to track the accessibility of individual interface elements over 
multiple crawls is complicated by any change to other elements of 
an interface between those crawls. Defning element equivalence 
across crawls to frst fnd an equivalent screen and then the equiva-
lent element within that screen will fail if any element in the screen 
has changed (i.e., the screen will not be equivalent between crawls). 

Our element equivalence transformation therefore considers two 
elements equivalent if they have the same ViewIdResourceName 
and ClassName. Within a single crawl of an app, this efectively 
ignores where an element occurs in the app, treating all occurrences 
as a single instance. Similarly, application of this heuristic across 
multiple crawls efectively assumes any occurrences are equivalent. 
The transformation is therefore similar to assuming any elements 
with the same ClassName and ViewIdResourceName share the same 
underlying implementation. The next section discusses implications 
of this heuristic for our accessibility assessment. 

4.4 Accessibility Assessment and Analyses 
In this frst large-scale longitudinal analysis of Android app acces-
sibility failures, we focus on the prevalent and well-understood 
need to provide labels for image-based elements, as emphasized in 
prominent accessibility guidelines [6, 19, 46] and prior large-scale 
analyses [2, 39, 40, 50]. More specifcally we focus on ImageButton 
and ImageView, which we collectively refer to as image-based ele-
ments. These are core Android components, implemented by the 
classes android.widget.ImageButton and android.widget.ImageView. 
App accessibility encompasses a broad range of design and im-
plementation decisions to ensure access for people with diferent 
needs, so labeling image-based elements is not by itself sufcient 
for ensuring app accessibility. However, providing labels is neces-
sary and this well-understood accessibility need gives focus to our 
analyses while aiming to reveal broader implications. 

4.4.1 Missing Label Failures. We implemented assessment of miss-
ing label failures by adapting logic from Google’s open-source 
Accessibility Testing Framework for Android [17], which is used 
throughout Google’s accessibility technologies and tools. Specif-
cally, we adapted its logic to execute ofine against crawl data. We 
identifed ImageButton and ImageView elements using class infor-
mation in the captured view hierarchy, then limited analyses to 
focusable image-based elements (i.e., ensuring we analyzed only 
elements that would be visited by a screen reader). Elements can be 
labeled directly (e.g., using a ContentDescription attribute) or can 
inherit a label from other elements (e.g., using a LabelFor attribute). 
We therefore defned a missing label failure to be any case where a 
focusable image-based element does not have a direct or inherited 
label, as identifed using Google’s platform-standard logic. 

4.4.2 Failure Rate. We defned the failure rate of an app to be the 
proportion of unique image-based elements that contain a missing 
label failure. Because of element equivalence, this does not necessar-
ily correspond to the prevalence of inaccessible elements a person 
would encounter when using an app, as each unique element may 
have a varying number of occurrences throughout an app. A unique 
element can also correspond to multiple occurrences, only some 
of which are accessible (i.e., because the underlying implementa-
tion does not share a label across occurrences). We defne a unique 
element as containing an accessibility failure if any associated oc-
currence contains an accessibility failure. The failure rate therefore 
corresponds to proportion of unique ImageButton or ImageView 
elements that require at least 1 repair by a developer to provide an 
appropriate label. 

4.4.3 Snapshots. For clarity and brevity, we defned a snapshot to 
be all data collected across all apps within a single set of monthly 
crawls. Each app is crawled once per snapshot (i.e., as described in 
Section 4.2.4), but the constraints of crawling mean these crawls 
happen neither instantaneously nor simultaneously. 

4.4.4 Statistical Modeling for Analyses of Variance. Section 5 in-
cludes several analyses of variance. For brevity and readability of 
results, this section consolidates details of the modeling in each 
analysis of variance. 

Section 5.2 analyzes longitudinal change in the prevalence of 
missing label failures across all snapshots. The dependent variable 
was Missing Label Failure, binary for each unique image-based 
element. We modeled Crawl Month as the number of months since 
the frst snapshot (i.e., numeric between 0 and 14). Because each 
app was crawled multiple times throughout data collection, we 
accounted for non-independence by modeling App with a random 
intercept and Crawl Month with a random slope. We then analyzed 
Missing Label Failure using mixed logistic regression [45]. 

Section 5.3 analyzes longitudinal change in per-app missing label 
failure rate across all snapshots, while Section 5.5 analyzes per-
app missing label failure rate according to number of downloads. 
Because efects of these factors are not necessarily independent, we 
modeled them together [27]. The dependent variable was Failure 
Rate, as defned in Section 4.4.2. We modeled Downloads as ordinal 
with 6 bins corresponding to a minimum number of downloads 
(i.e., 100 thousand, 5 million, 10 million, 50 million, 100 million, and 
500 million downloads). Bins were derived from those provided 
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(a) Apps per Category 

(b) Apps by Number of Downloads (c) Unique Screens per App (d) Unique Elements per App 

Figure 2: An overview of our collected dataset, including a total of 3,775 crawls as part of 13 snapshots of 312 apps over 16 
months. Summary distribution data shows that apps: (a) came from 30 categories of the Google Play app store, (b) varied 
in their number of downloads, (c) averaged 82.6 unique screens in each snapshot, and (d) averaged 20.2 unique image-based 
elements in each snapshot. Additional details are included in the Supplemental Materials. 

by the Google Play Store to ensure each bin contained at least 40 
apps (i.e., by combining bins for 100 thousand, 500 thousand, and 
1 million and by combining bins for 500 million, 1 billion, and 5 
billion). We again modeled Crawl Month as numeric between 0 and 
14, App with a random intercept, and Crawl Month with a random 
slope. We then analyzed Failure Rate using mixed logistic regression, 
which is suitable for modeling proportions [25]. 

Section 5.6 analyzes per-app missing label failure rates across 
multiple apps released by the same organizations. The dependent 
variable was again Failure Rate. We modeled Organization as nom-
inal (i.e., the 6 organizations described in Section 5.6). We again 
modeled Crawl Month as numeric between 0 and 14. We then an-
alyzed Failure Rate using logistic regression [25]. We choose this 
simpler model because mixed logistic regression appeared unstable, 
likely due to the consistently low failure rates of apps by Google 
and Microsoft (i.e., consistently near 0, creating instability in a 
model that considered both App and Organization). 

5 RESULTS AND ANALYSES 
This section frst presents the result of our data collection, then 
results from a series of quantitative analyses of that data. Quanti-
tative analyses are organized around a set of research questions, 
and Section 6 will then complement these analyses through quali-
tative consideration of illustrative examples of the evolution of the 
accessibility of specifc apps. 

5.1 A Large-Scale Longitudinal Dataset on 
Android App Accessibility 

We collected monthly snapshots of selected apps from December 
2019 to March 2021. Collection of each snapshot began on the 1st of 
each month, and required about 12 days to complete. Restrictions 
on physical access amidst the COVID-19 pandemic meant that we 
were unable to initiate snapshots in July 2020, September 2020, and 
January 2021. We therefore collected a total of 13 snapshots during 
the 16-month data collection period. 

We monitored the set of included apps between snapshots, fnd-
ing it necessary to exclude some apps from additional crawling. 
These included apps that shifted from a free to a paid model, added 
new requirements for credentials that were difcult to mock, were 
no longer supported on our crawl devices, or were removed from 
the Google Play Store. After starting with the 391 apps described 
in Section 4.1, the fnal snapshot included 340 apps. 

After collecting all snapshots, we manually inspected apps that 
had fewer than 6 unique screens in any snapshot. We excluded 
individual crawls that had failed to capture most of an app (i.e., by 
comparison to the same app in other snapshots). This excluded 210 
individual crawls, including 53 where an app failed to launch or load 
content and 100 where the crawler failed to navigate past a blocking 
screen (e.g., an ad, a pop-up). After excluding individual crawls, 
we excluded 43 apps that were not successfully crawled at least 
once in both: (1) the frst 4 snapshots, and (2) the fnal 4 snapshots. 
Given our focus on longitudinal analyses, we wanted apps that 
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Table 1: Number of unique image-based elements observed in each snapshot and the prevalence of missing label accessibility 
failures in observed unique elements. Over 16 months of data collection, we found a signifcant decline in missing label failures 
in unique ImageButon elements, but no detectable diference in unique ImageView elements or in combined unique image-
based elements. 

Combined Unique 
Crawl Unique ImageButtons Unique ImageViews Image-Based Elements 
Month Failures Elements Failure % Failures Elements Failure % Failures Elements Failure % 

2019.12 648 1,370 47.3 1,760 2,961 59.4 2,408 4,331 55.6 
2020.01 684 1,511 45.3 1,969 3,290 59.8 2,653 4,801 55.3 
2020.02 716 1,654 43.3 2,269 3,721 61.0 2,985 5,375 55.5 
2020.03 812 1,769 45.9 2,405 3,843 62.6 3,217 5,612 57.3 
2020.04 751 1,768 42.5 2,547 4,085 62.4 3,298 5,853 56.3 
2020.05 851 1,903 44.7 2,689 4,291 62.7 3,540 6,194 57.2 
2020.06 781 1,867 41.8 2,625 4,132 63.5 3,406 5,999 56.8 
2020.08 861 1,998 43.1 2,796 4,338 64.5 3,657 6,336 57.7 
2020.10 939 2,143 43.8 2,773 4,534 61.2 3,712 6,677 55.6 
2020.11 868 2,002 43.4 2,646 4,358 60.7 3,514 6,360 55.3 
2020.12 764 1,874 40.8 2,565 4,249 60.4 3,329 6,123 54.4 
2021.02 816 1,942 42.0 2,484 4,298 57.8 3,300 6,240 52.9 
2021.03 793 2,030 39.1 2,514 4,256 59.1 3,307 6,286 52.6 

Average 791 1,833 43.3% 2,465 4,027 61.2% 3,256 5,860 55.6% 

were consistently crawled throughout data collection. Finally, we 
excluded 3 apps that did not include any instances of ImageButton 
or ImageView. Although our collected data could support other 
longitudinal analyses of these apps, they were not relevant to our 
current analyses. 

Our analyses are therefore conducted with data from 13 snap-
shots of 312 apps including a total of 3,775 crawls. We maintained 
good crawl consistency, with 304 apps included in at least 10 snap-
shots. Apps also evolved throughout data collection, with 2,836 of 
3,463 re-crawls (81.9%) executed with an app that had a diferent 
version than in the previous snapshot. Figure 2 summarizes the 
collected data, with collected data drawn from across 30 categories 
of the Google Play Store, the majority of apps having between 10 
million and 50 million downloads, and snapshots including an aver-
age of 82.6 (sd = 48.3) unique screens and 20.2 (sd = 16.4) unique 
image-based elements for each app. 

Summary statistics cannot be directly compared to prior data, 
due diferences in factors such as data collection methods (e.g., au-
tomated crawling, manual collection) and defnitions of screen 
equivalence. However, prior analyses [39, 40] based on the Rico 
dataset [13] were limited to a single snapshot averaging 7 unique 
screens per app. Yan et al. [50] present analyses based on manual 
collection of a single snapshot averaging 29 screens per app. Zhang 
et al. [52] describe manual collection of a single snapshot averaging 
18.3 screens per app. Our data is therefore sufcient for our claims 
regarding large-scale analyses, and our data is further unique in fo-
cusing on longitudinal analyses across multiple snapshots. As part 
of supporting continued research enabled by our large-scale longi-
tudinal data, we will release this data together with the publication 
of this research. 

5.2 Longitudinal Analysis of Missing Label 
Failures 

RQ1: How prevalent are missing label failures in unique image-
based elements? 

Analyzing unique elements in each snapshot, we found a high 
prevalence of missing label failures in both ImageButton and Im-
ageView elements. Table 1 summarizes failures across all apps in 
each snapshot. We observed: 

• An average of 1,833 unique ImageButton elements, of which 
791 (43.3%) were inaccessible. 

• An average of 4,027 unique ImageView elements, of which 
2,464 (61.2%) were inaccessible. 

• A combined average of 5,860 unique image-based elements, 
of which 3,256 (55.6%) were inaccessible. 

This high prevalence is consistent with prior results and moti-
vates a continued need to improve labeling. 
RQ2: How frequently do changes in image-based elements 
introduce or repair missing label failures? 

Our dataset is unique in its ability to track changes in the ac-
cessibility of image-based elements across snapshots. We applied 
element equivalence to examine such changes in unique elements be-
tween snapshots. We observed 5 apps with unusually high rates of 
new unique elements in each snapshot. Upon inspection, these apps 
assigned automatically-generated unique values of ViewIdResource-
Name (e.g., Airbnb assigned a unique ViewIdResourceName to the 
image of each listing). This prevents tracking across snapshots, so 
we excluded these apps from this analysis. 

We found 4,705 examples of unique image-based elements that 
were newly observed after not being observed in any of at least 3 
previous successful crawls of an app (i.e., suggesting these were 
new image-based elements). Conversely, we found 3,809 examples 
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(a) March 2021 Snapshot Per-App Failure Rate (b) Longitudinal Per-App Failure Rate 

Figure 3: We observed a strongly bi-modal distribution of Failure Rate: (a) in the March 2021 snapshot, 19.7% of apps had 
missing label failures in more than 95% of their unique image-based elements and 21.4% of apps had missing label failures 
in fewer than 5% of their unique image-based elements, and (b) there was no detectable diference in the distribution over 16 
months of data collection. 

of unique image-based elements that were observed in a crawl 
and then not observed in any of at least 3 additional successful 
crawls of that app (i.e., suggesting these image-based elements 
were removed). 

Of newly observed unique image-based elements, 2,498 (53.1%) 
contained missing label failures. This was not signifcantly diferent 
from the 53.9% prevalence in other elements that had been previ-
ously observed at least once (χ2(1, N =73, 785) = 1.19, p = .28). 
We therefore do not fnd evidence that new unique image-based 
elements are more likely to have missing label failures than existing 
unique image-based elements. 

We found 169 examples of unique image-based elements that 
were observed with a missing label failure and then later observed 
to have corrected that failure (i.e., suggesting an accessibility re-
pair). We also found 38 examples of unique image-based elements 
that were observed without a missing label failure and then later 
observed to have introduced a missing label failure (i.e., suggesting 
an accessibility regression). 
RQ3: How do changes in image-based elements impact the 
overall prevalence of missing label failures over time? 

To examine whether such changes led to an overall improve-
ment in missing label failures, we conducted an analysis of vari-
ance, modeled as described in Section 4.4.4. We found no detectable 
improvement in Missing Label Failure in image-based elements 
according to Crawl Month (χ2(1, N =70, 108) = 0.53, p = .47) in 
16 months of data collection. Separate analyses of ImageButton 
and ImageView found signifcant improvement according to Crawl 
Month for ImageButton (χ2(1, N =21, 841) = 11.38, p < .001) but no 
detectable improvement according to Crawl Month for ImageView 
(χ2(1, N =48, 267) = 0.18, p = .67). The lack of an overall im-
provement is consistent with the much greater number of unique 
ImageView elements observed in our data. 

5.3 Longitudinal Analysis of Per-App Missing 
Label Failure Rate 

RQ4: How do changes in image-based elements impact per-
app missing label failure rates over time? 

Although the analyses of missing label failures in Section 4.4.4 
characterize our overall dataset, individual failures are generally 
not independent but instead clustered in apps that are more or less 
accessible. We therefore also analyzed per-app missing label failure 
rates (i.e., as defned in Section 4.4.2) in image-based elements, 
fnding a strong bimodal distribution consistent with prior large-
scale analyses [39, 40]. As illustrated in Figure 3a for the March 
2021 snapshot, 57 apps (19.7%) had missing label failures in more 
than 95% of their unique image-based elements, 62 apps (21.4%) had 
missing label failures in fewer than 5% of their unique image-based 
elements, and the remainder of apps were approximately uniformly 
distributed in their failure rate. 

Our longitudinal analysis found this bimodal distribution consis-
tent across all snapshots, with no clear indication of change accord-
ing to Crawl Month (Figure 3b). An analysis of variance, modeled 
as described in Section 4.4.4, found no detectable change in Failure 
Rate according to Crawl Month (χ2(1, N =3, 775) = 1.18, p = .27). 
Consistent with Section 4.4.4, separate analyses of ImageButton 
and ImageView found signifcant improvement according to Crawl 
Month for ImageButton (χ2(1, N =3, 169) = 6.14, p = .013) but no 
detectable improvement according to Crawl Month for ImageView 
(χ2(1, N =3, 691) = 0.03, p = .86). 

5.4 Impact of Missing Label Failures on App 
Navigation 

RQ5: How do missing label failures impact navigation within 
apps? 

Apps commonly use image-based elements as a primary or even 
exclusive method of navigation among screens (e.g., a shopping cart 
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Figure 4: We found no evidence that missing label failure rate incrementally improved as apps became more popular. Apps with 
more than 500 million downloads had lower failure rates, but most apps will never reach that point. There was no detectable 
diference among apps with fewer downloads. 

icon for checkout, a gear icon for app settings). If such a navigation 
element is inaccessible, it becomes a barrier for all content that 
is accessed through that navigation element. Current accessibility 
heuristics (i.e., as in the Accessibility Testing Framework for An-
droid [17]) and prior large-scale analyses (e.g., [39, 40, 50]) consider 
only the accessibility of individual elements. We examined how our 
collected crawl graph data could support additional analysis of the 
accessibility implications of image-based navigation elements. 

We applied screen equivalence to our crawl graph data and iden-
tifed screens that were reached only through an actionable image-
based element. We performed this analysis on the 10 snapshots 
from March 2020 onward, as prior snapshots did not retain the 
crawl graph. As described in Section 4.2.4, a crawl graph consists of 
nodes corresponding to unique screens connected by edges corre-
sponding to the action required to transition between screens. Due 
to crawler restarts and other artifacts of data collection, there may 
be disconnected components in the graph. Across analyzed snap-
shots, the largest component in each crawl of each app contained 
an average of 84.0 (sd = 48.9) of 88.1 (sd = 50.3) unique screens 
(95.3%). This further supports validity of our crawl data, and we 
proceeded by analyzing only the largest connected component. 

Analyzing the largest connected component in each crawl, apps 
contained an average of 84.0 (sd = 48.9) unique screens. Of these, 
an average of 21.9 (sd = 22.3) (26.1%) could be reached only by nav-
igating through at least one image-based element. Because some of 
these navigational image-based elements had missing label failures, 
an average of 7.4 (sd = 13.7) unique screens could not be reached 
without navigating through at least one image-based element with 
a missing label failure. This was 33.8% of average unique screens 
reachable only through navigational image-based elements, and 
overall meant that 8.8% of average unique screens were unreachable 
without navigating through at least one missing label failure. 

5.5 Impact of Number of Downloads on 
Accessibility 

RQ6: Do apps become more accessible as they become more 
popular? 

When advocating for early commitment to and adoption of prac-
tices to promote accessibility, a common pressure is to defer accessi-
bility in order to prioritize other design and implementation eforts. 
Such deferral is sometimes based on an argument that accessibility 
can be incrementally added later as an app becomes more popular. 
Although such deferral is problematic in multiple regards, our data 
also allows directly examining this argument in practice. 

Figure 4 shows: (a) the average Failure Rate for apps grouped by 
Downloads in each monthly snapshot, and (b) the distribution of Fail-
ure Rate for apps grouped by Downloads in the March 2021 snapshot. 
We examined the relationship between Downloads and Failure Rate 
using an analysis of variance, modeled as described in Section 4.4.4, 
fnding a signifcant efect of Downloads (χ2(5, N =3775) = 63.60, 
p < .001). We conducted post-hoc pairwise comparisons using Z-
tests, corrected with Holm’s sequential Bonferroni procedure [24], 
fnding apps with more than 500 million downloads had signif-
icantly lower Failure Rate than apps with less than 500 million 
downloads (p < .001 for all pairs comparing 500 million downloads 
to other bins). There were no detectable diferences in Failure Rate 
among pairs with fewer than 500 million downloads. 

Although apps with more than 500 million downloads have lower 
Failure Rate, most apps will never reach that point. Our inclusion 
criteria emphasized the Google Play Store’s most-downloaded apps, 
but only 43 apps had more than 500 million downloads. We found 
no detectable diferences in Failure Rate for apps with fewer than 
500 million downloads, providing no support for suggestions that 
apps will in practice be made incrementally more accessible as they 
become more popular. 
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Figure 5: A box plot of per-app failure rate in 6 large and ma-
ture software organizations that published at least 4 apps in-
cluded in our analyses. We found Google and Microsoft pub-
lished apps with consistently lower failure rates than the 
other 4 organizations, and we found examples of low fail-
ure rates in apps published by another 30 diferent organi-
zations. These results suggest that being one of the largest 
and most mature software organizations does not by itself 
guarantee accessible apps. Conversely, accessible apps in our 
dataset were not limited to these large and mature software 
organizations. 

5.6 Impact of Organization on Accessibility 
RQ7: Are large and mature software organizations more ef-
fective at labeling image-based elements? 

Among highly downloaded apps in our data, we observed that 
many were published by large and mature software organizations. 
For example, of the 43 apps in our data that had more than 500 
million downloads, 18 (41.9%) were developed by Google. We there-
fore examined how accessibility might be shaped by factors re-
lated to these organizations, analyzing missing label failure rates 
across multiple apps published by the same organizations. We iden-
tifed 6 organizations that had published at least 4 apps in our data: 
Adobe (4), Amazon (4), Facebook (6), Google (22), Microsoft (7), and 
Yahoo (6). This resulted in 49 apps, with an average of 18.5 unique 
image-based elements in each crawl of each app. 

Figure 5 plots the missing label failure rate for these apps accord-
ing to Organization. Although each organization published at least 
one app with a low missing label failure rate, several organizations 
also published apps with much higher missing label failure rates. 
An analysis of variance, modeled as described in Section 4.4.4, found 
a signifcant diference in Failure Rate according to Organization 
(χ2(5, N =583) = 136.4, p < .001). We conducted post-hoc pairwise 
comparisons using Z-tests, corrected with Holm’s sequential Bon-
ferroni procedure [24], fnding that apps published by Google or 
Microsoft had signifcantly lower Failure Rate than apps published 
by the other 4 organizations (p < .01 for all pairs comparing Google 
or Microsoft to other organizations). Organizational factors that can 
shape accessibility warrant additional investigation, but our data 
suggests that access to expertise and resources at large and mature 
software organizations does not by itself guarantee accessible apps. 

Furthermore, while the above 6 organizations account for 32 of 
the 62 apps with less than 5% missing label failure rate in our March 
2021 snapshot, the remaining 30 were published by 30 diferent 
organizations. Though our data does not otherwise characterize 
those diferent organizations (e.g., a large and mature organization 
may have only 1 app in our data), our results suggest the develop-
ment of accessible apps is also not limited to the above 6 largest 
and most mature software organizations. 

6 ILLUSTRATIVE EXAMPLES OF EVOLUTION 
IN APP ACCESSIBILITY 

Prior large-scale analyses of mobile app accessibility have been 
conducted within a single snapshot and therefore were unable to 
observe specifc changes in the accessibility of apps over time. We 
identifed illustrative examples of evolution in the accessibility of 
specifc apps by generating longitudinal failure plots for each app, 
each of which show the unique elements observed in an app and the 
accessibility of those elements across collected snapshots (e.g., as 
in Figure 1 and Figure 6). We highlighted plots for trends that 
seemed compelling or informative, then inspected the data behind 
each plot to ensure appropriate interpretation. Observations in 
these qualitative examples are intended to complement and provide 
additional nuance to our large-scale quantitative analyses. 

6.1 Systematic Accessibility Improvement 
Although our large-scale quantitative analyses did not fnd an over-
all longitudinal improvement of missing label failures in image-
based elements, we did observe individual apps making systematic 
improvements to their accessibility. For example, Figure 1 shows 
failure plots for 2 apps published by Zillow: a home buying app 
and an apartment rental app. Across multiple snapshots, both apps 
included multiple unique elements with missing label failures. The 
June 2020 snapshot then repaired most of these failures across both 
apps. These repairs suggest a relatively systematic approach to im-
proving accessibility, and the visual similarity of the apps together 
with 4 identical ViewIdResourceName values suggests they likely 
share underlying code that was improved. We did not observe the 
later introduction of new unique elements, so our data provides 
no insight into whether June 2020 improvements might have re-
sulted from a one-time accessibility audit or from a more sustained 
organizational approach to ensuring accessibility. However, this 
relatively systematic improvement does provide an example of ef-
fective improvement and a contrast to our observations in other 
examples. 

6.2 Incomplete or Opportunistic Accessibility 
Improvement 

In contrast to such systematic improvement, we more commonly 
observed apps that made incomplete or opportunistic accessibility 
improvements. Such improvements were characterized by repair-
ing one or more missing label failures while other elements in the 
same app or even the same screen remained unlabeled. For exam-
ple, Figure 6 shows a failure plot for the FOX Now app. The March 
2020 snapshot repaired 4 unique missing label failures (i.e., “Home”, 
“Live”, “Search”, “My Account”), all within the app’s navigation 
toolbar. Several other missing label failures in the same screens 
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Figure 6: Failure plot for the FOX Now app. As in Figure 1, an empty orange square indicates a unique element observed to 
have a missing label failure, a solid blue circle indicates a unique element observed as labeled, and a black point indicates 
the element was not observed in that snapshot. The March 2020 snapshot repaired 4 unique missing label failures in the 
app’s navigation bar, highlighted in blue in the accompanying screenshot. However, 2 other missing label failures in the same 
screen were not repaired, highlighted in orange. This incomplete repair suggests the app developers had an awareness of app 
accessibility and how to repair failures, but other factors prevented more complete implementation of accessibility repairs. 

were not repaired (e.g., “Collapse”, “Alert”), and the failure plot 
shows later snapshots introduced newly observed elements that 
contained new missing label failures. As another example, our orig-
inal snapshot of the SHEIN-Fashion Shopping Online app included 
36 unique elements with missing label failures. The December 2020 
snapshot added labels to least 16 previously inaccessible elements 
across 7 unique screens. The February 2021 snapshot added labels 
to another 5 elements across 2 unique screens. Despite such repairs 
indicating awareness and knowledge regarding image labeling, the 
March 2021 snapshot still included 43 unique elements with missing 
label failures. In contrast to systematic repair in Section 6.1, these 
patterns suggest accessibility improvements due to specifc limited 
reports (e.g., a complaint about a specifc element may prompt re-
pair of that element) or variations in development practice (e.g., one 
developer in a team may have better accessibility practices or may 
opportunistically repair elements they encounter). The developer 
of such an app has at least some awareness and knowledge re-
garding accessibility, but other factors seem to prevent them from 
implementing more complete accessibility support. 

In addition to such incomplete labeling across snapshots, we 
also observed inconsistent labeling within snapshots. We examined 
80 apps that had at least one instance of inconsistent labeling of 
equivalent elements (i.e., according to our defnition of element 
equivalence in Section 4.3). For example, Figure 7a shows the Post-
mates app in the October 2020 snapshot. It contained multiple 
screens with a “Close” button, but only some properly labeled the 
button. Similarly, Figure 7b shows the Roomster app in the February 
2021 snapshot. It contained screens with an “Edit Profle” Image-
Button that was properly labeled on a My Info screen but not on 

a Listings screen. Our inspection found inconsistent labeling was 
most common among “Back”, “Close”, and other navigation actions. 
In contrast to the evidence that code reuse provided consistency 
even across apps in Section 6.1, such inconsistencies likely resulted 
from code repetition that failed to consistently include accessibility 
data. 

6.3 Accessibility in Interface Redesigns 
We observed that interface redesigns can have additional impact 
on accessibility. For example, the October 2020 snapshot of the 
DoorDash app introduced several changes relative to the prior 
August 2020 snapshot. We detected 17 unique image-based elements 
with missing label errors in the August 2020 snapshot that were then 
not detected in or after the October 2020 snapshot. Inspection of this 
accessibility-related event found these elements had generally been 
removed or re-implemented with a diferent ViewIdResourceName. 
For example, Figure 8 shows an ImageView with a “plus” icon was 
that added, allowing selection of the quantity of an item before 
adding it to a cart. Unfortunately, this and many other new elements 
also had missing label failures. 

Although Section 5.2 found no detectable diference in the preva-
lence of missing label failures for newly-observed versus previously-
observed unique elements, this example highlights that new acces-
sibility failures can come together with changes in an interface. A 
person may have learned to work around existing failures (e.g., by 
memorizing paths through an app, by using Android support for 
custom labeling based on ViewIdResourceName), so new accessibility 
failures together with changes that invalidate a prior workaround 
could be additionally problematic. 
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(a) Postmates app, October 2020 snapshot (b) Roomster app, February 2021 snapshot 

Figure 7: Examples of inconsistent labeling of the same interface element: (a) 2 diferent screens from the Postmates app 
contain the same “Close” button, but only 1 is labeled, and (b) 2 diferent screens from the Roomster app contain the same 
“Edit Profle” button, but only 1 is labeled. Such inconsistent labeling suggests code repetition is contributing to accessibility 
failures. 

Figure 8: An example of a missing label failure in a new ele-
ment introduced in a redesign, observed in the October 2020 
snapshot of the Doordash app. The update added a new but-
ton for selecting the quantity of an item before adding it to 
the cart, but this element was not labeled. Accessibility fail-
ures introduced during redesigns may be additionally prob-
lematic if the redesign invalidates any workarounds that 
people have developed with a prior interface. 

6.4 Accessibility Regressions 
Our longitudinal tracking of elements across snapshots found 27 
examples that were observed without a missing label failure, then 
later observed to have introduced a missing label failure. Inspec-
tion confrmed these were generally accessibility regressions, as 
illustrated in Figure 9. For example, the March 2020 snapshot of 
the Amazon Prime Video app included two ImageView-based but-
tons in a playback control toolbar that were properly labeled as 
“Pause” and “Connected to cast device”, but these same elements 
then contained missing label failures in the May 2020 snapshot. 
Similarly, the August 2020 snapshot of the CBS Sports app included 
browser controls for an embedded WebView that were properly 
labeled (i.e., as “Back”, “Forward”, “Stop”, and “Share”), but these 
same buttons then had missing label failures in the October 2020 
snapshot. In both examples, the icons and arrangement of the image-
based elements were unmodifed and we saw no evidence of larger 
changes in the design. Other than the accessibility regression, the 
only detectable change in these elements was their height (i.e., the 
Amazon Prime Video buttons changed height from 204 pixels to 
215 pixels; the CBS Sports buttons changed height from 132 pixels 
to 154 pixels, the icons within the buttons appeared identical but 
scaled slightly smaller). Our data does not clearly suggest how these 

regressions were introduced, but does illustrate a lack of testing or 
other mechanisms for preventing such regressions. 

7 DISCUSSION 
We have presented a set of initial analyses focused on missing la-
bel accessibility failures within a unique large-scale longitudinal 
dataset of app accessibility. Labeling image-based elements is a crit-
ical and necessary component of accessibility, as emphasized in ac-
cessibility guidelines and prior analyses. Prior large-scale analyses 
largely focused on a single snapshot of each app and therefore were 
unable to explore change in accessibility over time [2, 39, 40, 50]. We 
examined changes in accessibility over time using both large-scale 
quantitative analyses and the qualitative consideration of specifc 
illustrative examples. In addition to providing a new understanding 
of current app accessibility, our analyses suggest potential design 
opportunities for improved labeling of image-based elements. 

7.1 Supporting Systematic Accessibility 
Improvements 

One set of opportunities is to help developers be more systematic in 
their labeling of image-based elements. Incomplete labeling in Sec-
tion 6.2 demonstrates that developers have at least some awareness 
and knowledge, yet they do not systematically apply that knowl-
edge. Section 5.3’s bimodal distribution of per-app failure rate is 
also consistent with this fnding, as the uniform middle portion 
of the distribution collectively accounts for approximately 60% of 
apps that provide labels for some but not all image-based elements. 
Future research could examine which elements are labeled versus 
not and how any such diferences might suggest improvements in 
development and accessibility testing tools. One possibility is that 
developers are simply unaware of additional missing label failures. 
A tool based on automatically collected data like our crawls could 
help surface failures (e.g., complementing manual exploration using 
tools like the Accessibility Scanner [18]). Another possibility is that 
failures are in third-party components (e.g., a library used by an 
app, in which the app developer cannot directly repair an accessibil-
ity failure). Large-scale analyses might identify such library-based 
failures across diferent apps, help prompt repairs in such libraries, 
and support app developers in early decision-making around which 
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(a) Amazon Prime Video app, May 2020 regression (b) CBS Sports app, October 2020 regression 

Figure 9: Examples of accessibility regressions: (a) 2 playback control elements in the Amazon Prime Video app that were 
previously labeled but then observed with missing label failures in the May 2020 crawl, and (b) 4 browser control buttons in 
the CBS Sports app that were previously labeled but then observed with missing label failures in the October 2020 snapshot. 

libraries to use. Our data overall suggests an audience of develop-
ers who are already motivated to improve accessibility and would 
beneft from tools that supported them in being more systematic. 

7.2 Reducing Failures Introduced Through 
Code Duplication 

Another set of opportunities is to reduce the number of distinct 
labels app developers must provide. Our defnition of element equiv-
alence and the inconsistent labeling in Section 6.2 highlight that 
apps contain many equivalent elements, some of which are inac-
cessible due to inconsistent labeling. Implementation of equivalent 
elements in separate code is straightforward (e.g., instantiating an 
ImageButton parameterized with an icon), but resulting code repeti-
tion contributes to accessibility failures. For example, the interface 
redesign in Section 6.3 reduced the number of unique elements 
with missing label failures by repairing or removing several ele-
ments with similar ViewIdResourceName (e.g., “close”, “closeButton”, 
“close_button”), although a new “btn_close” element then also in-
troduced a new missing label failure. It is possible for developers to 
create and reuse components, and the systematic examples in Sec-
tion 6.1 apparently benefted from code reuse. However, developer 
tools could also better promote label reuse as an example of the 
Don’t Repeat Yourself principle. For example, modern development 
environments can detect code repetition as potentially problem-
atic, and our analyses suggest repetition when instantiating image-
based elements might be especially problematic (e.g., development 
environments might present a warning or support automated refac-
toring). Because we found many inconsistent labels in common 
components (e.g., “Back”), libraries that automatically pair common 
icons and appropriate labels could reduce labeling required of app 
developers. Implementation patterns for centralization and reuse 
of images and their labels, as already common when centralizing 
text into tables for localization, could support both reuse and more 
systematic coverage in labeling. 

7.3 Supporting Adoption of Accessibility 
Practices 

Additional opportunities to promote accessibility through developer 
tools and practices are suggested by considering the accessibility 
of an app in terms of its longitudinal evolution (i.e., rather than 
as a static property of an app). Accessibility advocates have long 

argued for the importance of starting with accessibility, and Sec-
tion 5.5’s analysis of missing label failure rate according to number 
of downloads demonstrates that suggestions an app will be made 
incrementally more accessible as it becomes more popular are gen-
erally not born out in practice. Such data can and should be used to 
advocate for stronger accessibility practices in organizations and 
stronger accessibility defaults in developer tools. At a smaller scale, 
developer tools might also target moments of change corresponding 
to new interface elements or signifcant interface redesigns. Sec-
tion 5.4 found that image-based elements often provide the primary 
or exclusive path for navigating to portions of an app, so detecting 
the introduction of such an element could support stronger inter-
ventions to ensure its accessibility. Signifcant interface redesigns 
like in Section 6.3 provide a similar opportunity. The fact that a 
portion of an interface is already undergoing signifcant change 
provides an opportunity for stronger interventions to ensure acces-
sibility in that change (e.g., organizations could require accessibility 
in new functionality as part of allowing developers to publish that 
functionality). Finally, our observation of specifc accessibility re-
gressions in Section 6.4 warrants further investigation and potential 
improvements in associated tools. 

7.4 Limitations and Future Work 
Crawls were conducted at monthly intervals since we found most 
popular Android apps like those included in our dataset were often 
updated. We found that 81.9% of sequential crawls were conducted 
on diferent app versions, suggesting that most apps were frequently 
updated between snapshots. Monthly sampling also ofered several 
technical advantages, such as ensuring sufcient time for all apps 
to be crawled thoroughly, and providing a window to prepare the 
infrastructure for the next snapshot of crawls. Furthermore, our 
16-month study is comparable in timeframe to some insightful 
longitudinal studies conducted on web accessibility [12, 26], and 
we also believe 16 months is an adequate amount of time for screen 
reader users to expect to see accessibility improvements within 
their commonly used mobile apps. 

While our results suggest that monthly sampling over 16 months 
is sufcient to detect a small evolution of app accessibility, there are 
potential analyses that it does not support. Future longitudinal stud-
ies of app accessibility may consider other sampling frequencies to 
complement our analyses. For example, apps could be crawled at 
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every update to provide a fne-grained lens into each app’s acces-
sibility evolution. Less frequent crawls (e.g., sampling every three 
months) over a longer period of time could provide a broader per-
spective of accessibility changes, such as enabling the macroscopic 
analysis of the relationship between evolving developer tools and 
resources (e.g., developer documentation, mobile frameworks, and 
common app libraries) and accessibility failures. Finally, our study 
does not currently diferentiate between accessibility failures of 
diferent image-based elements. One avenue for future work is to 
distinguish between missing labels that were caused during the 
initial design and development of an interface element, or those 
that were caused by missing label data when populating dynamic 
image elements from a database. 

8 CONCLUSION 
We have presented the frst large-scale longitudinal analysis of 
missing label accessibility failures in Android apps, and created a 
unique dataset of monthly snapshots of 312 apps over 16 months. 
Our large-scale quantitative analyses of missing label failures in this 
dataset found missing label failures in 55.6% of unique image-based 
elements, longitudinal improvement in ImageButton elements but 
not in more prevalent ImageView elements, that 8.8% of unique 
screens are unreachable without navigating at least one missing 
label failure, that app failure rate does not improve with number of 
downloads, and that efective labeling is neither limited to nor guar-
anteed by large software organizations. We complemented this with 
qualitative examination of longitudinal failure plots in individual 
apps, presenting illustrative real-world examples of the accessibility 
impacts of systematic improvements, incomplete improvements, 
interface redesigns, and accessibility regressions. Finally, we sug-
gested opportunities for better supporting systematic accessibility 
improvements, in reducing failures introduced through code du-
plication, and in supporting adoption of accessibility practices. As 
accessibility research in current and emerging technologies de-
fnes best practices for supporting individual accessibility needs 
and preferences, our research demonstrates the potential value of 
large-scale longitudinal data in examining how to ensure developer 
implementation of those practices. 
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