
Trackball Text Entry for People with Motor Impairments
Jacob O. Wobbrock and Brad A. Myers

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
{ jrock, bam }@cs.cmu.edu

http://www.edgewrite.com/dev.html
ABSTRACT

We present a new gestural text entry method for trackballs.
The method uses the mouse cursor and relies on crossing
instead of pointing. A user writes in fluid Roman-like
unistrokes by “pulsing” the trackball in desired letter
patterns. We examine this method both theoretically using
the Steering Law and empirically in two studies. Our
studies show that able-bodied users who were unfamiliar
with trackballs could write at about 10 wpm with <4% total
errors after 45 minutes. In eight sessions, a motor-impaired
trackball user peaked at 7.11 wpm with 0% uncorrected
errors, compared to 5.95 wpm with 0% uncorrected errors
with an on-screen keyboard. Over sessions, his speeds were
significantly faster with our gestural method than with an
on-screen keyboard. A former 15-year veteran of on-screen
keyboards, he now uses our gestural method instead.

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User
interfaces — Input devices and strategies.

K.4.2. Computers and society: Social issues – assistive

technologies for persons with disabilities.

Author Keywords

Text entry, text input, gestures, unistrokes, trackballs,
pointing, crossing, Fitts’ Law, Steering Law, EdgeWrite.

INTRODUCTION

Trackballs are the preferred pointing devices for numerous
computer users, particularly for people with some form of
motor impairment [9]. For people with low strength, poor
coordination, wrist pain, or limited ranges of motion,
rolling a trackball (Figure 1a) can be easier than shuttling a
mouse across the surface of a desk.

Not surprisingly, many people who prefer trackballs due to
motor impairments cannot use a conventional physical
keyboard. For these people, some form of text entry besides
typing is required. A common solution is to use a trackball
with an on-screen keyboard and to click or dwell on the

Figure 1. (a) A Kensington Expert Mouse trackball, one of the
largest trackballs on the market and popular among people with
motor impairments. (b) An Appoint Thumbelina, one of the smallest
trackballs ever made.

virtual keys. But this method of text entry has many
problems. For instance, on-screen keyboards require precise
pointing over small targets, a difficult task in itself and
particularly so for trackballs, which can have a hard time
remaining over targets [14]. Also, on-screen keyboards
consume precious screen real-estate. They exacerbate
mouse travel to and from a document, particularly for
editing [28]. Furthermore, they require two foci-of-
attention, one on the document and one on the keyboard.
Although physical keyboards can be used by feel, an on-
screen keyboard can only be used in a hunt-and-peck
fashion by sight. This intense reliance on sight makes on-
screen keyboards tedious and visually taxing.

Although speech recognition can be a viable solution for
some, it has known drawbacks and limitations and can be
unsuitable for people with certain impairments [13]. What
is needed is a trackball text entry method that leverages the
strengths of trackballs and does not require an on-screen
keyboard. Putting the text entry method on the trackball
itself reduces physical movement among devices and the
need for multiple devices to be within reach [21]. It also
allows users to work with devices already familiar to them.

Trackballs may be preferred for reasons other than physical
impairment. Trackballs need little space in which to operate
(Figure 1b), unlike mice, which have large “desktop
footprints” [6]. Trackballs can be embedded in consoles or
keyboards, making them suitable for public terminals since
they cannot be easily stolen. Trackballs offer rapid, fluid
control and have been used in arcade games like Centipede.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22-27, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

(a) (b)

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

479

In this paper, we present a novel method for trackball text
entry called Trackball EdgeWrite. This method relies not on
precise pointing at on-screen targets, but on unistroke
gestures that mimic the feel of writing Roman letters [25].
Instead of pointing, the method uses crossing [3], lowering
the demand for accuracy. We evaluate the method in a
single session with able-bodied users. Then we present
results from an extended field study with a veteran trackball
user with a spinal cord injury. A former on-screen keyboard
user for 15 years, he now uses Trackball EdgeWrite instead.

RELATED WORK

Evaluations of Trackballs

Although there is little work on trackball text entry, there
has been a great deal of work on trackball pointing. An
early study by Epps et al. [7] compared six pointing
devices, including a 4 cm trackball, in target acquisition
tasks. They found that the mouse and trackball were
significantly faster than the other devices, but were not
significantly different from each other. A follow-up study
by Sperling and Tullis [22] found that the mouse was faster
for selection, dragging, and tracing even among trackball
users. Accuracy differences were not significant for
selection and dragging, but were significant for tracing,
showing the trackball to be less accurate than the mouse.
From these results, we can conclude that our trackball text
entry method should not require precise positioning or
tracing along a path. For example, we would not want a
method that requires smooth freeform gestures like those in
handwriting or most unistroke methods (e.g. [10]).

Accot and Zhai formalized tracing performance with their
Steering Law [1]. Their study of five input devices [2]
shows that trackballs are comparable to touchpads—but
both are worse than mice—and that trackballs perform best
relative to other devices for short straight-line trajectories
less than 250 pixels. They note that the performance of
trackballs and touchpads suffers when the device must be
“clutched” for travel over long distances. From this we can
conclude that long or curved movements should be avoided.

Further comparisons of pointing devices by MacKenzie et
al. [15] showed trackballs to be slower than mice and styli
in pointing and dragging, and less accurate for dragging.
They note that dragging is particularly difficult with a
trackball because of the confluence of the thumb and finger
muscles. In a later study, MacKenzie et al. [14] added that
trackballs often move accidentally when performing a click
inside a target. Such slips can be particularly troubling for
users with motor impairments [23]. Thus, our method
should not rely on buttons and not require dragging or
clicking. It should therefore be button-free.

After this brief review, it may seem that trackballs are
unlikely candidates for gestural text entry. However, this
conclusion ignores the strengths of trackballs that make
them preferable for many motor-impaired users. Trackballs
require little if any forearm or wrist movement, little
strength, little desk space, and offer rapid, fluid control.

Although selecting, dragging, and steering are not strengths
of trackballs compared to mice, other activities such as goal
crossing may be better suited.

Goal Crossing

Unlike pointing, which requires a cursor to enter a target
and remain stationary long enough to select it, crossing
requires only that a goal line be passed, like a football
player scoring a touchdown. This can lessen the demands
for target acquisition compared to traditional pointing.

Accot and Zhai [1,3] modeled goal crossing and showed it
to follow a formulation of Fitts’ Law [8]. Specifically, they
showed that crossing goals of width W separated by a
distance A (Figure 2) follows the Fitts’ formulation
(Equation 1). However, the regression coefficients a and b
are different for crossing than for pointing [3].

Figure 2. Crossing follows Fitts’ law but with the W constraint
orthogonal to the movement trajectory, rather than collinear.





+⋅+= 1log2

W

A
baT (1)

Accot and Zhai later elaborated by comparing different
types of pointing and crossing [3]. They found that the
fastest arrangement for reciprocal tasks was “continuous
orthogonal goal crossing,” where the pointing device, in
their case a stylus, was continually held on the surface and
the goals were perpendicular to the movement trajectory
(Figure 2). They speculated that goals could rotate to
always remain orthogonal to the cursor and thus offer the
maximum target width (Figure 3a). An extreme form of this
idea is a cursor placed inside a circle, where the
circumference is the goal (Figure 3b). This insight drives
our design for Trackball EdgeWrite, and the crossing model
provides for its analysis.

Figure 3. (a) Accot and Zhai [1] speculate that crossing goals could
rotate to always remain orthogonal to the cursor, thereby offering
maximum target width. (b) An extreme form of this idea is a cursor
in the center of a circle, where the circumference itself is the goal.

Related Text Entry Methods

There are numerous text entry methods for mobile devices
and computer access. Space precludes a full review.
Readers are directed to prior work on EdgeWrite [29] and
MacKenzie and Soukoreff’s text entry overview [16].

(a) (b)

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

480

To our knowledge there has not been any text entry method
developed specifically for trackballs. But two methods of
note work with them. One is MDITIM [11], a stroke-based
method that is usable on different devices, including
trackballs. In a study of MDITIM on different devices, the
trackball was measured at about 6.5 wpm with 7.2% errors
after ten 30-minute sessions with a stylus. The test subjects
knew the MDITIM alphabet but were not necessarily
proficient with a trackball. One drawback of MDITIM is
that all letter forms are comprised of movements in only the
four cardinal directions. Therefore, MDITIM letters do not
generally resemble their Roman counterparts, making
guessability and learnability difficult.

Dasher [24] is another method that works with trackballs.
Dasher works by having the user select from an ever-
expanding array of dynamic rectangular regions that
represent letters. The regions’ sizes, and therefore the ease
of their selection, depend on the linguistic properties of the
text being entered. Like Trackball EdgeWrite, Dasher
requires no clicking or dragging. Although Dasher can
achieve rapid entry rates (~30 wpm), a common sentiment
among novices is that it is overwhelming, as it is in constant
visual flux. Also, it is unlikely that Dasher could be done
purely by feel without any graphical depiction [24]. Dasher
can be used as an assistive technology with a head- or eye-
tracker, since any pointing device will work with it.

A common method of trackball text entry is with an on-
screen keyboard. On-screen keyboards have been designed
[5] and studied [19] in computer access for some time.
Although word prediction can help raise speeds, it can also
have the opposite effect, depending on the severity and
nature of the impairment [12]. Even if performance is
enhanced, on-screen keyboards remain a visually taxing and
tedious method of text entry. Our own field test subject
remarked that he would prefer a gestural method that he
could use “by feel” over an on-screen keyboard, even if the
keyboard were faster. Fortunately, this subject was faster
with Trackball EdgeWrite than his own on-screen
keyboard, so he did not have to suffer this tradeoff.

TRACKBALL EDGEWRITE — FUNDAMENTAL DESIGN

Background

EdgeWrite was originally developed for use with a stylus
on a PDA by people with tremor [29]. That version placed a
plastic template over a Palm PDA’s input area, thereby
providing a square hole in which all strokes could be made
(Figure 4). EdgeWrite’s mnemonic, Roman-like unistroke
alphabet enables users to write by moving the stylus along
the physical edges and into the corners of the plastic square.
To tolerate wiggle, recognition was based on a stroke’s
order of corner-hits, not on its overall path of motion. The
physical stability provided by this design increased
accuracy among motor-impaired users by 2-4 times over
Graffiti [29].

Figure 4. An EdgeWrite template over the text input area of a Palm
PDA. Physical edges and corners provide stability for the stylus.

EdgeWrite’s alphabet was designed through a guessability
study in which participants devised intuitive gestures for
each letter [25]. Thus, EdgeWrite gestures are not short and
efficient like the original Unistrokes [10], but are slightly
longer and more reminiscent of Roman forms (Figure 5).
This has made EdgeWrite highly guessable and quickly
learnable [25], an important feature for motor-impaired
users who often cannot endure lengthy practice sessions
[28].

Figure 5. EdgeWrite’s primary letter forms. Alternate forms exist for
most letters (not shown). The bowing of line segments is for
illustrative purposes only—all motion is in straight lines. EdgeWrite
also defines strokes for punctuation, accents, and extended
characters. For a complete chart, see http://www.edgewrite.com.

EdgeWrite’s method of stroke recognition—detecting the
order of corner-hits—has lent itself to versions for
touchpads, joysticks, buttons, and other devices [26, 27,
28]. However, previous adaptations have relied exclusively
on absolute positioning in performing input, i.e., the
physical position of a stylus, finger, or joystick within a
physical square. Trackball EdgeWrite is the first version to
use relative positioning, since trackballs themselves express
no absolute position or rotation, only change in rotation [6].
In relative positioning, the mouse cursor itself becomes the
locus of input, and issues arise that are different than in
previous versions. In cursor-based relative positioning,
physical edges are no longer possible. Instead, the accuracy
benefits formerly provided by physical edges are obtained
with crossing [3], as detailed in the next section.

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

481

Crossing to Stroke

With Trackball EdgeWrite, one writes by making short
“pulses” toward intended corners. When these pulses cause
the mouse cursor to cross the circumference of a circle
maintained about it, the resultant angle indicates the next
corner. Thus, the cursor does not actually travel among
corners to acquire them as targets, but crosses a radius and
snaps to the next corner instantly. Figure 6 depicts this
process for writing the letter “z”.

Figure 6. The trackball cursor moves a distance r at an angle θ
from the top-left corner of the EdgeWrite square. The angle
determines that the next corner is the top-right, and the first stroke
of the letter “z” is drawn. Having snapped to the top-right corner, the
cursor now moves diagonally at an angle that indicates the bottom-
left corner, and the second stroke is drawn. Note that for the third
stroke, the cursor moves towards the outside of the EdgeWrite
square, but at an angle that still indicates the bottom-right corner.

In essence, a series of short crossing tasks forms a letter.
But clearly, much depends on how the circle is partitioned
and how θ is interpreted. For instance, consider the move
across the bottom of the “z” in Figure 6. At what angle θ
should the cursor instead move diagonally to the top-right?

Figure 7 shows the next-corner outcomes for different
departure angles from the bottom-left corner of the
EdgeWrite square. The same scheme can be extrapolated to
the other three corners of the EdgeWrite square.

Figure 7. Next-corner outcomes for different angles of departure
from the bottom-left corner of the EdgeWrite square. θd is the
diagonal angle size and θc is the cardinal angle size.

Three features of the design in Figure 7 are important. First,
any movement left, diagonal down-and-left, or down keeps
the cursor fixed at the extreme bottom-left corner. More
generally, if the cursor moves at an angle that, were it to
cross the circumference it would remain in the same corner,
it is held fixed in the center of the circle. This will always
hold for (180 – θd)° of the circle, where θd is the angular
amount allotted to each diagonal. This “pinning” to the
circle’s center ensures that one remains accurate if one is
slow to change directions after entering a new corner.

Second, the value in having ample cardinal angles (θc) is
that users do not always move perfectly to the left, right, up
or down. Larger values of θc create more room inside the
EdgeWrite square to move in the cardinal directions.
However, adding to θc detracts from the diagonals θd
because θc + θd = 90°.

Third, although increasing θc gives more room inside the
square to move in the cardinal directions, one always has
90° with which to move along an edge, regardless of θc.
That’s because one always has the angles to the outside of
the EdgeWrite square, as in the bottom-left image in Figure
6. So although θd and θc are tradeoffs, a total of 90° remains
for moving along an edge. In practice, however, we have
found that some room in θc acts as a “cardinal error band,”
giving more room to move inside the EdgeWrite square.

It is important to emphasize that despite these underlying
mechanics, one neither sees a visual cursor nor aims for
particular angles when writing with Trackball EdgeWrite.
Instead, one simply pulses the ball towards intended
corners, creating the feeling of fluid writing.

Two Schemes for Determining the First Corner

The example in Figure 6 assumes that we start in the top-
left corner. But of course, not all EdgeWrite letters start
there. This begs the question of how we begin a letter, since
unlike a stylus landing on a PDA or a finger landing on a
touchpad, the trackball cursor is persistent and cannot
simply “appear” in the starting corner.

We implemented two competing schemes for determining
the first corner. The first scheme is to have the user pulse
the trackball to the initial corner as if he was starting from
the center of the EdgeWrite square. Thus, to resemble the
top-left image in Figure 6, one would first pulse the
trackball diagonally to the top-left. Although this scheme
adds an extra movement to the start of every letter, the
accuracy demands are low because the user has a full 90°
with which to indicate each starting corner.

In the second scheme, one assumes one starts in the
appropriate corner, and the software disambiguates that
corner as the gesture unfolds. For example, in making a “z”,
one would first move to the right (Figure 8). At this point,
one may have intended to move along either the top or
bottom edge. Both possibilities are entertained until the
next move is diagonally down-and-left, at which point the
ambiguity is resolved. Gestures that occur along a single

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

482

edge, like “i”, space, and backspace, never resolve into
unambiguous strokes. But such gestures can be defined on
both sides of the square, so the ambiguity can be made
irrelevant.

Figure 8. When writing a “z” in the second scheme, one first moves
to the right, causing two candidate strokes to appear. After the
diagonal stroke, the gesture is no longer ambiguous, and the
bottom-edge candidate is discarded. A third stroke finishes the “z”.

Although the second scheme requires one less pulse per
letter than the first scheme, it proved slower and more
difficult in practice because the initial stroke has eight
possible outcomes, not just four as in the first scheme. Even
when the angular regions of the circle were allocated
proportional to the probability of beginning a letter in that
region, the second scheme proved too difficult for our
subjects to perform accurately. Furthermore, our theoretical
analysis of each scheme actually showed the first scheme to
be 3 wpm faster despite the additional stroke required for
each letter because of the high accuracy required for the
second scheme’s initial stroke. Thus, the first scheme was
preferred. This was an unexpected finding, as we had
initially assumed the second scheme would be about 30%
faster. That theoretical and empirical results proved
otherwise shows the importance of basing designs on
quantitative measures instead of intuition.

Theoretical Analysis

We can predict the time it takes to make a letter using
Accot and Zhai’s [1,3] discovery that crossing follows the
Fitts formulation in Equation 1.

For diagonal movement, the size of the crossing goal is:

rW d
d ⋅⋅⋅= π

θ
2

360
 (2)

The index of difficulty for diagonal movement is therefore:














+

⋅

= 1

2
360

log2

r

r
ID

d
d

π
θ

 (3)

Thus, our time for diagonal movements is predicted by:







+
⋅

⋅+= 1
180

log2
πθd

d baT (4)

For movement in the cardinal directions, recall that we have
a constant target size of 90°. Thus,

rWc π2
360

90
⋅= (5)

So, our index of difficulty is:





+= 1

5.0
log2

r

r
IDc

π

 (6)

Our movement time along cardinal edges is thus given by:

710719.0⋅+= baTc
 (7)

For the pulse from the center to the first corner, we have
four target angles each of 90°. Thus, our movement time Tf
for the pulse to the first corner is the same as Tc:

710719.0⋅+== baTT cf
 (8)

Using Equations 4, 7, and 8, we can compute the theoretical
movement time for each EdgeWrite character shown in
Figure 5. For example, using a typical 65° for diagonal
angles θd and 150 ms for segmentation timeout τ, the time
in milliseconds to enter the letter “z” is given by:

 τ++++= cdcfz TTTTT ""
 (9)

τ++⋅= dc TT3

15004402.34 ++= ba

To compute the time of the “average character,” we weight
each character’s time by its linguistic frequency.

∑
∈

⋅=

Ci

iiavg FTT (10)

In Equation 10, i is a character in character set C, Ti is the
time (ms) for character i, and Fi is the linguistic frequency
for character i. For simplicity, we use Figure 5 for C but
omit “ç” and backspace. We do, of course, include space.

Finally, using Equation 10, we approximate the theoretical
speed for the method. (The numerator is ms/min.)

avgT
wpm

⋅
=

5

000,60 (11)

Obviously, wpm is dependent upon our choice of a and b—
our Fitts’ regression coefficients. To our knowledge, no
studies have elicited these coefficients for continuous
reciprocal goal crossing with a trackball. However, Accot
and Zhai have done so for a stylus [3]. They have also done
so for a stylus and a trackball for non-reciprocal straight-
tunnel steering [2]. Extrapolating from these studies, we can
obtain estimates for a and b for continuous reciprocal goal
crossing with a trackball. Using a typical θd = 65° and τ =
150 ms, Equation 11 yields the following:

wpm = 23.1 a = -363.0, b = 642.1

Note that this rate represents perfect entry, i.e., no errors, no
error correction, and no hesitation between letters other
than the time τ required for segmentation. Also, trackballs
differ significantly in their sizes, friction, gain settings, etc.
Thus, our estimate is only a ballpark measure. However, it
is useful for comparing different stroking schemes, such as
the two first-corner schemes discussed in the previous
section. An item for future work is to establish a and b
coefficients for reciprocal goal crossing with a trackball.

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

483

TRACKBALL EDGEWRITE — DESIGN REFINEMENTS
Non-recognition Retry

With most gestural text entry methods, there is no way to
predict what a recognizer will produce until a character
appears, at which point it is too late to save an erroneous
gesture. With EdgeWrite, since all characters are defined by
their order of corner-hits, users often realize they’ve made a
mistake before a gesture is complete. Rather than wait for
the recognizer to produce an erroneous letter and then have
to erase it, our design allows users to restart letters mid-

stroke without segmenting. When given the full “garbled”
gesture to recognize, EdgeWrite trims corners from the start
of the corner sequence until it finds a sequence it
recognizes. We call this “non-recognition retry” (Figure 9).

Figure 9. (a) A clean “w” and (b) a jumbled “w”. The gesture at right
was begun erroneously but corrected mid-stroke to finish as a “w”.
Non-recognition retry discovers the “w” at the end of the stroke.

Non-recognition retry is possible in EdgeWrite because
gestures are effectively tokenized into corners as they are
written. It would be difficult to reliably apply non-
recognition retry to freeform gestures, since one would
have to perform some preliminary recognition to determine
where to trim the point queue in the first place.

Slip Detection, Multiple Hypotheses, and Digraphs

When writing with Trackball EdgeWrite, occasionally one
slips through an unwanted corner when trying to make a
diagonal. To mitigate this problem, the system includes a
slip detector that adapts to the speed of the writer. The slip
detector tracks the average inter-corner time ψ for the last n
corners. If after being in a corner c1, a stroke is made
abruptly at p percent of ψ from a corner c2 to c3, and c1 and
c3 lie on a diagonal, then the stroke from c1 to c2 is removed
and a connection is made directly from c1 to c3. That is, c2 is
deemed to have been “slipped through” on the way from c1
to c3. Through empirical testing we found that n = 16 and
p = 37.5% work well. Figure 10 depicts this scenario.

Figure 10. In writing an “s”, the user slips through c2 while trying to

move diagonally from c1 to c3. The slip is detected and the stroke

from c1 to c2 is replaced with a connection directly from c1 to c3.

However, the slip detector is “humble.” It knows it may not
always be right. Therefore, upon detecting a slip, it keeps
two corner sequences: one with the slip removed, and the
other with the slip retained. In doing this for each slip
within a gesture, it builds a binary tree as shown in Figure
11, with tiers in the tree representing perceived slips.

Figure 11. The slip detector retains two hypotheses for every
detected slip, namely that the slip did and did not occur. At slip #1,
the corner c2 was passed through abruptly and is retained (left) and

removed (right). At slip #2, the corner c4 was passed through too
quickly and is retained (left) and removed (right).

Upon segmentation, all leaves in the tree are recognized.
Each recognition result is then checked for its likelihood
given the preceding character using the digraph lists from
[4]. The result with the greatest likelihood is produced as
the recognized character. For example, “pu” is a much more
common English digraph than “pv”. Thus, if a “u” is
corrected to a “v” due to a perceived slip, the “u” will still
be produced if the letter before it is a “p”.

Interaction Design

Trackball EdgeWrite is the first EdgeWrite version to
utilize the mouse cursor. Two key issues arise when
building an application of this sort: how to switch between
mousing and writing, and how to segment between letters.

Capture and Release

Trackball EdgeWrite is designed to run quietly in the
background until it is needed for text entry. When the
mouse is being used for mousing, it is said to be “released.”
When it is being used for writing, it is said to be “captured.”
The mouse can be captured by clicking a dedicated
trackball button (a “hot button”), pressing a dedicated
keyboard key (a “hot key”), or by dwelling in a corner of
the desktop (a “hot corner”). Hot buttons, keys, and corners
are configurable in the application’s preferences dialog.

When captured, the mouse cursor vanishes and the
EdgeWrite window appears near the text cursor (Figure 12).
To release the cursor, the user can click a trackball button
or perform a dedicated release stroke. Then the EdgeWrite
window disappears and the mouse cursor is restored to its
previous location. Thus, Trackball EdgeWrite never
requires that it be navigated to, unlike an on-screen
keyboard. Instead, it comes to the user when it is
summoned.

(a) (b)

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

484

Figure 12. Trackball EdgeWrite is being used to enter text into
Notepad. Although mouse events are being handled by EdgeWrite,
the input focus appropriately remains on the Notepad window.

Segmentation

Letters are segmented when the underlying mouse cursor
stops moving for a preset amount of time. (This time was
modeled as τ in our theoretical analysis, above.) Timeout
values range from 100 ms for experts to 750 ms for novices.
This simple scheme works reliably. A beginner can still
“stop and think” while making a gesture by slowly rolling
the trackball toward the corner they’re already in, as this
will not move them to a new corner (recall Figure 7).

Implementation

Trackball EdgeWrite is implemented in C# using
DirectInput to capture mouse events in the background.
Recognized characters are sent through the low-level
keyboard input stream. Trackball EdgeWrite works with
any pointing device, but is best suited for devices without
absolute position, e.g., trackballs and isometric joysticks.
EdgeWrite allows letters, numbers, punctuation, diacritical
marks, and extended characters. It can also act as a scroll
ring for rapid cursor movement. Thus, with a miniature
trackball or an isometric joystick, EdgeWrite provides full
text entry in a small space. It can be downloaded for free at
http://www.edgewrite.com/dev.html.

LAB STUDY WITH ABLE-BODIED USERS

For comparisons, we conducted a study of Trackball
EdgeWrite with able-bodied subjects who knew the
EdgeWrite alphabet but who were not trackball users. Their
knowledge of the EdgeWrite alphabet came from a previous
study with a different EdgeWrite version. This allowed us
to isolate performance with the trackball apart from
learning the alphabet. The study was not intended to
compare two opposing methods, but to provide an estimate
of the performance of Trackball EdgeWrite for novices.

Method

Three subjects ages 27-33 took part in the study. All were
daily computer users who owned a desktop mouse. None
had ever owned or used a trackball. They were paid $15.

Text phrases from [17] were shown in Courier 20pt on an
IBM A21p laptop set to 1280×1024 resolution. The phrases
were transcribed with Trackball EdgeWrite using a
Kensington Expert Mouse trackball (Figure 1). The pointer
speed was set to 40% of maximum on the mouse control

panel. Backspace was supported and subjects were not
required to stay synchronized with the presented text. They
were told to write quickly and accurately, and to balance
speed and accuracy without favoring one over the other.

Subjects practiced for 45 minutes with Trackball EdgeWrite
before transcribing 15 test phrases. During practice, the
three subjects transcribed 58, 26, and 40 practice phrases,
respectively. Although they knew the EdgeWrite letters,
they had a low level of comfort with the trackball, feeling
that it would take more time to become comfortable with it.

Able-bodied Results

The 15 test phrases were analyzed according to the
measures in [20]. No analyses of variance were performed
since only one method was under investigation. Subjects’
speeds and error rates are shown in Figures 13 and 14. As
an additional point of comparison, the first author’s
performance is shown at the right of each graph. For the
three subjects, the average entry rate was 9.82 wpm. Their
average respective uncorrected, corrected, and total error
rates as defined in [20] were 0.59%, 3.31%, and 3.90%.

Figure 13. Average speeds (wpm) for three able-bodied subjects
using Trackball EdgeWrite. Subjects knew the alphabet but had
never used trackballs.

Figure 14. Average error rates for each subject. From left to right,
error rates within each subject are uncorrected, corrected, and total
[20]. Total error rates were quite low (<4%) for a gestural technique
using an unfamiliar device.

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

485

FIELD STUDY WITH A MOTOR-IMPAIRED USER

Although 10 wpm is not particularly fast, a trackball user
with motor impairments resigned to using an on-screen
keyboard at 4-5 wpm would probably welcome that speed.
In view of this, we improved Trackball EdgeWrite over the
course of eight participatory design sessions conducted
from May to October 2005 with a veteran trackball user
who we will call “Jim.” Jim has a spinal cord injury that
reduces the dexterity in his arms, hands, and fingers such
that he cannot use a conventional keyboard or mouse. For
15 years he has relied upon trackballs and on-screen
keyboards for computer access. His favorite trackball is the
Stingray from CoStar Corporation (Figure 15).

Figure 15. Jim’s favorite trackball is the Stingray. He prefers this
trackball because he can press its wide left button with the palm of
his left hand while his left thumb rolls the ball to drag.

Jim is now 46 years old and is still an avid trackball user.
But he is a reluctant on-screen keyboard user. For extended
periods of text entry, Jim uses Dragon Naturally Speaking,
but he nonetheless frequently relies on an on-screen
keyboard. He complains that his speech recognition often
“acts up” and ceases to work well. Sometimes his voice is
altered from medications or fatigue and his recognition
rates drop. For short replies to emails, putting on a headset
and microphone is an arduous task, so Jim uses an on-
screen keyboard when he needs to enter a few words. Also,
certain tasks don’t work well for him with speech
recognition, like naming files, entering email addresses,
editing proper names, entering spreadsheet formulae, and
filling out web forms. Thus, Jim’s text entry solution has
been a mixture of speech recognition and an on-screen
keyboard using a trackball to dwell over letters. At one time
he used Click-N-Type (http://www.lakefolks.org/cnt/), but
when we met him he had switched to Microsoft’s
Accessibility Keyboard.

Jim has three main complaints about using an on-screen
keyboard. First, the visual attention required is enormous,
as he constantly must look from the keyboard to his
document and back. Second, moving over keys to dwell
requires that the dwell time be long enough to avoid
unwanted keys but short enough to produce text quickly, a
difficult balance to strike. He currently uses 0.5 seconds as
the dwell time. Third, the tedium of making repeated

keyboard selections is, according to Jim, “mind numbing.”
Although word prediction can help, Jim feels that word
prediction slows him down as often as it speeds him up, a
sentiment consistent with findings in the literature [12].
Plus, word prediction adds more items to visually scan.

Performance

To ensure that our design iterations were beneficial, we
performed short checkpoint studies when meeting with Jim.
During these studies, Jim would use the latest version of
Trackball EdgeWrite to enter 5-7 test phrases from [17]. He
would also enter the same number of test phrases with the
Microsoft Accessibility Keyboard. Word prediction was not
available in either method. Both methods were controlled
by Jim’s personal trackball (Figure 15), and neither method
required any button presses. Jim’s speed and accuracy
results are shown in Figures 16-19 on the next page.

Note that the checkpoint studies were not evenly spaced in
time, particularly in the jump from week 4 to week 10.
During this 6 week hiatus, Jim did not use his computer.
Thus, the data for week 10 can be viewed as retention
results. Week 10 was the only week after week 1 in which
the two methods were nearly equal in speed (Figure 16).

After week 1, Jim’s speeds were consistently higher with
EdgeWrite than with the on-screen keyboard (Figure 16).
His average speed across all weeks with EdgeWrite was
5.28 wpm (σ=1.05). With the keyboard it was 4.60 wpm
(0.94). A Wilcoxon sign test for matched pairs yields a
significant result in favor of EdgeWrite (z=-15.0, p<.04).

The drop in performance during week 15 was due to a
nagging tremor in Jim’s hand. The drop in speed occurred
about evenly for both methods (Figure 16). Accuracy
results, on the other hand, show that both uncorrected and
corrected errors were worse for the on-screen keyboard than
for EdgeWrite (Figures 17-18), suggesting that EdgeWrite
accuracy may be less affected by such tremors.

Jim’s average uncorrected error rate was 1.18% (σ=1.47%)
with EdgeWrite and 2.05% (2.62%) with the on-screen
keyboard. A Wilcoxon sign test for uncorrected errors is not
significant (z=5.5, p=0.31). His average corrected error rate
was 10.62% (1.80%) with EdgeWrite and 4.49% (3.93%)
with the keyboard. A Wilcoxon sign test for corrected
errors does yield a significant result in favor of the on-
screen keyboard (z=-17.0, p<.02).

Although corrected errors (Figure 18), which are any letters
backspaced during entry, are higher with Trackball
EdgeWrite, they are not necessarily damaging if the
correction operation is efficient [20]. Of course corrected
errors should be reduced, but the main tradeoff is between
speed and uncorrected errors (Figure 17), which are errors
left in the transcribed string. A method can be successful
even if it quickly produces and repairs errors during entry
if, in the end, it yields more accurate text in less time,
which is the case here.

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

486

Figures 16-19. Jim’s average speeds, uncorrected errors, corrected
errors, and learning curves across weekly sessions.

Figure 19 shows Jim’s speed curves modeled by the power
law of learning and extrapolated to future sessions as was
done in [18]. The regression equations are:

EdgeWrite: y = 4.1369x
0.1208 R

2 = 0.3579
Keyboard: y = 4.2358x

0.0423 R
2 = 0.0429

The R
2 values indicate that Trackball EdgeWrite is better

modeled by a learning curve. This is probably because Jim
was already an expert on-screen keyboard user and had
little room for improvement.

Qualitative Results

In general, the time Jim spent using EdgeWrite each week
varied according to his personal computer use and his text
entry needs. With Jim’s permission, Trackball EdgeWrite
wrote log files on his computer whenever it was being used.
These logs show that EdgeWrite was always left running in
the system tray as of week 3, and was used intermittently
over the course of most weeks. The total use per week
varied from just a few minutes to a few hours. Jim’s usage
increased in the later sessions.

Jim no longer uses an on-screen keyboard. His main
reasons for preferring Trackball EdgeWrite over an on-
screen keyboard are, in his words:

• “The on-screen keyboard is so terribly boring.
EdgeWrite is fun, like a video game. The on-screen
keyboard is not fun. I don’t care which is faster.”

• “With EdgeWrite, you can keep your eyes on your
document and just write as you would holding a pencil.
I don’t feel disabled when I’m using EdgeWrite.”

• “The on-screen keyboard requires too much visual
scanning and concentration. In EdgeWrite, if you know
the letter, you can just bang it out by feel.”

As Jim began working with Trackball EdgeWrite, he also
began to use a Palm PDA for the first time. Previously, he
could not enter text into a PDA because of the difficulty he
had in holding a stylus and moving it accurately. Now he
uses EdgeWrite with a stylus on his Palm PDA [29], and
says he can take handwritten notes for the first time in
years. A nice aspect of this is that Jim only had to learn the
EdgeWrite alphabet once.

FUTURE WORK

A limitation of the current work is that it only used a single
motor-impaired subject over multiple sessions. This was to
promote rapid iteration of the design. Thus, future work
includes a larger user study and a wider deployment for
people with disabilities.

We also intend to add word completion to Trackball
EdgeWrite via in-stroke word completion, which will allow
users to complete words fluidly by the manner in which
their letter gestures are finished. We also noted that
Trackball EdgeWrite works well with isometric joysticks,
and intend to apply it to mobile phones by placing a
joystick on the front of the phone for use with a thumb, and
on the back of the phone for use with an index finger.

CONCLUSION

In presenting Trackball EdgeWrite, we have shown how
prior studies, theoretical models, and empirical results can
combine to rigorously inform the design of new input
techniques. The foundation of our design lies in crossing
instead of pointing, and represents a new way to do gestural
input. Although intuition was useful as a starting point, our
empirical and theoretical results contradicted our intuition

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

487

when considering the two different first-corner schemes,
indicating the value of quantitative evaluations over
intuition. Our experience supports a rapid build-and-
evaluate cycle with few subjects instead of a large but
premature user study. Now that our design has been refined,
a large user study is appropriate. Our results should
encourage researchers to explore new ways in which
common input devices and fundamental techniques can be
used to improve computer access for users with disabilities.

Acknowledgements
The authors thank John SanGiovanni, Richard Simpson, John
Kembel, Jeffrey Nichols, and especially “Jim.” This work was
supported in part by Microsoft, General Motors, and the National
Science Foundation under grant UA-0308065. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
those of the National Science Foundation.

REFERENCES

1. Accot, J. and Zhai, S. (1997) Beyond Fitts' law: Models
for trajectory-based HCI tasks. Proc. CHI ’97. ACM
Press, 295-302.

2. Accot, J. and Zhai, S. (1999) Performance evaluation of
input devices in trajectory-based tasks: An application of
the Steering Law. Proc. CHI ’99. ACM Press, 466-472.

3. Accot, J. and Zhai, S. (2002) More than dotting the i's:
Foundations for crossing-based interfaces. Proc. CHI ’02.
ACM Press, 73-80.

4. Bellman, T. and MacKenzie, I.S. (1998) A probabilistic
character layout strategy for mobile text entry. Proc.

Graphics Interface ’98. CIPS, 168-176.

5. Bishop, J.B. and Myers, G.A. (1993) Development of an
effective computer interface for persons with mobility
impairment. Proc. 15th Annual Conference on Engineering

in Medicine and Biology. IEEE Press, 1266-1267.

6. Card, S.K., Mackinlay, J.D. and Robertson, G. (1990) The
design space of input devices. Proc. CHI ’90. ACM Press,
117-124.

7. Epps, B.W., Snyder, H.L. and Muto, W.H. (1986)
Comparison of six cursor devices on a target acquisition
task. Proc. Society for Information Display. Society for
Information Display, 302-305.

8. Fitts, P.M. (1954) The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of Experimental Psychology 47 (6), 381-391.

9. Fuhrer, C.S. and Fridie, S.E. (2001) There's a mouse out
there for everyone. Proc. CSUN ’01. California State
University Northridge.

10. Goldberg, D. and Richardson, C. (1993) Touch-typing
with a stylus. Proc. CHI ’93. ACM Press, 80-87.

11. Isokoski, P. and Raisamo, R. (2000) Device independent
text input: A rationale and an example. Proc. AVI ’00.
ACM Press, 76-83.

12. Koester, H.H. and Levine, S.P. (1994) Validation of a
keystroke-level model for a text entry system used by people
with disabilities. Proc. ASSETS ’94. ACM Press, 115-122.

13. Koester, H.H. and Levine, S.P. (2000) User performance
with continuous speech recognition systems. Proc.

RESNA ’00. RESNA Press, 549-554.

14. MacKenzie, I.S., Kauppinen, T. and Silfverberg, M.
(2001) Accuracy measures for evaluating computer
pointing devices. Proc. CHI ’01. ACM Press, 9-16.

15. MacKenzie, I.S., Sellen, A. and Buxton, W. (1991) A
comparison of input devices in elemental pointing and
dragging tasks. Proc. CHI ’91. ACM Press, 161-166.

16. MacKenzie, I.S. and Soukoreff, R.W. (2002) Text entry
for mobile computing: Models and methods, theory and
practice. Human Computer Interaction 17 (2), 147-198.

17. MacKenzie, I.S. and Soukoreff, R.W. (2003) Phrase sets
for evaluating text entry techniques. Ext. Abstracts CHI

’03. ACM Press, 754-755.

18. MacKenzie, I.S. and Zhang, S.X. (1999) The design and
evaluation of a high-performance soft keyboard. Proc.

CHI ’99. ACM Press, 25-31.

19. Shein, F., Hamann, G., Brownlow, N., Treviranus, J.,
Milner, M. and Parnes, P. (1991) WiViK: A visual
keyboard for Windows 3.0. Proc. RESNA ’91. RESNA
Press, 160-162.

20. Soukoreff, R.W. and MacKenzie, I.S. (2003) Metrics for
text entry research: An evaluation of MSD and KSPC, and
a new unified error metric. Proc. CHI ’03. ACM Press,
113-120.

21. Spaeth, D.M., Jones, D.K. and Cooper, R.A. (1998)
Universal control interface for people with disabilities. Saudi

Journal of Disability and Rehabilitation 4 (3), 207-214.

22. Sperling, B.B. and Tullis, T.S. (1988) Are you a better
"mouser" or "trackballer"? A comparison of cursor-
positioning performance. SIGCHI Bulletin 19 (3), 77-81.

23. Trewin, S. and Pain, H. (1999) Keyboard and mouse
errors due to motor disabilities. International Journal of

Human-Computer Studies 50 (2), 109-144.

24. Ward, D.J., Blackwell, A.F. and MacKay, D.J.C. (2000)
Dasher — A data entry interface using continuous gestures
and language models. Proc. UIST ’00. ACM Press, 129-137.

25. Wobbrock, J.O., Aung, H.H., Rothrock, B. and Myers,
B.A. (2005) Maximizing the guessability of symbolic
input. Ext. Abstracts CHI ’05. ACM Press, 1869-1872.

26. Wobbrock, J.O. and Myers, B.A. (2005) Gestural text
entry on multiple devices. Proc. ASSETS ’05. ACM Press,
184-185.

27. Wobbrock, J.O., Myers, B.A. and Aung, H.H. (2004)
Writing with a joystick: A comparison of date stamp,
selection keyboard, and EdgeWrite. Proc. Graphics

Interface ’04. CHCCS, 1-8.

28. Wobbrock, J.O., Myers, B.A., Aung, H.H. and LoPresti,
E.F. (2004) Text entry from power wheelchairs:
EdgeWrite for joysticks and touchpads. Proc. ASSETS

’04. ACM Press, 110-117.

29. Wobbrock, J.O., Myers, B.A. and Kembel, J.A. (2003)
EdgeWrite: A stylus-based text entry method designed for
high accuracy and stability of motion. Proc. UIST ’03.
ACM Press, 61-70.

CHI 2006 Proceedings • Text Input April 22-27, 2006 • Montréal, Québec, Canada

488

