

Group Touch: Distinguishing Tabletop Users in Group
Settings via Statistical Modeling of Touch Pairs

Abigail C. Evans,1 Katie Davis,1 James Fogarty,2 Jacob O. Wobbrock1
1The Information School, 2Computer Science & Engineering

DUB Group | University of Washington
Seattle, WA, USA 98195

{abievans, kdavis78, wobbrock}@uw.edu, jfogarty@cs.washington.edu

ABSTRACT
We present Group Touch, a method for distinguishing
among multiple users simultaneously interacting with a
tabletop computer using only the touch information supplied
by the device. Rather than tracking individual users for the
duration of an activity, Group Touch distinguishes users
from each other by modeling whether an interaction with
the tabletop corresponds to either: (1) a new user, or (2) a
change in users currently interacting with the tabletop. This
reframing of the challenge as distinguishing users rather
than tracking and identifying them allows Group Touch to
support multi-user collaboration in real-world settings
without custom instrumentation. Specifically, Group Touch
examines pairs of touches and uses the difference in
orientation, distance, and time between two touches to
determine whether the same person performed both touches
in the pair. Validated with field data from high-school
students in a classroom setting, Group Touch distinguishes
among users “in the wild” with a mean accuracy of 92.92%
(SD=3.94%). Group Touch can imbue collaborative touch
applications in real-world settings with the ability to
distinguish among multiple users.

Author Keywords
Tabletop; modeling; distinguishing users; “in the wild.”

ACM Classification Keywords
H.5.3. Group and Organization Interfaces: Collaborative Computing.

INTRODUCTION
Interactive tabletops can support collaboration because of
the large, shared interface that multiple people can interact
with together [9,22]. However, with the exception of two
systems, DiamondTouch [8] and Fiberio [24], tabletops are
limited by their inability to identify users. The capacity to
distinguish among users is desirable for a number of
reasons, ranging from basic usability (e.g., resolving
conflicting gestures carried out by different people [32]), to
enabling certain application features (e.g., allowing users to

separate personal and shared space on the screen [27,40]),
to tracking and evaluating an individual’s contributions to a
group task [29]. For example, in the domain of
collaborative classroom education [12], distinguishing
among users can enable interventions that help students
improve overall group collaboration (Figure 1).

A number of methods have been proposed for distinguishing
among tabletop users, but most existing approaches either
rely on external sensors (e.g., [1,29,30,35,36]) or constrain
interaction (e.g. [4,21,43]) so that users are prevented from
taking full advantage of the tabletop’s multi-touch
capabilities. In our prior investigation of tabletop
collaboration in high school classrooms [12], the need arose
for distinguishing among users engaged in unconstrained
multi-touch interaction without using external sensors,
which were not practical due to the physical constraints of
the classroom. No existing approach could meet this need.

This paper describes Group Touch, a novel user-independent
approach to distinguishing among users that utilizes only
the built-in capabilities of the tabletop computer and does
not impose restrictions on users. Importantly, existing
approaches have generally taken on the goal of trying to
identify and track each user. In this work, we relax and
reframe that goal, instead focusing on distinguishing one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2017, May 06-11, 2017, Denver, CO, USA  
© 2017 ACM. ISBN 978-1-4503-4655-9/17/05…$15.00  
DOI: http://dx.doi.org/10.1145/3025453.3025793 

Figure 1. Group Touch can distinguish among users “in the wild”
with a mean accuracy of 92.92% (SD=3.94%) using only touch
information. Pictured above are high school students in a classroom.
The challenge of distinguishing among users (i.e., knowing one
user’s touches are different from another’s) is a different challenge
than identifying them (i.e., knowing to whom each touch belongs).

user from the next by determining when subsequent touches
are from the same user or different users. We therefore do
not achieve the ability to uniquely identify a user (e.g., for
authentication purposes), but we do gain the ability to
distinguish among multiple users during periods of
simultaneous interaction. This reframing of the objective is
a key insight that simplifies the problem but still retains
many capabilities important for multi-user tabletop
interaction scenarios. Use cases for Group Touch include:
(1) resolving conflicting input that occurs when multiple
people are simultaneously interacting with the same
interface; (2) modeling the collaborative processes of small
groups working at tabletop computers; and (3) evaluating
and informing the design of software to better support small
group collaboration at tabletop computers.

We explain how Group Touch works, give example scenarios
in which it works, and demonstrate its effectiveness on a
collection of field data acquired by groups of high school
students collaborating at a Microsoft PixelSense in a classroom
setting. Our results show that Group Touch can distinguish
among 4-6 simultaneous users of a tabletop computer “in
the wild” with an accuracy of 92.92% (SD=3.94%).

The contributions of this work are: (1) a novel approach to
distinguishing among users at a tabletop computer that does
not restrict multi-touch interaction or require additional
sensors; and (2) an empirical study of the effectiveness of
this approach using touch data collected entirely in a
chaotic classroom field setting.

RELATED WORK
Common tabletop computers are vision-based, using either
frustrated total internal reflection (FTIR) [19] or diffuse
illumination (DI) [38] to detect touches. Existing approaches
to distinguishing among users at vision-based tabletops fall
into three categories: (1) approaches that augment the
tabletop with additional sensors; (2) approaches that require
the user to wear or hold external sensors; and (3) approaches
that use only the built-in capabilities of the tabletop
hardware. We review each of these in turn.

Approaches that augment the tabletop with additional
sensors are typically reliable, accurate, and unobtrusive to
the user. These approaches make it possible to track
individual users for the duration of their time at the
tabletop. For example, proximity sensors have been added
to the edges of tabletop computers in order to track users’
locations around the screen [2,41]. Multiple approaches
have used cameras mounted above the tabletop to track
users’ arms and hands [6,29,34]. Bootstrapper [35] uses a
depth camera mounted under the table to track users by
their shoes and then match touches to individuals using the
touch orientation detected by the tabletop’s vision system.

Other approaches augment users with additional sensors,
such as rings [36], wristbands [30], gloves [28], or cards [25]
that communicate with tabletops’ built-in sensors to identify

users. Ackad et al. [1] used a combination of users’ personal
mobile devices and an overhead depth camera.

However, relying on external sensors is not always practical
or desirable. For example, our work is motivated in part by
the need to distinguish among users in the context of a
study of collaborative learning at tabletop computers in
authentic classroom settings [12]. The physical constraints
of the study sites mean that the tabletop needs to be set up
and then removed for each class session, making it
impractical to use external sensors such as a depth camera
that would need to be fixed in place. This problem has been
encountered by other researchers studying tabletops in
classroom settings [26]. Augmenting users (high school
students) with wearable sensors was ruled out simply
because such sensors require additional setup, storage, and
maintenance, all of which increase time spent administering
a learning activity and the burden of classroom
management on the teacher. These factors go against
evidence-based best practices and guidance on integrating
new technologies into classrooms [3,10,11]. Therefore,
deployments like this need an approach to distinguishing
among users that does not rely on external sensors.

Several studies have investigated the use of finger
orientation and hand contours, captured by vision-based
tabletops’ on-board cameras, to match touches to hands and
users [7,13,42,43,44]. Ewerling et al. [13] developed an
image processing technique to match touches to individual
hands with four users simultaneously interacting with a
tabletop computer. They did not explore the application of
their technique to distinguishing users. Dang et al. [7] and
Zhang et al. [44] both developed heuristic methods using
touch orientation and distances between contact points to
map touch points to hands. Mapping touches to hands could
potentially improve gesture detection and thereby enhance
the interactive experience. Both methods were highly
effective at differentiating between the hands of single
participants, but neither method was tested with groups or
used to extrapolate from hands to users.

Zhang et al.’s [43] See Me, See You algorithm used hand
contours captured by the vision system to detect finger
orientation and handedness. Using touch orientation along
with a touch’s coordinates, Zhang et al. trained a support
vector machine to predict a user’s location at the tabletop,
thus distinguishing among different users. Their approach,
however, does not support multi-touch input, purposefully
constraining users to single-point touches in order to make
identification possible.

For touchscreens with capacitive sensing capabilities,
Harrison et al.’s [21] capacitive fingerprinting technique
takes advantage of the natural differences in electrical
current passing through individual users. This approach
does not restrict how users touch the screen, but a limitation
of the prototype tested in Harrison et al.’s study is that it
can only handle one touch at a time.

Blažica et al. [4] enable identification of users across all
types of tabletop computers using hand biometrics.
However, their approach is only able to distinguish among
multiple simultaneous users when they place a hand on the
screen in a specific position—all five fingers splayed and
touching the screen. Therefore, it is not a suitable approach
for distinguishing users during “in the wild” tabletop
interaction, such as in a high school classroom.

Finally, application-based approaches take advantage of
assumed or enforced social protocols. For example, an
approach that automatically segments a tabletop interface
into territories belonging to individual users [16] draws
upon Scott et al.’s [39] findings that groups tend to divide
the tabletop into personal and shared territories without any
explicit coordination. However, social protocols can vary
greatly depending on the context, limiting their
generalizability as a means of distinguishing users. For
example, research with adults in a lab setting has shown
that participants are reluctant to reach into one another’s
perceived personal space or territory on the tabletop [37],
supporting the notion that it is possible to distinguish users
by identifying those personal territories. In contrast,
children engaged in collaborative learning around a tabletop
often break or ignore boundaries of personal space, actually
enhancing collaboration [15,33]. Given that our context is
tabletop collaboration in authentic high school classrooms,
these findings suggest that assuming young users will
follow adult social protocols may be unwise.

All of the approaches described above that use only the
built-in capabilities of the hardware to distinguish users also
impose restrictions on how users can interact with the
tabletop. Some researchers argue that there are scenarios
where users will be willing to sacrifice unconstrained
interaction for the ability to track users [43]. However, this
will only hold true when the value added by tracking users
outweighs the inconvenience of artificial constraints on
interaction. When this is not the case, such as when an
application requires true multi-touch input, the above
approaches are not suitable. Additionally, these approaches
are at risk of failure with young users because it can be
difficult to get children and adolescents to comply with
behavioral constraints. With Group Touch, we address the
problem of distinguishing users without utilizing external
sensors and without constraining interaction.

DESIGN AND EVALUATION OF GROUP TOUCH
In order to support unconstrained multi-touch interaction,
we forego the goal of identifying and tracking users
(knowing to whom each touch belongs), which has been the
focus of many of the aforementioned approaches. Instead,
our aim is distinguishing among users (knowing one user’s
touches are different than another’s). This means that our
approach cannot enable sophisticated personalization of
interfaces or authentication, but it can be used to address
core usability problems that arise when multiple people
interact with a single shared interface, such as determining

whether simultaneous touches are by a single person
performing a single multi-touch gesture or multiple people
performing separate gestures (e.g., to resolve conflicts). Our
approach could also be used for modeling collaboration in
order to understand group working practices and inform the
design of collaborative tabletop applications.

Most approaches to distinguishing among users have
tackled the problem at the individual level by trying to
match touches to users. By relaxing the goal of tracking and
identifying, we reframe the problem at the group level; after
all, the need to distinguish among individuals only arises
when there are multiple users in a group. This reframing
leads us to compare touches to each other instead of
attempting to match touches to specific individuals.

Group Touch has two components. The first is a multilayer
perceptron (MLP) model trained on touch data collected
entirely “in the wild.” The model predicts, given a pair of
touches, whether they were carried out by the same person
or different people. The second component is an algorithm
that uses the predictions of the MLP model to group
touches that were likely to have been carried out by the
same person. The following sections describe the dataset
that was used to develop and evaluate Group Touch and the
design of each component in turn.

Creating the Touch Dataset
Group Touch was developed and evaluated using touch data
collected “in the wild” during a study of collaborative
learning at tabletop computers in classroom settings [12].
Data were collected from high-school students using five
distinct multi-touch applications (Figures 2 and 3) on a
Microsoft PixelSense in two different educational programs.

Figure 2. The mapping application used in the classroom. The two
blue squares represent locations with available water quality data.
Touching the squares opened up graphs and charts of the data. The
shown toolbar provided access to additional navigation and settings.

The participants in the first study setting—an after school
science program—were eleven 9th to 12th grade students
(6 male, 5 female). Figure 2 shows the custom-built
mapping application used in this setting. The teachers of the
science program had requested an application that would
enable students to see stream-monitoring data they had
collected laid out on a map of their study area that could be
panned and zoomed to different levels of detail. Students

could use the map to navigate to various data collection
locations and to interact with tables, graphs, and images of
data. Students interacted with the application using standard
multi-touch gestures such as pinch-to-zoom, swipe-to-pan,
and multiple-finger rotation. Four sessions were recorded
across two class periods with the students using the
computer in groups of five to six for around 30 minutes a
session. A total of 1,072 touches were logged in this setting.

Participants in the second study setting—a user-centered
design course—were sixteen 10th and 11th grade students
(6 male, 10 female). Figure 3 shows screenshots of the
applications that were custom-built for this course. The
students used each application for 10-15 minutes in groups
of three to four over four class sessions. One application
(Figure 3, top left) enabled the students to draw on
wireframes for their design project. A second application
(Figure 3, top right) helped groups brainstorm questions for
a usability test. A third application helped students improve
their search skills (Figure 3, bottom left) by finding and
comparing resources for their projects. These applications
were built using the PixelSense’s native interface
components, which fully support multi-touch. The final
application (Figure 3, bottom right) was a multi-touch-
enabled browser plugin for finding and annotating, via drag
and drop, real-world examples of usability heuristics.
Thirteen group sessions were logged in this setting,
amounting to 9,255 touches.

Figure 3. The applications used in the second study setting. From
left to right, top to bottom, the first three applications used the
computer’s native SDK. The fourth (bottom right) application was
browser-based. All applications supported multi-touch. (See the text
for details on each application.)

In both classroom settings, the teacher determined the
activities that the students carried out, and students were not
given any instructions on how they should interact with the
tabletop computer. The students elected to stand while
using the computer and chose how to arrange themselves
around the screen. They touched freely and rampantly,
without any rules imposed on them to take turns or “be
polite” to their collaborators. In this way, the environment
paralleled many authentic classroom situations.

All 17 sessions across both study sites were video recorded
with a single camera and every touch was logged by

software on the tabletop. The camera was mounted on a
tripod to the side of the table, angled down so that the
whole tabletop screen was visible. The purpose of the
camera was to enable us to manually label the author of
every single touch using the video to obtain ground truth.
Manually labeling the touches took around 200 hours.

The touch data collected in both settings proved to be as
“messy” as might be expected from unconstrained field
settings with high school students. We observed considerable
variation in how students carried out standard multi-touch
gestures, such as drag and rotation, echoing Hinrich and
Carpendale’s [23] findings from their study of multi-touch
gestures on tabletops “in the wild.” Students were free to
move around the tabletop and often did, occasionally
pushing and shoving each other. Figure 1 shows multiple
students simultaneously interacting with the table, which
was characteristic of much of the students’ time with the
table, even though taking turns and adhering to the social
protocols of effective collaborative work would have been
beneficial for the learning activities. Additionally, a notable
proportion of student interactions appeared to be carried out
without an obvious task-related purpose. For example,
students regularly spun or flicked on-screen objects while
engaged in off-task conversation. These behaviors have also
been noted in other reports of tabletop use in classroom
settings [12,26].

The MLP Model and Feature Selection
The first component of Group Touch, the MLP model,
predicts whether a pair of touches was carried out by the
same person or different people based on three features
(Figure 4): (1) the difference in touch orientations; (2) the
pixel distance between the two touches; and (3) the time
difference between touches, in milliseconds.

Figure 4. The touch features used to predict whether a pair of
touches was carried out by the same user are: (1) the difference θ
between the touches’ orientations, (2) the distance d between the
touch points, and (3) the time between t1 and t2.

The three features were selected based on the following
reasoning. Consider Figure 5, a raw image captured by the
PixelSense’s on-board cameras. Even without any context,
a human viewer can determine that the two touch points
detected by the computer (the brightest points in the image)

are being carried out by two different people—we can
clearly see two hands in a configuration which would be
very difficult for a single person to achieve given the size of
the screen (40"). The primary features of the two touch
points that enable us to infer that we are seeing the hands of
two separate people are the difference in their orientations
and the distance between the touch points. Touch
orientation refers to the orientation of the finger’s contact
area detected by the computer’s vision system.

Figure 5. A raw image captured by Microsoft PixelSense on-board
cameras showing two different people touching the screen.

In Figure 5, the touch points are concurrent, which helps us
determine that we are seeing two different people. If the
touch points were not concurrent—for example, if the touch
on the left of the screen took place 30 seconds after the
touch at the top—we would be less confident that we were
seeing two people rather than one person who has taken a
few steps to their right in order to reach a different area of
the screen. Therefore, a third feature, the time that has
passed between the touches, is also necessary to make a
prediction that the two touches were carried out by the same
person or two different people.

Based on the above examples, the three features included in
the model are all needed to make a prediction of “same” or
“different” but the exact nature of the relationship between
them is not clear and is likely non-linear. Although
including just three features makes for a simple model, the
non-linearity adds complexity. The MLP classifier has been
demonstrated to be well-suited for complex problems where
the relative importance of each feature is unknown [17],
making it a good choice for this work. Our main
requirement for classifier selection was that the model
output a probability with each classification, as this was
necessary for our grouping algorithm, described below. We
selected MLP as our classifier after using leave-one-out
nested cross validation in Weka [18] to test a number of
classifiers that output a probability. The Weka classifiers
tested included Logistic Regression, LibSVM, and
BayesNet among many others. Our use of a classifier
learned from data, instead of a heuristic approach, also
means that future versions of Group Touch could
incorporate additional touch features found to be predictive.

The MLP Model, Pre-processing, and Training
The purpose of our MLP model is to predict, given a pair of
touches, whether or not those touches are carried out by the
same or different people. To prepare a touch log to train our
model, each touch was processed sequentially.

Pre-processing of the raw touch logs began by converting
individual touches into pairs of touches. Each touch pair
consisted of a given touch and the previous touch by each
user in the session. The values of each of the features—
difference in orientation, distance, and time between
touches (see Figure 4)—were calculated to form an instance
with a class label of either “same” or “different.” A single
instance comprised the new touch and the last touch carried
out by the same user (with the class label, “same”). N-1
instances comprised the new touch and the last touch
carried out by each of the other users in the group (with the
class label, “different”). So in a group of N users, each new
touch resulted in N touch pairs, or instances.

Consider, for example, that several of our user groups
comprised four students. In these groups, each new touch
resulted in four instances (or touch pairs)—one instance
formed from the differences between the new touch and the
last touch by the same person, and three instances
describing the differences between the new touch and the
last touch by each of the other three people.

Creating touch pairs in the aforementioned manner helped
to account for differences in how groups of users interact
with any given application, as it always produced a similar
distribution of instances with the “same” versus “different”
class label for a group of N users regardless of the activity
or the users’ working style. For example, a group of four
users will always produce three instances with the class
label “different” for every instance with the class label
“same.” This consistency is important to prevent over-
fitting the MLP model to a particular application or group
working style (e.g., turn-taking versus parallel interactions).

Before training the model, each feature was normalized to
the range [0, 1]. For two of the three features, normalization
was straightforward as the possible range of values is
inherently limited—the difference in orientation can only
fall between 0º and 180º, and the maximum distance
between two touch points is determined by the length of the
screen diagonal. The elapsed time between touches,
however, does not have a clear upper limit. We set the
upper limit for time between touches to be the 90th
percentile for our full dataset, or about 307 seconds, in
order to remove outliers. Instances with a greater time
between touches were dropped from the training data.
Although this upper limit may seem high at just over five
minutes, it was fairly common in our dataset for groups to
take breaks from interacting with the screen to discuss
something, or for some individual users to refrain from
interacting for extended periods of time, therefore leading
to lengthy gaps between touches by particular users.

We trained and optimized Group Touch’s MLP models in
Weka using leave-one-out nested cross validation to
prevent overfitting. This method resulted in 17 models—
each one trained and optimized on the data from 16 of the
study sessions and evaluated on the unseen data from the
remaining study session.

For every touch logged, as described above, there were
more instances generated with the class label “different”
than “same,” so the data were heavily weighted towards the
“different” label (77.40% of instances across all sessions).
To avoid overfitting the models to the majority class label,
we applied the SMOTE filter [5] to balance the training
data, resulting in an almost 50%-50% split between the two
labels. MLP models can potentially be sensitive to the order
of training instances, so we applied the Randomize filter to
shuffle instances before training.
Touch Grouping Algorithm
After a touch pair is categorized with the “same” or
“different” label, the next step is to establish groups of
touches that are likely to have been carried out by the same
user. The goal of Group Touch is to detect when additional
users begin touching the screen and distinguish among
multiple users as they are concurrently interacting with the
computer; it is not intended to track or identify individual
users for the duration of an activity. Key to our approach is
that a “group” is not synonymous with a “user”—it is a
group of touches that belong to a single user, representing a
period of sustained interaction. Figure 6 illustrates the
algorithm used to place touches into groups.

The first touch creates the first group (Figure 6A). For
every subsequent touch, a touch pair is created with the last
touch in each group established so far. When the MLP
model is queried, it returns the probability that the last
touch belonged to the same user. If P(same) is less than a
specified threshold (p), a new group is started (Figure 6B);
otherwise, the touch is assigned to the group with the
highest P(same) (Figure 6C).

The value of threshold p can vary between 0.5 and 1.0.
Higher thresholds mean that it is more likely a touch group
will be made up of touches carried out by only one user
because a more confident “same” prediction is required for
a touch to be added to an existing group. However, higher
thresholds also lead to new groups being created more
often, with each group containing fewer touches and lasting
a shorter period of time. In contrast, lower thresholds lead
to touch groups that last for longer and contain more
touches, but also increase the likelihood that touches by
different users will be mistakenly grouped together because
a weaker “same” prediction is sufficient to add a touch to
an existing group.

To evaluate the grouping algorithm and establish a suitable
value for threshold p, we tested it on each session of touch
data using a leave-one-out procedure. This testing involved

Figure 6. An example of the algorithm to place touches into groups.
A) The first touch creates the first group. B) For subsequent
touches, we create touch pairs with the last touch of each group,
then query the model for each pair. We create a new group if no
pairs have a same-author with probability ≥ p, set to 0.80 in this
example. C) If multiple touch pairs have a same-author probability
≥ p, we add the touch to the group with the highest probability.

using the algorithm to group the touches in a session
according to predictions from the MLP model trained on
touch data from the other 16 sessions. As well as being
dependent on the performance of the MLP model, the
outcome of the grouping algorithm would also be affected
by the value of the probability threshold, p. Therefore, we
tested the algorithm with a range of probability threshold
values from 0.5 to 0.9, in increments of 0.1. This test was
repeated with each of the 17 sessions of touch data in order
to determine an optimal value of p. We determined that a
threshold of 0.80 was suitable for our purposes, a decision
that we discuss in more detail in the next section, together
with implications of this decision.

Approaches that use touch orientation to match touch points
to hands [7,44] have shown thumb touches to be a source of
error as the orientation of the thumb can be different from
other fingers on the same hand. We anticipated this would
also be an issue for Group Touch. Thumb touches are
relatively infrequent in general interaction and do not
feature in most standard gestures, with the exception of
pinch-to-zoom. Thumb touches, however, are heavily used
when typing on a virtual keyboard—typically when
pressing the spacebar. To remedy this potential problem,

 (a) Session -
Application

(b) # of
Touches

(c) # of
Users

MLP Model (f) Grouping Accuracy
(%) (d) Accuracy on Test Data (%) (e) Area under ROC Curve

1 - Brainstorm 601 5 96.87 0.99 99.44

2 - Heuristics 105 4 89.32 0.96 96.30

3 - Heuristics 328 4 91.49 0.96 95.74

4- Heuristics 241 5 94.29 0.97 98.40

5- Heuristics 240 5 87.81 0.91 89.89

6 - Map 104 5 92.19 0.93 94.74

7 - Map 262 6 91.85 0.94 91.84

8 - Map 519 5 93.85 0.95 91.76

9 - Map 187 5 84.96 0.89 88.97

10 - Resources 285 4 90.50 0.95 94.04

11 - Resources 448 4 89.27 0.95 95.78

12 - Resources 271 5 89.66 0.92 90.10

13 - Resources 296 5 88.28 0.92 89.50

14 - Wireframes 465 5 89.53 0.96 93.07

15 - Wireframes 435 5 89.45 0.96 95.16

16 - Wireframes 241 5 87.54 0.92 83.43

17 - Wireframes 295 4 87.80 0.95 91.49

Mean:
SD:

313.12
138.32

4.76
0.56

90.27
2.91

0.94
0.03

92.92
3.94

Table 1. Group Touch results by session. Columns (d) and (e) show how just the MLP model performed on the test data for each session.
Column (f) shows the performance of the grouping algorithm with threshold p=0.80. Column (f) is therefore the performance of Group Touch.

groups of touches on a virtual keyboard were merged when
the same keyboard instance was touched and the touches
occurred within 384 ms of each other. This threshold was
chosen based on the typing speeds of participants in a study
of typing on virtual keyboards [14]; it represents the time
between keystrokes for the slowest participant. Touches to
the same keyboard within this time could be assumed to
have been carried out by the same user.

Our evaluation of Group Touch was carried out offline but
was set up as if it was grouping touches interactively at
run-time—touches were processed in the order they were
received and logged. Accuracy was calculated as the
percentage of touches added to a group where the preceding
touch correctly had the same user, using the manual labels
assigned from the videos as ground truth.

RESULTS
Group Touch’s overall accuracy for a session ranged from
83.43% to 99.44%, with a mean of 92.92% (SD=3.94%).
However, only 2.66% of all touches logged were
incorrectly added to a group of touches by a different user.
This discrepancy between the overall accuracy and the
number of touches added to incorrect groups occurs because
our selection of a p threshold of 0.80 means the algorithm
favors creating a new group of touches in the absence of a
strong prediction of “same user” for any existing group.
Therefore, groups of touches associated with a particular
user persist for short periods of time but are highly
accurate. Table 1 shows the complete results by session.

To test the first component of Group Touch in isolation, the
MLP model that predicts whether a pair of touches was
authored by the same person or different people, we used
leave-one-out cross-validation to evaluate the model,

withholding a different session’s touch data each time.
Within the training data for each fold in the leave-one-out
cross validation, we conducted a 10-fold cross validation of
the MLP model. These scores were highly consistent across
sessions—the mean cross validation score was 89.22%
(SD=0.29%). When the trained models were then tested on
the withheld touch data, the mean accuracy was 90.27%
(SD=2.91%). Leave-one-out test results for the MLP model
are shown in Table 1(c). Figure 7 shows the ROC curves.

Figure 7. The ROC curves for each MLP model. The area under
the curve, listed in Table 1, ranged from 0.89 to 0.99.

The second component of Group Touch, its grouping
algorithm, adds a touch to the group for which the MLP
model has returned a prediction of “same” person with the
highest probability above a threshold p (see Figure 6). We
tested threshold values between 0.5 and 0.9 in 0.1 increments
and found that mean accuracy increased from 88.83% to

94.23% (Figure 8). At the same time, the median duration
of a group—the time elapsed from the first touch in a group
to the last—decreased from 7,207 ms to 2,383 ms. Therefore,
Group Touch can distinguish among simultaneous users for
longer periods of time when the value of p is lower but with
a tradeoff of lower accuracy within touch groups.

Figure 8. As the value of p increases, the accuracy of Group Touch
increases. However, the median time since the last group of touches
with the same user and the median duration of groups decreases.

To evaluate the threshold values, we also tracked another
measure: the time between groups of touches belonging to
the same person (i.e., the time that elapsed since that person
last touched the screen). For example, Figure 8 shows that
when p=0.8, the median time since the last group by the
same user was 9,094 ms. This means that when a new group
is started with a touch by user X, a median of 9,094 ms have
passed since X last touched the screen. When the time
between groups of touches belonging to the same person is
brief, the system is being conservative in assigning new
touches to existing groups. It therefore becomes more likely
that sustained input by a single person will be ascribed to
multiple people. Figure 8 shows that, as the value of p
increased, the median time between groups of touches
belonging to the same person decreased. Therefore, although
accuracy within groups will be highest when p=0.9, longer
sequences of related gestures by a single user are more
likely to be split into multiple groups than when p is lower.

Based on Figure 8, we chose 0.80 as the value of p.
Although the average accuracy increases to 94.23% when
p=0.90, both time metrics decrease to a point where Group
Touch would only be reliably able to distinguish among
users for brief interactions. At p=0.90, Group Touch still
has valuable use cases (see the Discussion) but at p=0.80,
Group Touch retains high accuracy and is able to distinguish
among simultaneous users over longer periods of time,
making it useful for a wider range of applications. When p
was set to 0.80, the midspread (middle 50%) of groups
lasted between 0.65 and 12.02 seconds and contained 2 to 6
touches. The longest group recorded lasted 77.10 seconds

and contained 80 touches. Table 1(d) shows the results of
the evaluation of the grouping algorithm with the threshold,
p, set to 0.80.

To understand why Group Touch creates new groups for
touches by an existing user, we investigated the differences
between touches that resulted in a new group and those that
were added to an existing group. Figure 9 shows the
average features of touch pairs by the MLP model’s
probability that a pair was carried out by the same user,
P(same). The “New groups created” region shows the
average features of false negatives—touch pairs that were
actually by the same user (based on the labels assigned
manually) but were incorrectly labeled by Group Touch as
being by different users, leading to the creation of a new
group. For these touch pairs, the MLP model returned a
probability, P(same), below our threshold of 0.80 (see
Figure 6B). Moreover, 62.41% of false negatives occurred
when the MLP model returned P(same) < 0.1, a strong
prediction that the touches were carried out by different
people. Clear trends emerged for each feature as P(same)
increased. Typically, touch pairs with the lowest values of
P(same) had large values for time between touches
(M=162.54 s, SD=76.70 s). Difference in orientation
(M=69.86°, SD=47.14°) and distance between touch points
(M=601.37 px, SD=347.47 px) also tended to be higher but
there was more variation for these features. These results
suggest that extended time between touches results in the
creation of a new group when an existing group of touches
by the same user is available.

Figure 9. Average features of touch pairs by the probability they
were carried out by the same user according to the MLP model.

For comparison, Figure 9, “Added to existing groups,”
shows the average features of touch pairs that resulted in a
touch being added to an existing group. These are pairs
where the MLP model returned the highest value of
P(same) above our 0.80 threshold (see Figure 6C). 93.58%
of these touch pairs were true positives that were correctly
assigned—both touches were carried out by the same user.
91.16% of these touch pairs had a P(same) of at least 0.90.
The time between touches for pairs with a P(same) of at
least 0.90 was brief (M=1.03 s, SD=1.54 s). Difference in
orientation (M=25.25°, SD=24.75°) and distance between

touches (M=130.35 px, SD=130.79 px) were also at their
lowest when P(same) was at least 0.90. This means that a
touch was more likely to be correctly added to an existing
group when it was close to the last touch in the group in
terms of all three features.

DISCUSSION
Group Touch’s overall accuracy (Table 1(d)) shows that it
was successful at grouping touches that belonged to the
same user. There was little variability in the accuracy of
both the MLP model (Table 1(c)) and the grouping
algorithm (Table 1(d)) across the 17 sessions of touch data
collected in five different applications. These results
indicate that Group Touch is user-independent and can
perform consistently across a range of applications.

Group Touch favors creating a new group of touches when
the MLP model does not return a strong prediction of “same
user” for any touch pair. This means that group assignments
are highly accurate, with only 2.66% of all touches in our
dataset being added incorrectly to a group by another user.
However, this also means that it is important to understand
when and why the model is unable to return a strong
prediction of “same user,” leading to the creation of new
groups. The trends shown in Figure 9 suggest that extended
time between touches is a strong reason that new groups are
created when an existing group of touches by the same user
is available. Therefore, Group Touch is likely to perform
better and create groups that persist for longer when users
are regularly interacting with the screen, so time between
touches is brief. Given that Figure 9 also shows that touches
are correctly added to groups when the time and distance
between touches are low, Group Touch is probably not
suited for applications where users frequently jump around
different areas of the screen. This might explain why
session 16 had a much lower accuracy than all other
sessions at 83.46%, 6.46% lower than the next lowest
result. The students in this session spent much of the time
flicking the on-screen objects at other objects to make them
bounce around the edges, then reaching across the full
length of the screen to retrieve the object.

The value of the threshold p used to assign touches to
groups of touches by the same user impacted the group
duration and time between groups by the same user, as well
as the accuracy. We selected 0.80 as our value of p because
it resulted in a high grouping accuracy and the decrease in
group duration was much steeper with a p above 0.80.
However, the value of p and the resulting tradeoff between
group duration and accuracy affects the potential use cases
for Group Touch and therefore should be adjusted
depending on how Group Touch is to be used.

The simplest and most generalizable use case for Group
Touch is resolving conflicting input that occurs when
multiple people are simultaneously interacting with the same
interface. For example, without the ability to distinguish
among users, the touch input of multiple people attempting
to drag an object in different directions will look very much

like that of a single user carrying out a pinch-to-zoom
action. Another example would be a user attempting to
close a window that another user is actively working in [31].
Group Touch makes it possible to resolve these and other
conflicts and determine how the application should respond
because it is not necessary to know the identity of the users,
just whether or not multiple users are interacting with the
application concurrently. In this scenario, Group Touch
would affect the application’s behavior in ways that are
visible to users. Therefore, the high accuracy of the top
value of p, 0.90, would likely be favored over groups that
persist for longer, particularly as conflicting gestures will
occur with a small number of overlapping touches.

In addition to resolving conflicting gestures, there are
numerous application scenarios where the ability to detect
when multiple people are attempting to interact with the
same object would be useful. For example, in a collaborative
document editing application, it would be useful to prevent
concurrent interaction in some situations (e.g., one user
scrolling a page while another is making edits). Online
collaboration tools, such as Google Docs, handle this
situation by allowing each user to control navigation of
their own view of the document—they can see others’ edits
as they occur but they can move around their own view of
the document independently. This approach would not
transfer to a similar application on a shared screen. Group
Touch could help in this scenario by making it possible to
temporarily block interaction from users other than the
person actively working in the document. Additionally,
tracking concurrent versus individual edits to a document
could make document revision history more useful.

The ability to temporarily block other users from interacting
with an object that a user is currently holding could also be
used to enforce turn-taking in a collaborative learning
environment or as a game mechanic in a competitive game
where players have to steal objects from their opponents.
Taking the opposite approach to the same incident—only
responding to input if multiple people are simultaneously
interacting with an object—would make it possible to
support cooperative gestures. Cooperative gestures have
been shown to be useful for increasing awareness of
important functionality and increasing participation in
applications for collaborative work and play [31, 32].

Group Touch could also be used to model the collaborative
processes of small groups working at tabletop computers.
For example, the ability to distinguish when multiple
people are interacting with an application makes it possible
to detect when users are taking turns, interfering with the
actions of others, or working in parallel, all of which have
been shown to impact collaborative learning
[12,15,20,26,33]. For this use case, it would be important to
capture longer interactions that contain more than just a
small number of isolated gestures. Therefore, a lower p
threshold, which creates groups that persist for longer
would be preferable to increasing accuracy.

Application designers could also use information about
when and where conflicting gestures occur, and how groups
use their applications, to evaluate and refine their designs to
enable better collaborative use. For example, Group Touch
would make it possible to automatically identify areas of the
screen where there is typically only one user interacting at a
time and those where there tend to be multiple users
interacting. This information could be used to determine
placement of shared interface elements and how to divide
the screen into individual and shared workspaces.

Group Touch offers an enhancement to existing touch-
detection on large, multi-user touchscreens that adds a new
capability without breaking existing touch functionality when
errors occur. For example, Group Touch false positives may
cause an application to interpret the touches of multiple
users as a single gesture. This outcome is typical of most
current commercial tabletops. Therefore, when Group
Touch produces a false positive, behavior will be the same
as in current systems.

In the case of false negatives, the primary causes are
extended time between touches, or touches close together in
time that have very different orientations or locations. How
false negatives impact a user will largely depend on what an
application does with information provided by Group Touch.
For example, when detecting and resolving conflicting
gestures, false negatives due to touches that are far apart in
time are unlikely to produce a conflict in the interface and
therefore unlikely to affect the user. In some cases, however,
a false negative could cause a zoom gesture to look like two
separate pan gestures. These cases occur infrequently and
application-level design could help to mitigate any impact.

Limitations
The main limitation of Group Touch is that it does not track
or identify users for the duration of an activity, and therefore
cannot enable personalization, such as color-coding each
user’s touches [43], or tracking individual contributions to
the group effort [29]. It also cannot be used for
authentication [4,24]. However, existing approaches to
distinguishing users that are able to provide these features
either rely on external sensors or artificially constraining
interaction. As stated, Group Touch is intended for situations
where such methods are impractical or undesirable.

Additionally, the applications we used to design and
evaluate Group Touch all featured highly collaborative
tasks in which group members worked with shared objects.
We expect accuracy would be about the same for other
tasks of this nature. However, we expect that Group Touch
may have lower accuracy in situations where individual
users frequently interact with objects in very different areas
of the screen (e.g., rapidly reaching from the top left corner
to the bottom right). Based on our analysis of touch group
characteristics (Figure 9), these types of interactions would
look like touches carried out by different people. In
applications requiring this functionality, Group Touch may
not be the best option for distinguishing among users.

Finally, in this work we have not yet identified the exact
situations where Group Touch performs poorly. For example,
we have not investigated how good Group Touch is at
recognizing two-handed input by a single person versus
single-handed input. This limitation is because all of our
touch data were collected “in the wild” in uncontrolled field
settings and extracting these types of specific interactions
would be an extremely laborious process. A controlled lab
study would likely be necessary to gain this kind of insight.

FUTURE WORK
One avenue for future work would be to address some of
the limitations of Group Touch by testing the approach with
data collected in less collaborative applications and to
conduct a controlled study that can identify the exact types
of low-level input that Group Touch is best able to handle.

Additionally, it would be worthwhile to investigate ways to
improve Group Touch by combining it with other approaches
that focus on finger and hand detection (e.g. [7,44]), which
may help make Group Touch even more robust.

In our future work, we intend to use Group Touch to model
the processes of collaborative learning with tabletop
computers in high school classroom settings using the touch
patterns described by Evans et al. [12]. To date, identifying
indicators of the quality of collaborative learning processes
has required manually labeling touch data using video
recordings. Group Touch will make it possible to detect and
respond to these touch patterns in real-time.
CONCLUSION
We have presented Group Touch, an approach to
distinguishing among multiple simultaneous users by detecting
when the users interacting with a vision-based tabletop
computer change. Our approach achieved a mean accuracy
of 92.92% (SD=3.94%). Group Touch is the first approach
to distinguishing users that was designed and evaluated
using data collected entirely “in the wild.” It uses only the
built-in capabilities of the tabletop hardware and does not
require the use of extra sensors, making it more flexible and
easier to deploy than many existing approaches.

Group Touch is not intended to replace existing approaches
to distinguishing users, nor is it a suitable approach if
individual users need to be identified and tracked for the
duration of a session. Instead, it is intended to bring the
capability of distinguishing among concurrent users to new
settings that other approaches cannot support, namely,
settings where use of external sensors is impractical and
artificially constraining interaction is undesirable.

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under awards IIS-0952786 and IIS-1053868.
Any opinions, findings, conclusions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect those of the National Science Foundation.

REFERENCES
1. Christopher James Ackad, Andrew Clayphan, Roberto

Martinez Maldonado, and Judy Kay. 2012. Seamless
and continuous user identification for interactive
tabletops using personal device handshaking and body
tracking. Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’12), 1775–1780.

2. Michelle Annett, Tovi Grossman, Daniel Wigdor, and
George Fitzmaurice. 2011. Medusa: a proximity-aware
multi-touch tabletop. Proceedings of the ACM
Symposium on User Interface Software and
Technology (UIST ’11), 337–346.

3. Katerine Bielaczyc. 2009. Designing social
infrastructure: critical issues in creating learning
environments with technology. Journal of the Learning
Sciences 15, 3: 301–329.
http://doi.org/10.1207/s15327809jls1503

4. Bojan Blazica, Daniel Vladusic, and Dunja Mladenic.
2013. MTi: a method for user identification for
multitouch displays. International Journal of Human-
Computer Studies 71: 691–702.
http://doi.org/10.1016/j.ijhcs.2013.03.002

5. Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer. 2011. SMOTE:
Synthetic minority over-sampling technique. Journal
Of Artificial Intelligence Research 16: 321–357.

6. Andrew Clayphan, Roberto Martinez-Maldonado,
Christopher Ackad, and Judy Kay. 2013. An approach
for designing and evaluating a plug-in vision-based
tabletop touch identification system. Proceedings of the
Australian Computer-Human Interaction Conference
(OzCHI ’13), 373–382.
http://doi.org/10.1145/2541016.2541019

7. Chi Tai Dang, Martin Straub, and Elisabeth André.
2009. Hand distinction for multi-touch tabletop
interaction. Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
’09), 101–108.
http://doi.org/10.1145/1731903.1731925

8. Paul Dietz and Darren Leigh. 2001. DiamondTouch: a
multi-user touch technology. Proceedings of the ACM
Symposium on User Interface Software and
Technology (UIST ’01), 219–226.
http://doi.org/10.1145/502348.502389

9. Pierre Dillenbourg and Michael Evans. 2011.
Interactive tabletops in education. International
Journal of Computer-Supported Collaborative
Learning 6, 4: 491–514.

10. Pierre Dillenbourg and Patrick Jermann. 2010.
Technology for classroom orchestration. In New
Science of Learning: Cognition, Computers and
Collaboration in Education, M. S. Khine and I. M.
Saleh (eds.). Springer, New York, NY, 525–552.

11. Pierre Dillenbourg, Guillaume Zufferey, Hamed Alavi,
Patrick Jermann, Son Do-lenh, and Quentin Bonnard.
2011. Classroom Orchestration : The Third Circle of
Usability Why is Paper Highly Usable in Classrooms ?
Proceedings of the International Conference on
Computer-Supported Collaborative Learning (CSCL
’11), 510–517.

12. Abigail C. Evans, Jacob O. Wobbrock, and Katie
Davis. 2016. Modelling collaboration patterns on an
interactive tabletop in a classroom setting. Proceedings
of the ACM Conference on Computer Supported
Cooperative Work and Social Computing (CSCW ’16),
860–871.

13. Philipp Ewerling, Alexander Kulik, and Bernd
Froelich. 2012. Finger and hand detection for multi-
touch interfaces based on maximally stable extremal
regions. Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
’12), 173–182.

14. Leah Findlater, Jacob O Wobbrock, and Daniel
Wigdor. 2011. Typing on flat glass: examining ten-
finger expert typing patterns on touch surfaces.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11), 2453–2462.
http://doi.org/10.1145/1978942.1979301

15. Rowanne Fleck, Yvonne Rogers, Nicola Yuill, et al.
2009. Actions speak loudly with words: unpacking
collaboration around the table. Proceedings of the
ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’09), 189–196.
http://doi.org/10.1145/1731903.1731939

16. Fernando Garcia-sanjuan, Javier Jaen, and Alejandro
Catala. 2013. Evaluating heuristics for tabletop user
segmentation based on simultaneous interaction.
Expert Systems With Applications 40, 14: 5578–5587.
http://doi.org/10.1016/j.eswa.2013.04.011

17. M. W. Gardner and S. R. Dorling. 1998. Artificial
Neural Networks (The Multilayer Perceptron)—A
Review of Applications in the Atmospheric Sciences.
Atmospheric Environment 32, 14/15: 2627–2636.

18. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. 2009.
The WEKA data mining software: an update. SIGKDD
Explorations 11, 1: 10–18.

19. Jefferson Y Han. 2005. Low-cost multitouch sensing
through frustrated total internal reflection. Proceedings
of the ACM Symposium on User Interface Software and
Technology (UIST ’05), 115–118.

20. Amanda Harris, Jochen Rick, Victoria Bonnett, et al.
2009. Around the table: Are multiple-touch surfaces
better than single-touch for children’s collaborative
interactions? International Conference on Computer-
Supported Collaborative Learning (CSCL ’09), 335–
344.

21. Chris Harrison, Munehiko Sato, and Ivan Poupyrev.
2012. Capacitive fingerprinting: exploring user
differentiation by sensing electrical properties of the
human body. Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST ’12),
537–543.

22. Steven E Higgins, Emma Mercier, Elizabeth Burd, and
Andrew Hatch. 2011. Multi-touch tables and the
relationship with collaborative classroom pedagogies: a
synthetic review. International Journal of Computer-
Supported Collaborative Learning 6, 4: 515–538.

23. Uta Hinrichs and Sheelagh Carpendale. 2011. Gestures
in the wild: studying multi-touch gesture sequences on
interactive tabletop exhibits. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’11), 3023–3032.

24. Christian Holz and Patrick Baudisch. 2013. Fiberio: a
touchscreen that senses fingerprints. Proceedings of the
ACM Symposium on User Interface Software and
Technology (UIST ’13), 41–50.
http://doi.org/10.1145/2501988.2502021

25. Paul Jermann, Guillaume Zufferey, and Pierre
Dillenbourg. 2008. Tinkering or sketching:
apprentices’ use of tangibles and drawings to solve
design problems. Proceedings of the European
conference on Technology Enhanced Learning (EC-
TEL ’08), 167–178.

26. Ahmed Kharrufa, Madeline Balaam, Phil Heslop,
David Leat, Paul Dolan, and Patrick Olivier. 2013.
Tables in the wild: lessons learned from a large-scale
multi-tabletop deployment. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13), 1021–1030.
http://doi.org/10.1145/2470654.2466130

27. Daniel Klinkhammer, Markus Nitsche, Marcus Specht,
and Harald Reiterer. 2011. Adaptive personal
territories for co-located tabletop interaction in a
museum setting. Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
’11), 107–110.
http://doi.org/10.1145/2076354.2076375

28. Nicolai Marquardt, Johannes Kiemer, David Ledo,
Sebastian Boring, and Saul Greenberg. 2011.
Designing user-, hand-, and handpart-aware tabletop
interactions with the TouchID toolkit. Proceedings of
the ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’11), 21–30.
http://doi.org/10.1145/2076354.2076358

29. Roberto Martinez, Anthony Collins, Judy Kay, and
Kalina Yacef. 2011. Who did what? Who said that?:
Collaid: an environment for capturing traces of
collaborative learning at the tabletop. Proceedings of
the ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’11), 172–181.

http://doi.org/10.1145/2076354.2076387

30. Tobias Meyer and Dominik Schmidt. 2010.
IdWristbands: IR-based user identification on multi-
touch surfaces. Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
’10), 277–278.
http://doi.org/10.1145/1936652.1936714

31. Meredith Ringel Morris, Anqi Huang, Andreas
Paepcke, and Terry Winograd. 2006. Cooperative
gestures: multi-user gestural interactions for co-located
groupware. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI ’06),
1201–1210. http://doi.org/10.1145/1124772.1124952

32. Meredith Ringel Morris, Kathy Ryall, Chia Shen,
Clifton Forlines, and Frederic Vernier. 2004. Beyond
“social protocols”: multi-user coordination policies for
co-located groupware. Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, 1–4. http://doi.org/10.1145/1031607.1031648

33. Taciana Pontual Falcão and Sara Price. 2010.
Interfering and resolving: how tabletop interaction
facilitates co-construction of argumentative knowledge.
International Journal of Computer-Supported
Collaborative Learning 6, 4: 539–559.
http://doi.org/10.1007/s11412-010-9101-9

34. Raf Ramakers, Davy Vanacken, Kris Luyten, Karin
Coninx, and Johannes Schoning. 2012. Carpus: a non-
intrusive user identification technique for interactive
surfaces. Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST ’12), 35–44.

35. Stephan Richter, Christian Holz, and Patrick Baudisch.
2012. Bootstrapper: recognizing tabletop users by their
shoes. Proceedings of the 2012 ACM annual
conference on Human Factors in Computing Systems,
1249–1252. http://doi.org/10.1145/2207676.2208577

36. Volker Roth, Philipp Schmidt, and G Benjamin. 2010.
The IR ring: authenticating users ’ touches on a multi-
touch display. Proceedings of the ACM symposium on
User Interface Software and Technology (UIST ’10),
259–262.

37. Kathy Ryall, Clifton Forlines, Chia Shen, and Meredith
Ringel Morris. 2004. Exploring the effects of group
size and table size on interactions with tabletop shared-
display groupware. Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW ’04), ACM Press, 284–293.

38. Johannes Schöning, Jonathan Hook, Nima Motamedi,
et al. 2009. Building interactive multi-touch surfaces.
Journal of Graphics, GPU, and Game Tools 14, 3: 35–
55.

39. Stacey D. Scott, Carpendale Sheelagh, and Kori. M.
Inkpen. 2004. Territoriality in collaborative tabletop
workspaces. Proceedings of the ACM Conference on

Computer Supported Cooperative Work (CSCW ’04),
294–303. http://doi.org/10.1145/1031607.1031655

40. Masanori Sugimoto, Kazuhiro Hosoi, and Hiromichi
Hashizume. 2004. Caretta: a system for supporting
face-to-face collaboration by integrating personal and
shared spaces. Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI ’04), 41–
48. http://doi.org/10.1145/985692.985698

41. Cristian Tanase, Radu-daniel Vatavu, Ş Pentiuc, and
Adrian Graur. 2008. Detecting and tracking multiple
users in the proximity of interactive tabletops.
Advances in Electrical and Computer Engineering 8, 2:
50–53.

42. Feng Wang, Xiang Cao, Xiangshi Ren, and Pourang
Irani. 2009. Detecting and leveraging finger orientation
for interaction with direct-touch surfaces. Proceedings

of the ACM Symposium on User Interface Software and
Technology (UIST ’09), 23–32.
http://doi.org/10.1145/1622176.1622182

43. Hong Zhang, Xing-Dong Yang, Barrett Ens, Hai-Ning
Liang, Pierre Boulanger, and Pourang Irani. 2012. See
me, see you: a lightweight method for discriminating
user touches on tabletop displays. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12), 2327–2336.
http://doi.org/10.1145/2207676.2208392

44. Zhensong Zhang, Fengjun Zhang, and Hui Chen. 2014.
Left and right hand distinction for multi-touch tabletop
interactions. Proceedings of the 19th international
conference on Intelligent User Interfaces (IUI ’14),
47–56.

