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ABSTRACT 

We present a new gestural text entry method for trackballs. 
The method uses the mouse cursor and relies on crossing 
instead of pointing. A user writes in fluid Roman-like 
unistrokes by “pulsing” the trackball in desired letter 
patterns. We examine this method both theoretically using 
the Steering Law and empirically in two studies. Our 
studies show that able-bodied users who were unfamiliar 
with trackballs could write at about 10 wpm with <4% total 
errors after 45 minutes. In eight sessions, a motor-impaired 
trackball user peaked at 7.11 wpm with 0% uncorrected 
errors, compared to 5.95 wpm with 0% uncorrected errors 
with an on-screen keyboard. Over sessions, his speeds were 
significantly faster with our gestural method than with an 
on-screen keyboard. A former 15-year veteran of on-screen 
keyboards, he now uses our gestural method instead. 
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INTRODUCTION 

Trackballs are the preferred pointing devices for numerous 
computer users, particularly for people with some form of 
motor impairment [9]. For people with low strength, poor 
coordination, wrist pain, or limited ranges of motion, 
rolling a trackball (Figure 1a) can be easier than shuttling a 
mouse across the surface of a desk. 

Not surprisingly, many people who prefer trackballs due to 
motor impairments cannot use a conventional physical 
keyboard. For these people, some form of text entry besides 
typing is required. A common solution is to use a trackball 
with an on-screen keyboard and to click or dwell on the 

 

Figure 1. (a) A Kensington Expert Mouse trackball, one of the 
largest trackballs on the market and popular among people with 
motor impairments. (b) An Appoint Thumbelina, one of the smallest 
trackballs ever made. 

virtual keys. But this method of text entry has many 
problems. For instance, on-screen keyboards require precise 
pointing over small targets, a difficult task in itself and 
particularly so for trackballs, which can have a hard time 
remaining over targets [14]. Also, on-screen keyboards 
consume precious screen real-estate. They exacerbate 
mouse travel to and from a document, particularly for 
editing [28]. Furthermore, they require two foci-of-
attention, one on the document and one on the keyboard. 
Although physical keyboards can be used by feel, an on-
screen keyboard can only be used in a hunt-and-peck 
fashion by sight. This intense reliance on sight makes on-
screen keyboards tedious and visually taxing. 

Although speech recognition can be a viable solution for 
some, it has known drawbacks and limitations and can be 
unsuitable for people with certain impairments [13]. What 
is needed is a trackball text entry method that leverages the 
strengths of trackballs and does not require an on-screen 
keyboard. Putting the text entry method on the trackball 
itself reduces physical movement among devices and the 
need for multiple devices to be within reach [21]. It also 
allows users to work with devices already familiar to them. 

Trackballs may be preferred for reasons other than physical 
impairment. Trackballs need little space in which to operate 
(Figure 1b), unlike mice, which have large “desktop 
footprints” [6]. Trackballs can be embedded in consoles or 
keyboards, making them suitable for public terminals since 
they cannot be easily stolen. Trackballs offer rapid, fluid 
control and have been used in arcade games like Centipede. 
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In this paper, we present a novel method for trackball text 
entry called Trackball EdgeWrite. This method relies not on 
precise pointing at on-screen targets, but on unistroke 
gestures that mimic the feel of writing Roman letters [25]. 
Instead of pointing, the method uses crossing [3], lowering 
the demand for accuracy. We evaluate the method in a 
single session with able-bodied users. Then we present 
results from an extended field study with a veteran trackball 
user with a spinal cord injury. A former on-screen keyboard 
user for 15 years, he now uses Trackball EdgeWrite instead. 

RELATED WORK 

Evaluations of Trackballs 

Although there is little work on trackball text entry, there 
has been a great deal of work on trackball pointing. An 
early study by Epps et al. [7] compared six pointing 
devices, including a 4 cm trackball, in target acquisition 
tasks. They found that the mouse and trackball were 
significantly faster than the other devices, but were not 
significantly different from each other. A follow-up study 
by Sperling and Tullis [22] found that the mouse was faster 
for selection, dragging, and tracing even among trackball 
users. Accuracy differences were not significant for 
selection and dragging, but were significant for tracing, 
showing the trackball to be less accurate than the mouse. 
From these results, we can conclude that our trackball text 
entry method should not require precise positioning or 
tracing along a path. For example, we would not want a 
method that requires smooth freeform gestures like those in 
handwriting or most unistroke methods (e.g. [10]). 

Accot and Zhai formalized tracing performance with their 
Steering Law [1]. Their study of five input devices [2] 
shows that trackballs are comparable to touchpads—but 
both are worse than mice—and that trackballs perform best 
relative to other devices for short straight-line trajectories 
less than 250 pixels. They note that the performance of 
trackballs and touchpads suffers when the device must be 
“clutched” for travel over long distances. From this we can 
conclude that long or curved movements should be avoided. 

Further comparisons of pointing devices by MacKenzie et 
al. [15] showed trackballs to be slower than mice and styli 
in pointing and dragging, and less accurate for dragging. 
They note that dragging is particularly difficult with a 
trackball because of the confluence of the thumb and finger 
muscles. In a later study, MacKenzie et al. [14] added that 
trackballs often move accidentally when performing a click 
inside a target. Such slips can be particularly troubling for 
users with motor impairments [23]. Thus, our method 
should not rely on buttons and not require dragging or 
clicking. It should therefore be button-free. 

After this brief review, it may seem that trackballs are 
unlikely candidates for gestural text entry. However, this 
conclusion ignores the strengths of trackballs that make 
them preferable for many motor-impaired users. Trackballs 
require little if any forearm or wrist movement, little 
strength, little desk space, and offer rapid, fluid control. 

Although selecting, dragging, and steering are not strengths 
of trackballs compared to mice, other activities such as goal 
crossing may be better suited. 

Goal Crossing 

Unlike pointing, which requires a cursor to enter a target 
and remain stationary long enough to select it, crossing 
requires only that a goal line be passed, like a football 
player scoring a touchdown. This can lessen the demands 
for target acquisition compared to traditional pointing. 

Accot and Zhai [1,3] modeled goal crossing and showed it 
to follow a formulation of Fitts’ Law [8]. Specifically, they 
showed that crossing goals of width W separated by a 
distance A (Figure 2) follows the Fitts’ formulation 
(Equation 1). However, the regression coefficients a and b 
are different for crossing than for pointing [3]. 

 

Figure 2. Crossing follows Fitts’ law but with the W constraint 
orthogonal to the movement trajectory, rather than collinear. 





+⋅+= 1log2

W

A
baT  (1) 

Accot and Zhai later elaborated by comparing different 
types of pointing and crossing [3]. They found that the 
fastest arrangement for reciprocal tasks was “continuous 
orthogonal goal crossing,” where the pointing device, in 
their case a stylus, was continually held on the surface and 
the goals were perpendicular to the movement trajectory 
(Figure 2). They speculated that goals could rotate to 
always remain orthogonal to the cursor and thus offer the 
maximum target width (Figure 3a). An extreme form of this 
idea is a cursor placed inside a circle, where the 
circumference is the goal (Figure 3b). This insight drives 
our design for Trackball EdgeWrite, and the crossing model 
provides for its analysis. 

  

Figure 3. (a) Accot and Zhai [1] speculate that crossing goals could 
rotate to always remain orthogonal to the cursor, thereby offering 
maximum target width. (b) An extreme form of this idea is a cursor 
in the center of a circle, where the circumference itself is the goal. 

Related Text Entry Methods 

There are numerous text entry methods for mobile devices 
and computer access. Space precludes a full review. 
Readers are directed to prior work on EdgeWrite [29] and 
MacKenzie and Soukoreff’s text entry overview [16]. 
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To our knowledge there has not been any text entry method 
developed specifically for trackballs. But two methods of 
note work with them. One is MDITIM [11], a stroke-based 
method that is usable on different devices, including 
trackballs. In a study of MDITIM on different devices, the 
trackball was measured at about 6.5 wpm with 7.2% errors 
after ten 30-minute sessions with a stylus. The test subjects 
knew the MDITIM alphabet but were not necessarily 
proficient with a trackball. One drawback of MDITIM is 
that all letter forms are comprised of movements in only the 
four cardinal directions. Therefore, MDITIM letters do not 
generally resemble their Roman counterparts, making 
guessability and learnability difficult. 

Dasher [24] is another method that works with trackballs. 
Dasher works by having the user select from an ever-
expanding array of dynamic rectangular regions that 
represent letters. The regions’ sizes, and therefore the ease 
of their selection, depend on the linguistic properties of the 
text being entered. Like Trackball EdgeWrite, Dasher 
requires no clicking or dragging. Although Dasher can 
achieve rapid entry rates (~30 wpm), a common sentiment 
among novices is that it is overwhelming, as it is in constant 
visual flux. Also, it is unlikely that Dasher could be done 
purely by feel without any graphical depiction [24]. Dasher 
can be used as an assistive technology with a head- or eye-
tracker, since any pointing device will work with it. 

A common method of trackball text entry is with an on-
screen keyboard. On-screen keyboards have been designed 
[5] and studied [19] in computer access for some time. 
Although word prediction can help raise speeds, it can also 
have the opposite effect, depending on the severity and 
nature of the impairment [12]. Even if performance is 
enhanced, on-screen keyboards remain a visually taxing and 
tedious method of text entry. Our own field test subject 
remarked that he would prefer a gestural method that he 
could use “by feel” over an on-screen keyboard, even if the 
keyboard were faster. Fortunately, this subject was faster 
with Trackball EdgeWrite than his own on-screen 
keyboard, so he did not have to suffer this tradeoff. 

TRACKBALL EDGEWRITE — FUNDAMENTAL DESIGN 

Background 

EdgeWrite was originally developed for use with a stylus 
on a PDA by people with tremor [29]. That version placed a 
plastic template over a Palm PDA’s input area, thereby 
providing a square hole in which all strokes could be made 
(Figure 4). EdgeWrite’s mnemonic, Roman-like unistroke 
alphabet enables users to write by moving the stylus along 
the physical edges and into the corners of the plastic square. 
To tolerate wiggle, recognition was based on a stroke’s 
order of corner-hits, not on its overall path of motion. The 
physical stability provided by this design increased 
accuracy among motor-impaired users by 2-4 times over 
Graffiti [29]. 

 

Figure 4. An EdgeWrite template over the text input area of a Palm 
PDA. Physical edges and corners provide stability for the stylus. 

EdgeWrite’s alphabet was designed through a guessability 
study in which participants devised intuitive gestures for 
each letter [25]. Thus, EdgeWrite gestures are not short and 
efficient like the original Unistrokes [10], but are slightly 
longer and more reminiscent of Roman forms (Figure 5). 
This has made EdgeWrite highly guessable and quickly 
learnable [25], an important feature for motor-impaired 
users who often cannot endure lengthy practice sessions 
[28]. 

 

Figure 5. EdgeWrite’s primary letter forms. Alternate forms exist for 
most letters (not shown). The bowing of line segments is for 
illustrative purposes only—all motion is in straight lines. EdgeWrite 
also defines strokes for punctuation, accents, and extended 
characters. For a complete chart, see http://www.edgewrite.com. 

EdgeWrite’s method of stroke recognition—detecting the 
order of corner-hits—has lent itself to versions for 
touchpads, joysticks, buttons, and other devices [26, 27, 
28]. However, previous adaptations have relied exclusively 
on absolute positioning in performing input, i.e., the 
physical position of a stylus, finger, or joystick within a 
physical square. Trackball EdgeWrite is the first version to 
use relative positioning, since trackballs themselves express 
no absolute position or rotation, only change in rotation [6]. 
In relative positioning, the mouse cursor itself becomes the 
locus of input, and issues arise that are different than in 
previous versions. In cursor-based relative positioning, 
physical edges are no longer possible. Instead, the accuracy 
benefits formerly provided by physical edges are obtained 
with crossing [3], as detailed in the next section. 
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Crossing to Stroke 

With Trackball EdgeWrite, one writes by making short 
“pulses” toward intended corners. When these pulses cause 
the mouse cursor to cross the circumference of a circle 
maintained about it, the resultant angle indicates the next 
corner. Thus, the cursor does not actually travel among 
corners to acquire them as targets, but crosses a radius and 
snaps to the next corner instantly. Figure 6 depicts this 
process for writing the letter “z”. 

 

Figure 6. The trackball cursor moves a distance r at an angle θ 
from the top-left corner of the EdgeWrite square. The angle 
determines that the next corner is the top-right, and the first stroke 
of the letter “z” is drawn. Having snapped to the top-right corner, the 
cursor now moves diagonally at an angle that indicates the bottom-
left corner, and the second stroke is drawn. Note that for the third 
stroke, the cursor moves towards the outside of the EdgeWrite 
square, but at an angle that still indicates the bottom-right corner. 

In essence, a series of short crossing tasks forms a letter. 
But clearly, much depends on how the circle is partitioned 
and how θ is interpreted. For instance, consider the move 
across the bottom of the “z” in Figure 6. At what angle θ 
should the cursor instead move diagonally to the top-right? 

Figure 7 shows the next-corner outcomes for different 
departure angles from the bottom-left corner of the 
EdgeWrite square. The same scheme can be extrapolated to 
the other three corners of the EdgeWrite square. 

 

Figure 7. Next-corner outcomes for different angles of departure 
from the bottom-left corner of the EdgeWrite square. θd is the 
diagonal angle size and θc is the cardinal angle size. 

Three features of the design in Figure 7 are important. First, 
any movement left, diagonal down-and-left, or down keeps 
the cursor fixed at the extreme bottom-left corner. More 
generally, if the cursor moves at an angle that, were it to 
cross the circumference it would remain in the same corner, 
it is held fixed in the center of the circle. This will always 
hold for (180 – θd)° of the circle, where θd is the angular 
amount allotted to each diagonal. This “pinning” to the 
circle’s center ensures that one remains accurate if one is 
slow to change directions after entering a new corner. 

Second, the value in having ample cardinal angles (θc) is 
that users do not always move perfectly to the left, right, up 
or down. Larger values of θc create more room inside the 
EdgeWrite square to move in the cardinal directions. 
However, adding to θc detracts from the diagonals θd 
because θc + θd = 90°. 

Third, although increasing θc gives more room inside the 
square to move in the cardinal directions, one always has 
90° with which to move along an edge, regardless of θc. 
That’s because one always has the angles to the outside of 
the EdgeWrite square, as in the bottom-left image in Figure 
6. So although θd and θc are tradeoffs, a total of 90° remains 
for moving along an edge. In practice, however, we have 
found that some room in θc acts as a “cardinal error band,” 
giving more room to move inside the EdgeWrite square. 

It is important to emphasize that despite these underlying 
mechanics, one neither sees a visual cursor nor aims for 
particular angles when writing with Trackball EdgeWrite. 
Instead, one simply pulses the ball towards intended 
corners, creating the feeling of fluid writing. 

Two Schemes for Determining the First Corner 

The example in Figure 6 assumes that we start in the top-
left corner. But of course, not all EdgeWrite letters start 
there. This begs the question of how we begin a letter, since 
unlike a stylus landing on a PDA or a finger landing on a 
touchpad, the trackball cursor is persistent and cannot 
simply “appear” in the starting corner. 

We implemented two competing schemes for determining 
the first corner. The first scheme is to have the user pulse 
the trackball to the initial corner as if he was starting from 
the center of the EdgeWrite square. Thus, to resemble the 
top-left image in Figure 6, one would first pulse the 
trackball diagonally to the top-left. Although this scheme 
adds an extra movement to the start of every letter, the 
accuracy demands are low because the user has a full 90° 
with which to indicate each starting corner. 

In the second scheme, one assumes one starts in the 
appropriate corner, and the software disambiguates that 
corner as the gesture unfolds. For example, in making a “z”, 
one would first move to the right (Figure 8). At this point, 
one may have intended to move along either the top or 
bottom edge. Both possibilities are entertained until the 
next move is diagonally down-and-left, at which point the 
ambiguity is resolved. Gestures that occur along a single 
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edge, like “i”, space, and backspace, never resolve into 
unambiguous strokes. But such gestures can be defined on 
both sides of the square, so the ambiguity can be made 
irrelevant. 

 

Figure 8. When writing a “z” in the second scheme, one first moves 
to the right, causing two candidate strokes to appear. After the 
diagonal stroke, the gesture is no longer ambiguous, and the 
bottom-edge candidate is discarded. A third stroke finishes the “z”. 

Although the second scheme requires one less pulse per 
letter than the first scheme, it proved slower and more 
difficult in practice because the initial stroke has eight 
possible outcomes, not just four as in the first scheme. Even 
when the angular regions of the circle were allocated 
proportional to the probability of beginning a letter in that 
region, the second scheme proved too difficult for our 
subjects to perform accurately. Furthermore, our theoretical 
analysis of each scheme actually showed the first scheme to 
be 3 wpm faster despite the additional stroke required for 
each letter because of the high accuracy required for the 
second scheme’s initial stroke. Thus, the first scheme was 
preferred. This was an unexpected finding, as we had 
initially assumed the second scheme would be about 30% 
faster. That theoretical and empirical results proved 
otherwise shows the importance of basing designs on 
quantitative measures instead of intuition. 

Theoretical Analysis 

We can predict the time it takes to make a letter using 
Accot and Zhai’s [1,3] discovery that crossing follows the 
Fitts formulation in Equation 1. 

For diagonal movement, the size of the crossing goal is: 

rW d
d ⋅⋅⋅= π

θ
2

360
 (2) 

The index of difficulty for diagonal movement is therefore: 














+

⋅
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2
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r

r
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d
d

π
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Thus, our time for diagonal movements is predicted by: 







+
⋅

⋅+= 1
180

log2
πθd

d baT  (4) 

For movement in the cardinal directions, recall that we have 
a constant target size of 90°. Thus, 

rWc π2
360

90
⋅=  (5) 

So, our index of difficulty is: 





+= 1

5.0
log2

r

r
IDc

π

 (6) 

Our movement time along cardinal edges is thus given by: 

710719.0⋅+= baTc
 (7) 

For the pulse from the center to the first corner, we have 
four target angles each of 90°. Thus, our movement time Tf 
for the pulse to the first corner is the same as Tc: 

710719.0⋅+== baTT cf
 (8) 

Using Equations 4, 7, and 8, we can compute the theoretical 
movement time for each EdgeWrite character shown in 
Figure 5. For example, using a typical 65° for diagonal 
angles θd and 150 ms for segmentation timeout τ, the time 
in milliseconds to enter the letter “z” is given by: 

 τ++++= cdcfz TTTTT ""
 (9) 

τ++⋅= dc TT3  

15004402.34 ++= ba  

To compute the time of the “average character,” we weight 
each character’s time by its linguistic frequency. 

∑
∈

⋅=

Ci

iiavg FTT  (10) 

In Equation 10, i is a character in character set C, Ti is the 
time (ms) for character i, and Fi is the linguistic frequency 
for character i. For simplicity, we use Figure 5 for C but 
omit “ç” and backspace. We do, of course, include space. 

Finally, using Equation 10, we approximate the theoretical 
speed for the method. (The numerator is ms/min.) 

avgT
wpm

⋅
=

5

000,60  (11) 

Obviously, wpm is dependent upon our choice of a and b—
our Fitts’ regression coefficients. To our knowledge, no 
studies have elicited these coefficients for continuous 
reciprocal goal crossing with a trackball. However, Accot 
and Zhai have done so for a stylus [3]. They have also done 
so for a stylus and a trackball for non-reciprocal straight-
tunnel steering [2]. Extrapolating from these studies, we can 
obtain estimates for a and b for continuous reciprocal goal 
crossing with a trackball. Using a typical θd = 65° and τ = 
150 ms, Equation 11 yields the following: 

wpm = 23.1 a = -363.0, b = 642.1 

Note that this rate represents perfect entry, i.e., no errors, no 
error correction, and no hesitation between letters other 
than the time τ required for segmentation. Also, trackballs 
differ significantly in their sizes, friction, gain settings, etc. 
Thus, our estimate is only a ballpark measure. However, it 
is useful for comparing different stroking schemes, such as 
the two first-corner schemes discussed in the previous 
section. An item for future work is to establish a and b 
coefficients for reciprocal goal crossing with a trackball. 
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TRACKBALL EDGEWRITE — DESIGN REFINEMENTS 
Non-recognition Retry 

With most gestural text entry methods, there is no way to 
predict what a recognizer will produce until a character 
appears, at which point it is too late to save an erroneous 
gesture. With EdgeWrite, since all characters are defined by 
their order of corner-hits, users often realize they’ve made a 
mistake before a gesture is complete. Rather than wait for 
the recognizer to produce an erroneous letter and then have 
to erase it, our design allows users to restart letters mid-

stroke without segmenting. When given the full “garbled” 
gesture to recognize, EdgeWrite trims corners from the start 
of the corner sequence until it finds a sequence it 
recognizes. We call this “non-recognition retry” (Figure 9). 

  

Figure 9. (a) A clean “w” and (b) a jumbled “w”. The gesture at right 
was begun erroneously but corrected mid-stroke to finish as a “w”. 
Non-recognition retry discovers the “w” at the end of the stroke. 

Non-recognition retry is possible in EdgeWrite because 
gestures are effectively tokenized into corners as they are 
written. It would be difficult to reliably apply non-
recognition retry to freeform gestures, since one would 
have to perform some preliminary recognition to determine 
where to trim the point queue in the first place. 

Slip Detection, Multiple Hypotheses, and Digraphs 

When writing with Trackball EdgeWrite, occasionally one 
slips through an unwanted corner when trying to make a 
diagonal. To mitigate this problem, the system includes a 
slip detector that adapts to the speed of the writer. The slip 
detector tracks the average inter-corner time ψ for the last n 
corners. If after being in a corner c1, a stroke is made 
abruptly at p percent of ψ from a corner c2 to c3, and c1 and 
c3 lie on a diagonal, then the stroke from c1 to c2 is removed 
and a connection is made directly from c1 to c3. That is, c2 is 
deemed to have been “slipped through” on the way from c1 
to c3. Through empirical testing we found that n = 16 and  
p = 37.5% work well. Figure 10 depicts this scenario. 

  

Figure 10. In writing an “s”, the user slips through c2 while trying to 

move diagonally from c1 to c3. The slip is detected and the stroke 

from c1 to c2 is replaced with a connection directly from c1 to c3. 

However, the slip detector is “humble.” It knows it may not 
always be right. Therefore, upon detecting a slip, it keeps 
two corner sequences: one with the slip removed, and the 
other with the slip retained. In doing this for each slip 
within a gesture, it builds a binary tree as shown in Figure 
11, with tiers in the tree representing perceived slips. 

 

Figure 11. The slip detector retains two hypotheses for every 
detected slip, namely that the slip did and did not occur. At slip #1, 
the corner c2 was passed through abruptly and is retained (left) and 

removed (right). At slip #2, the corner c4 was passed through too 
quickly and is retained (left) and removed (right). 

Upon segmentation, all leaves in the tree are recognized. 
Each recognition result is then checked for its likelihood 
given the preceding character using the digraph lists from 
[4]. The result with the greatest likelihood is produced as 
the recognized character. For example, “pu” is a much more 
common English digraph than “pv”. Thus, if a “u” is 
corrected to a “v” due to a perceived slip, the “u” will still 
be produced if the letter before it is a “p”. 

Interaction Design 

Trackball EdgeWrite is the first EdgeWrite version to 
utilize the mouse cursor. Two key issues arise when 
building an application of this sort: how to switch between 
mousing and writing, and how to segment between letters. 

Capture and Release 

Trackball EdgeWrite is designed to run quietly in the 
background until it is needed for text entry. When the 
mouse is being used for mousing, it is said to be “released.” 
When it is being used for writing, it is said to be “captured.” 
The mouse can be captured by clicking a dedicated 
trackball button (a “hot button”), pressing a dedicated 
keyboard key (a “hot key”), or by dwelling in a corner of 
the desktop (a “hot corner”). Hot buttons, keys, and corners 
are configurable in the application’s preferences dialog. 

When captured, the mouse cursor vanishes and the 
EdgeWrite window appears near the text cursor (Figure 12). 
To release the cursor, the user can click a trackball button 
or perform a dedicated release stroke. Then the EdgeWrite 
window disappears and the mouse cursor is restored to its 
previous location. Thus, Trackball EdgeWrite never 
requires that it be navigated to, unlike an on-screen 
keyboard. Instead, it comes to the user when it is 
summoned. 

(a) (b) 
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Figure 12. Trackball EdgeWrite is being used to enter text into 
Notepad. Although mouse events are being handled by EdgeWrite, 
the input focus appropriately remains on the Notepad window. 

Segmentation 

Letters are segmented when the underlying mouse cursor 
stops moving for a preset amount of time. (This time was 
modeled as τ in our theoretical analysis, above.) Timeout 
values range from 100 ms for experts to 750 ms for novices. 
This simple scheme works reliably. A beginner can still 
“stop and think” while making a gesture by slowly rolling 
the trackball toward the corner they’re already in, as this 
will not move them to a new corner (recall Figure 7). 

Implementation 

Trackball EdgeWrite is implemented in C# using 
DirectInput to capture mouse events in the background. 
Recognized characters are sent through the low-level 
keyboard input stream. Trackball EdgeWrite works with 
any pointing device, but is best suited for devices without 
absolute position, e.g., trackballs and isometric joysticks. 
EdgeWrite allows letters, numbers, punctuation, diacritical 
marks, and extended characters. It can also act as a scroll 
ring for rapid cursor movement. Thus, with a miniature 
trackball or an isometric joystick, EdgeWrite provides full 
text entry in a small space. It can be downloaded for free at 
http://www.edgewrite.com/dev.html. 

LAB STUDY WITH ABLE-BODIED USERS 

For comparisons, we conducted a study of Trackball 
EdgeWrite with able-bodied subjects who knew the 
EdgeWrite alphabet but who were not trackball users. Their 
knowledge of the EdgeWrite alphabet came from a previous 
study with a different EdgeWrite version. This allowed us 
to isolate performance with the trackball apart from 
learning the alphabet. The study was not intended to 
compare two opposing methods, but to provide an estimate 
of the performance of Trackball EdgeWrite for novices. 

Method 

Three subjects ages 27-33 took part in the study. All were 
daily computer users who owned a desktop mouse. None 
had ever owned or used a trackball. They were paid $15. 

Text phrases from [17] were shown in Courier 20pt on an 
IBM A21p laptop set to 1280×1024 resolution. The phrases 
were transcribed with Trackball EdgeWrite using a 
Kensington Expert Mouse trackball (Figure 1). The pointer 
speed was set to 40% of maximum on the mouse control 

panel. Backspace was supported and subjects were not 
required to stay synchronized with the presented text. They 
were told to write quickly and accurately, and to balance 
speed and accuracy without favoring one over the other. 

Subjects practiced for 45 minutes with Trackball EdgeWrite 
before transcribing 15 test phrases. During practice, the 
three subjects transcribed 58, 26, and 40 practice phrases, 
respectively. Although they knew the EdgeWrite letters, 
they had a low level of comfort with the trackball, feeling 
that it would take more time to become comfortable with it. 

Able-bodied Results 

The 15 test phrases were analyzed according to the 
measures in [20]. No analyses of variance were performed 
since only one method was under investigation. Subjects’ 
speeds and error rates are shown in Figures 13 and 14. As 
an additional point of comparison, the first author’s 
performance is shown at the right of each graph. For the 
three subjects, the average entry rate was 9.82 wpm. Their 
average respective uncorrected, corrected, and total error 
rates as defined in [20] were 0.59%, 3.31%, and 3.90%. 

 
Figure 13. Average speeds (wpm) for three able-bodied subjects 
using Trackball EdgeWrite. Subjects knew the alphabet but had 
never used trackballs. 

 
Figure 14. Average error rates for each subject. From left to right, 
error rates within each subject are uncorrected, corrected, and total 
[20]. Total error rates were quite low (<4%) for a gestural technique 
using an unfamiliar device. 

CHI 2006 Proceedings  •  Text Input April 22-27, 2006  •  Montréal, Québec, Canada

485



 

FIELD STUDY WITH A MOTOR-IMPAIRED USER 

Although 10 wpm is not particularly fast, a trackball user 
with motor impairments resigned to using an on-screen 
keyboard at 4-5 wpm would probably welcome that speed. 
In view of this, we improved Trackball EdgeWrite over the 
course of eight participatory design sessions conducted 
from May to October 2005 with a veteran trackball user 
who we will call “Jim.” Jim has a spinal cord injury that 
reduces the dexterity in his arms, hands, and fingers such 
that he cannot use a conventional keyboard or mouse. For 
15 years he has relied upon trackballs and on-screen 
keyboards for computer access. His favorite trackball is the 
Stingray from CoStar Corporation (Figure 15). 

 

Figure 15. Jim’s favorite trackball is the Stingray. He prefers this 
trackball because he can press its wide left button with the palm of 
his left hand while his left thumb rolls the ball to drag. 

Jim is now 46 years old and is still an avid trackball user. 
But he is a reluctant on-screen keyboard user. For extended 
periods of text entry, Jim uses Dragon Naturally Speaking, 
but he nonetheless frequently relies on an on-screen 
keyboard. He complains that his speech recognition often 
“acts up” and ceases to work well. Sometimes his voice is 
altered from medications or fatigue and his recognition 
rates drop. For short replies to emails, putting on a headset 
and microphone is an arduous task, so Jim uses an on-
screen keyboard when he needs to enter a few words. Also, 
certain tasks don’t work well for him with speech 
recognition, like naming files, entering email addresses, 
editing proper names, entering spreadsheet formulae, and 
filling out web forms. Thus, Jim’s text entry solution has 
been a mixture of speech recognition and an on-screen 
keyboard using a trackball to dwell over letters. At one time 
he used Click-N-Type (http://www.lakefolks.org/cnt/), but 
when we met him he had switched to Microsoft’s 
Accessibility Keyboard. 

Jim has three main complaints about using an on-screen 
keyboard. First, the visual attention required is enormous, 
as he constantly must look from the keyboard to his 
document and back. Second, moving over keys to dwell 
requires that the dwell time be long enough to avoid 
unwanted keys but short enough to produce text quickly, a 
difficult balance to strike. He currently uses 0.5 seconds as 
the dwell time. Third, the tedium of making repeated 

keyboard selections is, according to Jim, “mind numbing.” 
Although word prediction can help, Jim feels that word 
prediction slows him down as often as it speeds him up, a 
sentiment consistent with findings in the literature [12]. 
Plus, word prediction adds more items to visually scan. 

Performance 

To ensure that our design iterations were beneficial, we 
performed short checkpoint studies when meeting with Jim. 
During these studies, Jim would use the latest version of 
Trackball EdgeWrite to enter 5-7 test phrases from [17]. He 
would also enter the same number of test phrases with the 
Microsoft Accessibility Keyboard. Word prediction was not 
available in either method. Both methods were controlled 
by Jim’s personal trackball (Figure 15), and neither method 
required any button presses. Jim’s speed and accuracy 
results are shown in Figures 16-19 on the next page. 

Note that the checkpoint studies were not evenly spaced in 
time, particularly in the jump from week 4 to week 10. 
During this 6 week hiatus, Jim did not use his computer. 
Thus, the data for week 10 can be viewed as retention 
results. Week 10 was the only week after week 1 in which 
the two methods were nearly equal in speed (Figure 16). 

After week 1, Jim’s speeds were consistently higher with 
EdgeWrite than with the on-screen keyboard (Figure 16). 
His average speed across all weeks with EdgeWrite was 
5.28 wpm (σ=1.05). With the keyboard it was 4.60 wpm 
(0.94). A Wilcoxon sign test for matched pairs yields a 
significant result in favor of EdgeWrite (z=-15.0, p<.04). 

The drop in performance during week 15 was due to a 
nagging tremor in Jim’s hand. The drop in speed occurred 
about evenly for both methods (Figure 16). Accuracy 
results, on the other hand, show that both uncorrected and 
corrected errors were worse for the on-screen keyboard than 
for EdgeWrite (Figures 17-18), suggesting that EdgeWrite 
accuracy may be less affected by such tremors. 

Jim’s average uncorrected error rate was 1.18% (σ=1.47%) 
with EdgeWrite and 2.05% (2.62%) with the on-screen 
keyboard. A Wilcoxon sign test for uncorrected errors is not 
significant (z=5.5, p=0.31). His average corrected error rate 
was 10.62% (1.80%) with EdgeWrite and 4.49% (3.93%) 
with the keyboard. A Wilcoxon sign test for corrected 
errors does yield a significant result in favor of the on-
screen keyboard (z=-17.0, p<.02). 

Although corrected errors (Figure 18), which are any letters 
backspaced during entry, are higher with Trackball 
EdgeWrite, they are not necessarily damaging if the 
correction operation is efficient [20]. Of course corrected 
errors should be reduced, but the main tradeoff is between 
speed and uncorrected errors (Figure 17), which are errors 
left in the transcribed string. A method can be successful 
even if it quickly produces and repairs errors during entry 
if, in the end, it yields more accurate text in less time, 
which is the case here. 
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Figures 16-19. Jim’s average speeds, uncorrected errors, corrected 
errors, and learning curves across weekly sessions. 

Figure 19 shows Jim’s speed curves modeled by the power 
law of learning and extrapolated to future sessions as was 
done in [18]. The regression equations are: 

EdgeWrite: y = 4.1369x
0.1208  R

2 = 0.3579 
Keyboard: y = 4.2358x

0.0423 R
2 = 0.0429 

The R
2 values indicate that Trackball EdgeWrite is better 

modeled by a learning curve. This is probably because Jim 
was already an expert on-screen keyboard user and had 
little room for improvement. 

Qualitative Results 

In general, the time Jim spent using EdgeWrite each week 
varied according to his personal computer use and his text 
entry needs. With Jim’s permission, Trackball EdgeWrite 
wrote log files on his computer whenever it was being used. 
These logs show that EdgeWrite was always left running in 
the system tray as of week 3, and was used intermittently 
over the course of most weeks. The total use per week 
varied from just a few minutes to a few hours. Jim’s usage 
increased in the later sessions. 

Jim no longer uses an on-screen keyboard. His main 
reasons for preferring Trackball EdgeWrite over an on-
screen keyboard are, in his words: 

• “The on-screen keyboard is so terribly boring. 
EdgeWrite is fun, like a video game. The on-screen 
keyboard is not fun. I don’t care which is faster.” 

• “With EdgeWrite, you can keep your eyes on your 
document and just write as you would holding a pencil. 
I don’t feel disabled when I’m using EdgeWrite.” 

• “The on-screen keyboard requires too much visual 
scanning and concentration. In EdgeWrite, if you know 
the letter, you can just bang it out by feel.” 

As Jim began working with Trackball EdgeWrite, he also 
began to use a Palm PDA for the first time. Previously, he 
could not enter text into a PDA because of the difficulty he 
had in holding a stylus and moving it accurately. Now he 
uses EdgeWrite with a stylus on his Palm PDA [29], and 
says he can take handwritten notes for the first time in 
years. A nice aspect of this is that Jim only had to learn the 
EdgeWrite alphabet once. 

FUTURE WORK 

A limitation of the current work is that it only used a single 
motor-impaired subject over multiple sessions. This was to 
promote rapid iteration of the design. Thus, future work 
includes a larger user study and a wider deployment for 
people with disabilities. 

We also intend to add word completion to Trackball 
EdgeWrite via in-stroke word completion, which will allow 
users to complete words fluidly by the manner in which 
their letter gestures are finished. We also noted that 
Trackball EdgeWrite works well with isometric joysticks, 
and intend to apply it to mobile phones by placing a 
joystick on the front of the phone for use with a thumb, and 
on the back of the phone for use with an index finger. 

CONCLUSION 

In presenting Trackball EdgeWrite, we have shown how 
prior studies, theoretical models, and empirical results can 
combine to rigorously inform the design of new input 
techniques. The foundation of our design lies in crossing 
instead of pointing, and represents a new way to do gestural 
input. Although intuition was useful as a starting point, our 
empirical and theoretical results contradicted our intuition 
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when considering the two different first-corner schemes, 
indicating the value of quantitative evaluations over 
intuition. Our experience supports a rapid build-and-
evaluate cycle with few subjects instead of a large but 
premature user study. Now that our design has been refined, 
a large user study is appropriate. Our results should 
encourage researchers to explore new ways in which 
common input devices and fundamental techniques can be 
used to improve computer access for users with disabilities. 
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