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Figure 1: Personalized upper-body gestures authored by 25 participants with upper-body motor impairments. The top row represents gestures 
that multiple people designed and the bottom row represents a unique gesture that only one participant came up with. Some of our participants 
designed gestures where they solely activated their muscles but did not visibly move (e.g., select, unique gesture) or gestures that used shoulder 
(e.g., delete, unique gesture) or head (e.g., zoom-in/-out, unique gesture) movement. 

ABSTRACT 
Always-on, upper-body input from sensors like accelerometers, 
infrared cameras, and electromyography hold promise to enable 
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accessible gesture input for people with upper-body motor impair-
ments. When these sensors are distributed across the person’s body, 
they can enable the use of varied body parts and gestures for device 
interaction. Personalized upper-body gestures that enable input 
from diverse body parts including the head, neck, shoulders, arms, 
hands and fngers and match the abilities of each user, could be 
useful for ensuring that gesture systems are accessible. In this work, 
we characterize the personalized gesture sets designed by 25 par-
ticipants with upper-body motor impairments and develop design 
recommendations for upper-body personalized gesture interfaces. 
We found that the personalized gesture sets that participants de-
signed were highly ability-specifc. Even within a specifc type 
of disability, there were signifcant diferences in what muscles 
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participants used to perform upper-body gestures, with some pre-
dominantly using shoulder and upper-arm muscles, and others 
solely using their fnger muscles. Eight percent of gestures that 
participants designed were with their head, neck, and shoulders, 
rather than their hands and fngers, demonstrating the importance 
of tracking the whole upper-body. To combat fatigue, participants 
performed 51% of gestures with their hands resting on or barely 
coming of of their armrest, highlighting the importance of using 
sensing mechanisms that are agnostic to the location and orienta-
tion of the body. Lastly, participants activated their muscles but did 
not visibly move during 10% of the gestures, demonstrating the need 
for using sensors that can sense muscle activations without move-
ment. Both inertial measurement unit (IMU) and electromyography 
(EMG) wearable sensors proved to be promising sensors to difer-
entiate between personalized gestures. Personalized upper-body 
gesture interfaces that take advantage of each person’s abilities are 
critical for enabling accessible upper-body gestures for people with 
upper-body motor impairments. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in acces-
sibility; Gestural input. 
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1 INTRODUCTION 
Device interactions are rapidly shifting from intermittent fnger in-
put using interfaces like touchscreens, keyboards, or mice to always-
on, upper-body input from sensors like accelerometers [33, 59], in-
frared cameras [42], and electromyography [15, 27] sensors. When 
these sensors are distributed across the person’s body, they can 
sense and interpret gestures not just from the user’s fngers, but 
also movement from their arms, shoulders, and neck. As these 
upper-body sensors become increasingly ubiquitous, they can en-
able accessible, comfortable input for people with upper-body mo-
tor impairments because people can use various body parts and 
gestures for device interaction. We are just beginning to see upper-
body gestures being incorporated into technologies like virtual or 
augmented reality. However, many of these gesture systems today 
are primarily designed for people without disabilities. They use 
a specifc, fxed gesture set that usually assumes precise control 
over the fngers and arms and the ability to hover the hand in 
mid-air (i.e., perform mid-air gestures). In contrast, the abilities of 
people with upper-body motor impairments can vary signifcantly 
between people and over time [34]—some people may be able to 
do standardized gestures but experience rapid fatigue, while others 
may experience signifcant difculty moving their fngers and arms. 

Due to this diversity in abilities, personalized upper-body gestures 
that enable input from various body parts, according to the abilities 
of each user, could be useful for ensuring that gesture systems are 
accessible [22, 68]. However, we do not know what types of gestures 
(or gesture sets) people with upper-body motor impairments would 
want to use, or whether wearable sensors can diferentiate between 
an individual’s chosen gestures. To answer these and related ques-
tions, we conducted a study capturing upper-body gestures (i.e., 
movements that involve the head, neck, shoulders, arms, hands 
and fngers but not facial gestures) designed by 25 participants. We 
characterize the personalized gesture sets our participants created 
and use these to develop design recommendations for personalized 
gestures for people with upper-body motor impairments. 

Personalization is key to ensuring that interfaces are accessible 
for users with heterogenous and diverse abilities [22, 23, 67, 68]. 
Prior work has looked at how personalized algorithms can im-
prove touchscreen [44] and mouse [66] input, as well as input from 
wearables such as smartwatches [35], head-mounted displays [36], 
and wheelchairs [7] for users with upper-body motor impairments. 
These works primarily explore how accessibility of one- or two-
dimensional input with switches or touchscreens can be improved 
with inclusive algorithms [44] or more accessible touchscreen place-
ment [36], but not input that encompasses the entire upper-body. 
Additionally, participants who have a high degree of disability (e.g., 
cannot move or control arms or fngers) are usually excluded from 
these studies, as they require some amount of movement to interact 
with touchscreens. Our work expands on this by exploring how peo-
ple with various levels of upper-body motor impairments, including 
those who have no movement below their neck and shoulders, per-
form upper-body gestures for commonly used device functions (e.g., 
zoom-in, select, open). 

One of the goals of this work was to understand what types of 
sensor technologies could be used for personalized upper-body ges-
ture recognition, towards the goal of designing and implementing 
working gesture recognition systems. While eye tracking is becom-
ing more common, such sensors are only viable for specifc use 
cases (such as while using an augmented or virtual reality headset) 
or too conspicuous for use in public. Therefore, we focused on a 
complementary approach, inertial measurement unit (IMU) and 
electromyography (EMG) sensors. These are wearable sensors that 
can recognize gestures, can be used discreetly in public, and are 
useful for interaction with a range of applications and operating 
systems. 

To elicit personalized gestures, we leverage prior work on de-
veloping user-defned gestures for devices like interactive table-
tops [69], smartphones [51], and virtual or augmented reality [48]. 
Most user-defned gesture studies focus on developing a unifed 
gesture set with unimpaired participants for a set of functions that 
are needed to interact with a device [60, 61]. Adopting terminology 
from prior work, we defne a gesture as a movement or action that is 
meant to bring about a result. A function is the result of a gesture or 
a task that the person wants to accomplish. For example, a person 
could swipe horizontally across the screen (a gesture) to answer a 
phone call (a function). Such gesture sets are usually inaccessible 
for people with upper-body disabilities [1, 59], as they do not take 
into account each users’ unique abilities [44]. Signifcantly limiting 
the body part that participants can use to perform the gesture, such 
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as above the neck [57, 75] or solely the eyelids [16] can result in an 
accessible unifed gesture set that are intuitive to both participants 
with and without motor impairments. However, constraining the 
gestures to solely above the neck does not take advantage of the 
full range of abilities that the user has. 

Additionally, to design an accessible gesture interface, the per-
sonalized gestures must be diferentiable from each other using 
upper-body sensors. Inertial measurement unit (IMU) sensors and 
electromyography (EMG) sensors are two wearable sensors that 
hold promise for enabling upper-body input. IMU sensors are al-
ready integrated into many mobile and wearable devices like smart-
phones and smartwatches. Although EMG sensors have not yet 
been widely implemented and adopted, these sensors hold promise 
for enabling always-on and unobtrusive device input [52]. We com-
pared how diferentiable the gestures are between and within per-
sonalized gestures designed for specifc functions for IMU and EMG 
sensors. 

In this work, we characterize upper-body personalized gesture 
sets created by individuals with upper-motor disabilities. We asked 
25 participants to design personalized gestures for 10 common de-
vice functions (e.g., zoom-in, select, open). To help quantitatively 
characterize participants’ gestures and determine whether person-
alized gestures can be diferentiated from each other, we distributed 
combined IMU and EMG sensors across the participants’ upper-
body, including their neck, shoulders, upper-arm, forearms, and 
fngers. Our goal is to understand how we can build interfaces that 
support personalized upper-body gestures for people with upper-
body motor impairments. To this end, the main contributions of 
our paper include: 

• An analysis of the personalized gestures that 25 participants with 
upper-body motor impairments designed for 10 functions (e.g., 
zoom-in, select), including participants’ motivations for designing 
specifc gestures and quantifying similarities and diferences 
between each participant’s personalized gesture sets. 

• An analysis of personalized gesture properties and how they im-
pact ability assumptions potentially underlying currently avail-
able upper-body gesture interfaces, and design recommendations 
to enable more accessible upper-body gesture interfaces. 

• A quantitative analysis of how diferentiable two wearable sensor 
(IMU and EMG) signals are within and between personalized 
gestures and recommendations for future gesture recognition 
systems. 

Our results suggest that gestures are highly personalized be-
tween participants and the choice in how they perform the gestures 
are ability-dependent. We identifed three gesture properties (1) 
body part used, 2) arm location relative to rest of body, 3) dynamic 
gesture choice) that may not ft with ability assumptions potentially 
underlying currently available upper-body gesture recognition sys-
tems. Therefore, we present three design considerations: 1) track 
the whole upper-body, 2) use sensing mechanisms that are agnostic 
to the location and orientation of the body, and 3) use sensors that 
can sense muscle activations without movement, for designing ac-
cessible upper-body gesture interfaces. Wearable sensors like IMU 
and EMG sensors have high diferentiability between each person-
alized gesture and hold promise to enable accessible upper-body 
device interactions for users with upper-body motor impairments. 

2 RELATED WORK 
Our work expands on prior research in personalized input for users 
with and without disabilities by extending to upper-body gesture in-
put. To elicit gestures from our participants, we draw from methods 
formalized in user-defned gestures studies [65, 69]. We highlight 
the benefts and drawbacks of diferent sensors that can be used 
for upper-body gesture recognition. Lastly, we discuss prior work 
on upper-body gestures primarily in augmented and virtual reality, 
and highlight ability assumptions [67] that may make it challenging 
to extend such work to users with upper-body motor impairments. 

2.1 Personalized Input 
Personalized interfaces that dynamically adapt to each user’s abili-
ties and “refect each person’s unique abilities, devices, and environ-
ment” [22] can enable more efective and accessible device interac-
tion. For example, personalized touchscreen [44] and mouse [66] 
input signifcantly improved touch and pointing performance for 
people with upper-body motor impairments. Personalization also 
improves device interactions for people without disabilities. For ex-
ample, personalized keyboard layouts improved typing speed [20] 
and accuracy [21], and personalized gesture sets are easier to re-
member than expert-designed gesture sets [45]. 

However, prior work investigating the accessibility of emerging 
wearable devices for people with upper-body motor impairments 
remains sparse [56]. Malu et al. explore how smartwatches [35] 
and head-mounted displays [36] could be made more accessible 
with personalized touch-based smartwatch gestures and adjustable 
wearable touchpads. Additionally, Carrington et al. [7, 8] explore 
how chairables (i.e., wearables that are specifcally designed to 
work within the space of a wheelchair) can improve mobile device 
accessibility by personalizing the location of switches, touchpads, 
and force sensors on a wheelchair arm. However, most prior work 
in personalized gesture elicitation focuses on personalizing touch-
based one- (e.g., switches) or two- (e.g., touchscreen) dimensional 
input using the person’s fngers or hand, which often limits the 
potential participant pool to participants who have some motion in 
their hands and fngers, excluding participants who cannot move 
those body parts. Additionally, limiting interactions to the hands 
and fngers does not take advantage of the users’ full abilities [67]. 

Lastly, personalized gesture recognizers have been explored ex-
tensively for 2-dimensional gestures (i.e., on a touchscreen), mostly 
for unimpaired users. The $-family recognizers [70] have had signif-
icant impact in enabling low-cost and easy-to-use gesture recogni-
tion. Algorithms that can identify upper-body user-specifc gestures 
are beginning to emerge for unimpaired users. Xu et al. [73] imple-
mented a few-shot learning framework that enabled users without 
motor impairments to add personalized gestures when using a 
smartwatch. Wang et al. [63] enabled personalized gesture author-
ing in augmented reality. However, many of these studies do not 
include participants with upper-body motor impairments, and it 
is not clear whether currently available sensor technologies like 
smartwatches [73] or camera-based sensors [63] can sufciently 
capture the diversity of personalized gestures that users with disabil-
ities may come up with. For example, a sensor placed on the wrist 
may not be able to sense head, neck, or shoulder movement, and a 
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camera-based sensor may not be able to sense muscle activation 
without movement. 

2.2 User-Defned Gestures 
Gesture elicitation [65, 69] as a design method is an alternative to 
designing gestures by professionals. Gesture elicitation has been 
shown to be a useful tool to design gestures that are conceptu-
ally simple and preferred by end-users for a variety of applica-
tions [43, 60]. Much of the prior work in user-defned gestures 
focused on creating one cohesive gesture set for all users that is 
easy to remember and perform that have high agreement among 
participants [60–62, 69]. The protocol for eliciting user-defned 
gestures has been used to developed gesture sets for interactive 
tabletops [45, 69], smartphones [51], smart homes [31], and virtual 
or augmented reality [48], among others. The general methodol-
ogy for such studies is to frst determine a set of desired functions 
for a specifc interactive device or system, prompt and elicit ges-
tures from participants to perform those functions, and then come 
up with a cohesive gesture set where gestures do not confict be-
tween diferent functions. Functions are tasks that users may want 
to accomplish on a device—for personal computing devices like a 
smartphone or computer, a function might be zoom-in or select [69]. 
For a smart home, a function might be turn on lamp or shut the 
blinds [31]. A gesture, on the other hand, is the movement or action 
(e.g., swipe hand down) that results in the desired function. Multiple 
gestures can be mapped to a single function if so desired. 

The application of this methodology to users with disabilities 
has been, to date, quite limited. Kane et al. [29] compared blind 
and sighted user-defned gestures on a touchscreen and found that 
blind participants relied on keyboard metaphors more heavily than 
sighted participants. Dim and Ren [14] developed a gesture set that 
enabled blind people to access smartphone features by tilting their 
phones. Zhao et al. [75] investigated above-the-neck (e.g., mouth, 
head, eyes) user-defned gestures with people with upper-body 
motor impairments for smartphone use, fnding that participant-
chosen gestures focused on eye movements that were simple, easy 
to remember, and less likely to draw attention from others. Fan et al. 
[16] demonstrated that eyelid gestures are feasible for interacting 
with mobile devices. Building on these studies, our work aims 
to characterize how people with upper-body motor impairments 
design upper-body gestures using their fngers, arms, shoulders, 
and neck. A key diference between the prior studies and our study 
is that we focus on characterizing the personalized gestures that 
participants design, rather than developing a unifed gesture set. We 
did this because we anticipated that our participants will have low 
gestural overlap due to great diferences in their physical abilities. 

When looking more broadly at mid-air gestures in general, there 
has been extensive prior work looking at how mid-air gestures 
can improve health [24, 25] and accessibility [3, 6, 17, 18] for older 
adults with and without disabilities. Gerling et. al [24, 25] and 
Bobeth et al. [3] demonstrated that older adults fnd mid-air gesture 
games and interactions enjoyable and encourage movement. Ferron 
et. al [17, 18] and Carreira et al. [6] demonstrated that older adults 
generally found mid-air gestures comfortable to do, but there was 
a large variability in how people performed the gestures. These 
studies focused on testing people’s preferences on standardized 

mid-air gesture sets, rather than on personalized gesture sets as we 
do in this study. 

2.3 Sensors for Upper-Body Gesture 
Recognition 

Sensors that hold promise towards enabling upper-body input in-
clude inertial measurement unit (IMU) sensors, camera-based sen-
sors, and electromyography (EMG) sensors. We are interested in 
understanding whether such sensors distributed across a person’s 
upper body could improve upper-body gesture accessibility for 
people with upper-body motor impairments. IMU sensors are inte-
grated into many mobile and wearable devices like smartphones 
and smartwatches. IMUs sense linear and rotational acceleration 
with accelerometers and gyroscopes, respectively. While one IMU 
sensor on the wrist might not provide sufcient information for 
upper-body control, IMU sensors distributed across the body can 
be used to perform human motion tracking [49]. 

Similar to IMU sensors, infrared cameras like the Microsoft 
Kinect [41] can perform human motion tracking by extracting 
changes in pose using computer vision [9]. Although motion track-
ing with depth cameras can be less invasive and easier to set up 
than wearable sensors, depth cameras sufer from changes in the 
environment such as lighting [4]. 

Lastly, EMG sensors sense muscle electrical activity generated 
when a person moves or fexes their muscles [12, 74]. Similar to IMU 
sensors, they can be placed solely on the wrist or upper arm [38], 
or be distributed across the body, which may provide more infor-
mation for upper-body gestures. While EMG sensors have not yet 
been widely implemented and adopted, these sensors hold promise 
for enabling always-on and unobtrusive device input [52]. EMG 
sensors can be used to sense user input even when the user is 
fexing but not moving their arm by placing the sensors over the 
muscle belly. Sensor fusion [28] is one way in which the benefts 
and drawbacks of these gesture-sensing systems can be leveraged 
depending on the user’s abilities. Another option is to choose difer-
ent sensor modalities based on the user’s abilities [53]. For our work, 
we are primarily interested in understanding how wearable inter-
faces could improve upper-body gesture accessibility, as wearable 
sensors provide always-on input. Therefore, we include prelimi-
nary comparisons to quantify whether IMU and EMG sensors can 
diferentiate between personalized gestures. 

2.4 Assumptions Underlying Currently 
Available Upper-Body Gesture Sets 

We briefy summarize some ability assumptions [67] underlying 
currently available upper-body gesture sets. It is important to de-
termine how sensor choice could afect the accessibility of these 
gesture interfaces. Currently available upper-body gesture sets of-
ten have ability assumptions embedded in them that could make 
the gestures inaccessible for users with upper-body motor impair-
ments [61]. For examples, gestures that require precise control 
over fnger, hand, and arm movements or require gestures to be 
performed with a specifc hand would not be accessible to some-
one with difculty controlling their arm movements or who have 
limb diferences. One major ability assumption embedded in many 
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of the proposed gesture sets is that many of the proposed upper-
body gesture sets are mid-air gestures, where the user raises one 
or two hands to chest-level to virtually interact with an inter-
active device [61]. The assumption that users can perform mid-
air gestures was embedded in many applications including smart 
homes [58], wall displays [64] and augmented or virtual reality [71]. 
Mid-air gestures are also currently the standard for interacting with 
commercially available technology like smartwatches [2] and aug-
mented [40] and virtual [39] reality devices. 

Even if users with upper-body motor impairments could perform 
gestures involving precise fnger, arm, or shoulder movements, the 
assumption that the person is performing gestures in mid-air versus 
while resting their arm on an armchair or at hip-level could pose 
a challenge for existing approaches to gesture recognition. Many 
mid-air gesture recognizers use camera-based technologies that 
extract and use arm joint angles relative to the rest of the body 
to detect gestures [5, 50]. Other gesture recognizers use radio fre-
quency to extract point cloud information about the location of the 
person’s hand relative to their body to diferentiate between ges-
tures [32, 47] In such scenarios, even if the person is moving their 
hand and fngers through the motions of the standardized gestures, 
the algorithm may have a difcult time recognizing gestures that 
are not performed in mid-air at chest-level. In such scenarios, sen-
sors that are agnostic to the location of the hand relative to the rest 
of the body, such as the aforementioned IMU and EMG sensors, may 
enable improved recognition of standardized gestures regardless 
of where the gesture is being performed. Our work aims to under-
stand whether our participants’ abilities ft the ability assumptions 
underlying currently available standardized upper-body gesture 
sets and to develop design considerations for inclusive upper-body 
gesture recognition. 

3 METHOD 
The goal of this study was to characterize personalized gestures for 
people with upper-body motor impairments for 10 common device 
functions (e.g., zoom-in, open, delete). We placed IMU and EMG sen-
sors on the participants’ upper-body to quantitatively characterize 
the gestures. The protocol was approved by the University of Wash-
ington, Seattle’s Institutional Review Board (IRB #STUDY00016152) 
and all participants consented to the study. 

3.1 Participant Characteristics Summary 
We recruited participants from the greater Seattle community by 
distributing fyers to relevant community listservs. We recruited 
participants who are able to move their head from side to side 
because we wanted to focus on upper-body gestures rather than eye-
based gestures, which has been investigated in prior studies [16, 75]. 

Our 25 participants had various disabilities that afected their 
ability to physically interact with technology, including spinal-
cord injury (13), muscular dystrophy (3), peripheral neuropathy 
(3), essential tremor (2) and other disability (4). Twelve participants 
identifed as men, eleven identifed as women, and two identifed as 
non-binary. The participants’ races included1 Caucasian/white (23), 
Black (2), and Asian (1). Nineteen participants were right-handed, 

1Some participants identifed with multiple races 

two were left-handed, and four were originally right-handed, but 
switched to being left-handed after disability onset. 

The average age and standard deviation of our participants was 
49 years ± 18, with the youngest participant being 22 and the oldest 
participant being 77. Participants had a wide range in the number 
of years since their disability onset, with an average of 17 years ± 
16. The minimum years since their disability started afecting their 
ability to interact with technology was 2, and the maximum was 68 
years. The age at which they experienced the onset of their disability 
afecting their ability to interact with technology was 32 years ± 
19, with some being afected since birth, and others experiencing 
disability onset at age 68. All but one of our participants had prior 
smartphone experience. Some used touchscreen gestures to use 
their smartphones, while others used accessibility tools such as 
voice-to-text to interact with their smartphones. 

We had a range of DASH (Disabilities of Arm, Shoulder and 
Hand) scores, which is a qualitative measure of disability and its 
efect on the person’s daily life, with higher scores correlating to 
greater efects on life. The average DASH score was 58 ± 18, with a 
minimum DASH score of 14 (i.e., disability has a minor efect on 
their daily lives) and a maximum DASH score of 82 (i.e., disability 
has a signifcant afect on daily life). 

3.2 Sensor Placement and Apparatus 
We placed 16 dry electrodes on the participants’ left and right 
shoulders, upper-arm, forearm, and fnger muscles according to 
Cram’s [11] and SENIAM [26] guidelines (Fig. 2). We used Del-
sys Trigno Avanti sensors (Delsys Inc, Boston, MA, USA) for the 
shoulder and upper-arm muscles and Delsys Trigno Duo sensors 
(Delsys Inc, Boston, MA, USA) for the forearm and fnger muscles. 
We obtained IMU signals from the Delsys Trigno Avanti sensors 
placed on the person’s shoulders and upper-arm muscles and the 
Delsys Trigno Duo Sensor body placed on the person’s forearm 
and wrist. 

We developed the main data collection software on Unity 
(ver2021.3.13f1). The Avanti sensors collected EMG data at 1259 
Hz and IMU data at 148 Hz. The Duo sensors collected EMG data 
at 1926 Hz and IMU data at 74 Hz. We used the Delsys software 
development kit to integrate our data collection with Unity. The 
software development kit synchronized the IMU and EMG sensor 
data and upsampled all EMG signals to 2000 Hz and IMU signals 
to 148.148 Hz. After sensor placement, we assessed each sensor for ¯ 
signal quality to ensure that each sensor was placed over the muscle 
belly of the intended muscle. These sensors are traditionally used 
in clinical settings to diagnose and assess treatment outcomes [55]. 
Sensors of this fdelity in this many locations are most likely not 
essential for diferentiating between personalized gestures. For this 
study, we chose to use high-fdelity sensors to ensure that we can 
accurately characterize how diferentiable gestures are in the best 
case scenario and quantify which muscles participants activated to 
perform their gestures. 

3.3 Procedure 
We frst asked participants to fll out a short demographics ques-
tionnaire that asked about their disability, age, and gender and 
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Figure 2: IMU and EMG Sensor Placement. IMU sensors were placed 
on the participant’s shoulders, upper-arms, forearms, and wrist (i.e., 
the large black sensors). The large black sensors on the person’s 
forearm and wrist only sense IMU signals. EMG sensors were placed 
on the participant’s shoulders (trapezius: trap and deltoid: delt mus-
cles), upper-arms (biceps: bic and triceps: tri muscles), forearms 
(extensor: ext and fexor: flex bundles), and fngers (abductor polli-
cis brevis: APB and frst dorsal interosseous: FDI muscles). The small 
yellow and blue sensors only sense EMG signals. The placements 
were chosen to sense movement or muscle activation from the per-
son’s upper-body, including the fngers, arms, shoulders, neck, and 
head. 

how their disability afects their ability to interact with technol-
ogy. Our goal was to collect data from a diverse set of participants, 
as the person’s cultural background can afect the types of ges-
tures they come up with [72]. We also asked questions from the 
QuickDASH [30] (Disabilities of the Arm, Shoulder, and Hand). 
The QuickDASH is a qualitative measure of the extent to which 
the person’s disability that afects their arm, shoulder, or hand 
afects their activities of daily living. We modifed the questions 
slightly to alleviate ableist assumptions that the person’s disability 
that afects their arm, shoulder, or hand is a problem. For exam-
ple, one question asks “...to what extent has your arm, shoulder 
or hand problem interfered with your normal social activities...?”. 
This was replaced by “...to what extent has your arm, shoulder 
or hand afected by your disability and/or chronic condition inter-
fered with your normal social activities...?” 

We then asked participants to come up with gestures for 10 
functions originally proposed in Wobbrock et al. [69]: 1) move; 2) 
select; 3) rotate; 4) delete; 5) pan; 6) close; 7) zoom-in; 8) zoom-out; 
9) open; 10) duplicate. We chose to prompt participants with the 
10 functions above because they have low conceptual complexity 
in Wobbrock et al. [69]. Each function was presented to the par-
ticipant with both video and voice command using simple objects 
(square, triangle, circle) rather than a specifc application to ensure 
that the participants were not being infuenced by a specifc device 
type (e.g, tablet, computer, smartphone). For example, for zoom-in, 
we showed our participants a video of a group of objects (a square, 
triangle, and circle) expanding in size with the voice over: “Zoom-in. 
Pretend you are adjusting the screen view to see content in greater 
detail. Here’s an example.” We presented the 10 functions to our 

participants in random order. To quantify gesture diferentiabil-
ity with IMU and EMG sensors, we asked participants to perform 
their personalized gesture for the corresponding function 10 times. 
Participants could take as much time as they wanted to come up 
with their gesture, and they were given ample opportunities to 
take breaks. We instructed participants to use either their hand 
afected by their disability, both hands, or neither hand (i.e., head or 
shoulder movement). If both sides were afected by their disability, 
participants could choose which hand to use. Participants were told 
that the sensors attached to them could not sense eye movement 
but could sense muscle activation in their arms, shoulder, and neck 
even if they were not physically moving their body. At the end, we 
asked our participants how they came up with their personalized 
gesture set and why they chose one hand, two hands, or no hands 
to do the gestures. 

3.4 Qualitative Analysis 
To determine 1) whether our participants’ gestures meet ability 
assumptions underlying current standardized upper-body gestures 
and 2) the types of sensors that could potentially sense our partici-
pants’ gestures, we performed qualitative analysis on the personal-
ized gesture set. We analyzed video recordings of the gestures that 
our participants performed. We coded the body part used to per-
form the gesture (left arm, right arm, both arms, head, shoulders), 
preference of lifting arms of armrest, and whether participants 
performed dynamic gestures where they moved a body part or 
static gestures where they activated their muscles but did not move 
their body in space. 

Although developing a unifed gesture set was not the goal of this 
work, we grouped similar gestures to characterize whether there 
were any trends in the types of gestures that participants designed. 
We chose to group gestures together based on whether the primary 
movement related to the function was the same. For example, for 
the move function, many participants raised their arms to chest-
height and moved their arm from left to right. Participants who 
could move their fngers tended to point at the screen with their 
index fnger, whereas participants who could not move their fngers 
pointed their whole hand at the screen. Both types of movements 
were coded as “move hand from left to right in mid-air”, as that was 
the primary gesture relating to the move function. We also analyzed 
participants’ interviews to understand their rationale of how they 
came up with the gestures and why they decided to use one versus 
two hands versus another part of their body. 

One author fnalized the code book, and another author applied 
the code book to 10% of the data by coding one gesture corre-
sponding to a random function for each participant. We computed 
inter-rater reliability using Cohen’s Kappa [10] for each item of 
interest, following recommendations from McDonald et al. [37]. 
Cohen’s Kappa ranges from 0 to 1, with 0 being no agreement be-
tween raters, and 1 being complete agreement between raters. For 
coding similar gestures, as we had a very small number of gestures 
for each function, we computed the pooled Kappa to summarize 
the inter-rater reliability [13]. The average Kappa was 0.83, with 
the lowest Kappa being 0.76 and highest Kappa being 1. 
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3.5 Quantitative Analysis 
To complement our qualitative analysis, we computed 1) gesture 
agreement between participants and 2) heterogeneity in muscle 
activation to quantify how similar or diferent gestures between 
participants were. We additionally computed 3) IMU and EMG sig-
nal diferentiability within and between gestures to determine what 
types of sensors can be used to diferentiate between personalized 
gestures for each participant. For 3), the goal of the analysis was to 
determine whether it would be possible to diferentiate between 
personalized gestures by computing distances between and within 
gestures—developing an algorithm that can diferentiate between 
personalized gestures is out-of-scope for this paper, and is an im-
portant direction for future work. 

To compute 2) and 3), we extracted IMU and EMG data for each 
gesture that participants performed. Since our 25 participants per-
formed 10 personalized gestures for each of the 10 functions, each 
IMU and EMG dataset comprised 100 gestures total. 

3.5.1 Gesture Agreement Between Participants. Although we did 
not expect high agreement due to a diverse range of abilities of our 
participants, we computed gesture agreement [19, 69] to ensure 
we had a thorough analysis. We additionally wanted to validate 
the importance of supporting personalized upper-body gestures for 
people with upper-body motor impairments. To quantify gesture 
agreement, we followed analysis methods from prior work by Find-
later et al. [19]. We computed gesture agreement as the count of all 
pairs of similar gestures: �� |� |

�� = 
∑ �� 

2 � , (1) 
�∈�� 2 

where � � is the set of gestures � for a given function � , �� repre-
sents agreement between participants in [0, 1], and � is the number 
of participants who proposed gestures for � . The notation |�| indi-��� cates the number of gestures that were similar, and indicates “� 2 
choose 2”. For example, delete and move both had 4 groups of ges-
tures: delete had groups of size 3, 4, 5, and 6, and move had groups 
of size 3, 3, 4, and 9. We computed the corresponding agreement as: �3� �4� �5� �6� 

2 2 2 2+ + + 3 + 6 + 10 + 15 
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We additionally computed the percentage of participants who came 
up with unique gestures that no one else performed to highlight 
the heterogeneity in gesture designs. 

3.5.2 Heterogenity in Muscle Activation. One important question 
that can drive future gesture recognition approaches is how vari-
able participants gestural preferences are quantitatively—for exam-
ple, are there certain muscle groups that all participants prefer to 
activate, or is each participant unique in their muscle activation 
preference? We quantifed this as a measure of heterogeneity in 
muscle activation. We chose to analyze EMG data because it helps 
us understand which muscles are being activated and because some 
participants performed gestures such as only pointing their fnger 

ASSETS ’23, October 22–25, 2023, New York, NY, USA 

that can be sensed by EMG sensors but not IMU sensors. If similar 
muscle groups are being activated across participants, this suggests 
that participant abilities in activating their muscles are similar and 
may suggest that similar gestures may work for some subsets of 
participants. To quantify the heterogeneity in participants’ abilities 
and preferences to activate diferent muscles to perform diferent 
gestures, we computed how each measured muscle activity con-
tributed to the signal variability. 

Raw EMG signals are highly stochastic in nature, and to deter-
mine how each measured muscle contributes to the overall variabil-
ity in signals, it is important to frst preprocess the data through 
fltering and smoothing. We followed standard methods from biome-
chanics [12, 74]. We frst obtained the fltered EMG signal by flter-
ing the EMG signals with a 4th-order high-pass Butterworth flter 
at 40 Hz, de-meaning and taking the absolute value of the EMG 
signal, and then fltering the EMG signal with a 4th-order low-pass 
Butterworth flter at 40 Hz. We then smoothed out the fltered EMG 
data by taking the moving average of the signal with a window of 
100 ms with an overlap of 0.5. This downsampled the EMG data 
from 2000 Hz to 20 Hz. We then stacked all ten personalized ges-
tures that participants performed for all ten functions to obtain 
a dataset � ∈ �� ×16, where � is the total number of datapoints 
across time for the 100 gestures (10 functions × 10 gestures per 
function), and 16 is the number of EMG channels we obtained. We 
then normalized each channel to the 95% of the maximum recorded 
EMG signal. 

To quantify which muscle the person activated the most (i.e., 
determine which muscle contributed to the largest variability in the 
dataset), we analyzed the correlation between the data reoriented 
along its principal components � ∈ �� ×16 and original dataset � of 
the dataset after performing principal component analysis (PCA). 
We did this by computing the dot product between the transpose 
of the EMG data � and the transformed data � (i.e., � = �� · � , 
where � ∈ R16×16). � then represents the correlation between 
each muscle and each principal component. We then normalized 
each vector in � along each principal component. Although � 
provides us with an idea of how much each muscle contributes 
to each principal component, we cannot identify from this data 
how much each muscle contributes to the overall variability in 
the dataset. Therefore, we normalized each principal component 
by the percent variability of the overall dataset that the principal 
component explained by taking the dot product of each row of the 
absolute value of � (which represents each principal component) 
with the explained variance as a vector � ∈ �1×16 (i.e., � = ��� (� ) · 
�, where � ∈ R16×16 and ��� (� ) represents taking the absolute 
value of each data point in � ). Lastly, to obtain one number for how 
each muscle contributes to the overall variance in the participants’ 
data, we summed the rows of � to obtain ���� ∈ R16×1. We plotted 
���� across all muscles normalized by the largest value in ���� 
for each participant. This meant that the muscle that contributed 
the most to the variance in each participants’ EMG signal was 
equal to 1. 

3.5.3 IMU and EMG Signal Diferentiability. An important ques-
tion impacting future gesture recognizers is whether it is possible 
to diferentiate between personalized gestures for each participant, 
which we quantify as diferentiability. We wanted to understand 
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whether it would even be possible to diferentiate between diferent 
personalized gestures given the small sample size (10 gestures per 
function) and heterogeneity of how the participants performed 
each gesture (e.g., tremoring for one gesture but not another for a 
given function). More specifcally, we computed the average dis-
tance within and between gestures performed by a specifc partici-
pant. Smaller distances indicated smaller spread between gestures, 
whereas larger distances indicated larger spread between gestures. 
Ideally, the distances within similar gestures would be smaller, and 
the distances between diferent gestures representing diferent func-
tions would be larger. Importantly, to ensure that the gestures are 
diferentiable, the spread of distances within gestures must be sig-
nifcantly smaller than the distances between gestures. Otherwise, 
it would be challenging to diferentiate between diferent gestures 
representing diferent functions. 

Comparing IMU and EMG signals is complicated by the fact 
that they sample at diferent rates, and with diferent numbers of 
channels (16 and 72, respectively). Before comparing them, we trans-
formed the signals into the same vector space. We frst resampled 
all IMU and EMG signals for each gesture to 64 time points. Next, 
to ensure that the diferent number of IMU and EMG channels does 
not afect the distance computed between vectors, we performed 
PCA on the channels for each sensor, and then selected the top 11 
components as our vector space, which explained at least 80% of 
the variance in IMU and EMG data for each participant and each 
gesture. Then, for each sensor (IMU and EMG), we stacked the 11 
time-varying principal components for each gesture � to obtain one 
vector �� of length 704. We normalized each vector to unit length 
(i.e., the �2 norm of �� is equal to 1). 

To quantify the diferentiability within gestures for a given func-
tion, we computed the distance �� between the centroid � � of the 
10 gestures performed for a single function � and the vector repre-
senting a single gesture �� : Í 

� �� 
�� = �� − � � , � � = , (3)

� 

where � is the number of gestures completed per function for each 
participant (10 in this case). We then computed the average distance 
for each participant across all functions. 

To quantify the average distances between gestures representing 
diferent functions for a given participant, we computed the distance 
between the centroid of gestures completed for all functions �� , and 
the centroid of each gesture representing a function � � . � represents 
the set of all functions that the participants designed gestures for, 
such that � ∈ � Í Í 

� ∈� � � − �� � � � 
�� = , �� = , � ∈ �, (4)|� | |� |

where |� | represents the total number of functions. 
To determine whether gestures representing diferent functions 

would be diferentiable from each other with IMU and EMG sen-
sors, we compared the diferentiability within and between ges-
tures with a paired-samples t-test with � = 0.05. To determine 
whether a parameteric test was appropriate, we assessed whether 
our residuals were normally distributed with the Shapiro-Wilk test 
of residuals [54]. Both our IMU and EMG data met the normality 
assumption (� = 0.893, � = 0.571, respectively). 

4 RESULTS 
Our results emphasize the importance and need for personalized 
upper-body gesture interfaces. First, we characterize participants’ 
upper-body gestures as being highly personalized and ability-
dependent. Second, we highlight personalized gesture properties 
that may impact ability assumptions underlying gesture recogni-
tion systems. Third, we demonstrate that personalized gestures 
representing diferent functions could be diferentiated using ei-
ther IMU and EMG sensors despite a small dataset (10 gestures per 
function per participant) and variability in how a given participant 
performed the same gesture (e.g., tremoring during some gestures 
but not others). To ensure clarity in our results, we reiterate that 
gestures are movements or actions that are meant to bring about a 
result (e.g., swipe horizontally across the screen), and functions are 
the result of a gesture or a task that the person wants to accomplish 
(e.g., answer a phone call). 

4.1 Participants’ Upper-Body Gestures are 
Highly Personalized and Ability-Dependent 

Our participants designed a variety of personalized gestures that 
were specifc to their abilities. Although each function had between 
6-15 participants who designed the same gesture, there were at least 
4 participants for each function who designed a unique gesture that 
no one else designed (Fig. 1). The similarity between upper-body 
gestures most likely arose due to participants’ being inspired by 
prior experience of using a computer (4) or smartphone/tablet touch-
screen (9) or gestures related to “normal life [like] get out of there” 
(for close function) (7). Even when participants designed the same 
gesture for a given function, there were often minor diferences in 
how they performed the gesture. For example, many participants 
pointed at the screen for the select gesture. However, some partici-
pants had little to no movement in their fngers, so they pointed 
their entire hand at the screen, while others had good fnger move-
ment, but fatigued easily, so they pointed their fnger at the screen 
while barely lifting their arms of the armrest. Additionally, some 
of our participants had involuntary movements such as spasms or 
tremoring when doing the gestures. This suggests that even within 
an accessible gesture set, there is large variability in how partici-
pants perform the gestures, and personalization may be necessary 
for accurate gesture recognition. 

Six participants discussed that their inspiration for designing the 
gestures was based on “how I would do [the gesture] with the abilities 
that I have”. For example, for the zoom-in/-out gesture, participants 
who had good fnger control but fatigued easily tended to pinch 
their thumb and index fnger in and out, like using a smartphone 
touchscreen to minimize overall movement. However, participants 
who had difculty moving their fngers tended to use two hands 
to move their hands closer/farther from the center of their body. 
Participants with more limited motion tended to come up with 
more creative gestures (i.e., perform gestures diferently than one 
would do it on a touchscreen), such as moving their head towards 
and away from the screen for zoom-in/-out or fipping their arm out 
and in like opening and closing a book for open/close. Similarly, six 
participants discussed wanting to do gestures as easily as possible 
with the least amount of efort and pain. For some participants, 
their gestures evolved over the course of the study, where “for the 
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frst three [gestures], when I was using my whole arm, I tried to mimic 
how I would do it in real life, and when I realized I have latitude for 
how I did the gesture, I chose to do it in the way that conserved the 
most energy and minimize pain upon repetition.” Another participant 
mentioned that they tried “to fgure out within my world, within 
my limitations, what [gesture] would be the easiest and take the least 
amount of efort.” Five participants discussed striving to make their 
“movements as diferent as possible”. This occasionally resulted in a 
gesture not tied with the meaning of the function like tilting their 
head to the side or shrugging a shoulder. One participant discussed 
how they designed gestures unrelated to prompted functions such 
as moving or tilting the head, neck, and shoulders because they 
have very limited motion. 

Over 75% of participants’ gestures were with one hand. Partici-
pants discussed how they used their preferred hand due to hand-
edness (9), because one of their hands is much more impacted by 
their disability than the other (6), and because using one hand min-
imizes movement and decreases overall pain and fatigue (6). The 
participants who discussed doing gestures with one hand due to 
handedness or due to their disability afecting one side more than 
the other tended to use solely their left or right hand. However, 
some of our participants who discussed using one hand to mini-
mize fatigue and pain switched hands back and forth or switched 
hands during the study. One participant stressed the importance 
of gesture recognition systems being able to detect gestures with 
both hands because “it can help to be able to use one than the other 
so if one [hand] gets bad I can rely on the other...if I use both at the 
same time, I run through the time that my body has much faster.” 

4.1.1 Gesture Agreement Between Participants. Although the goal 
of this paper was not to come up with a unifed gesture set, we were 
still interested in quantifying gesture agreement between partici-
pants to highlight the heterogeneity of our participants’ abilities and 
gesture preferences [19, 69]. The gesture agreement score [19, 65] 
is a score that ranges from 0 to 1, with 0 being that there was no 
gesture agreement between participants, and 1 being that there was 
perfect agreement between participants. Aside from select, which 
had a gesture agreement of 0.37, all other agreement scores ranged 
from 0.11 to 0.21. This suggests that coming up with a unifed 
gesture set for users with upper-body motor impairments would 
be challenging and most likely not meet the abilities of all our 
participants. 

At least four participants came up with a unique gesture that 
no one else did for each function we tested. The fraction of unique 
gestures ranged from 0.16 for open, close and rotate, to 0.4 for dupli-
cate (Fig. 3). Therefore, there were no functions that had a universal 
accessible gesture. Some were because the participant had very 
limited motion, so they designed gestures that were accessible to 
them that weren’t necessarily related to the interaction they were 
performing, such as shrugging one or both shoulders or squeezing 
their left and right fst in succession. Such participants mentioned 
that because their disability made it challenging to perform move-
ments that refected the desired function, they tried to pick random 
gestures that were as diferent as possible, even if it was not an 
intuitive gesture for the prompted function. 

4.1.2 Muscle Activations are Heterogenous. EMG characterization 
of the muscles that were activated when participants performed 

Figure 3: Agreement and ratio of unique gestures for each tested func-
tion. The dark purple represents agreement between diferent peo-
ple’s gestures, as computed by (1). A higher ratio closer to 1 indicates 
that many participants came up with similar gestures, and a lower 
ratio closer to 0 indicates that few participants came up with similar 
gestures. The light grey represents the ratio of gestures that were 
unique to the participant, and were not repeated by any other partic-
ipants. The functions are ordered from least conceptual complexity 
(left) to most conceptual complexity (right) according to Wobbrock 
et al. [69]. 

their personalized gestures also highlighted the heterogeneity be-
tween participants’ abilities. The muscle activation of the EMG 
data visualizes the variability of the muscles used to perform the 
gestures among our participants (Fig. 4). In the fgure, the x-axis 
corresponds to muscle group (from shoulder down to fnger mus-
cles) and the y-axis shows each participant sorted by disability type 
(grouped from top to bottom as spinal cord injury (SCI), muscular 
dystrophy (MD), peripheral neuropathy (PN), essential tremor (ET), 
and other. For example, participant SCI 1 in the top row of the 
table had the largest muscle activation with the shoulder’s right 
deltoid (R_delt) muscle and very little muscle activation with the 
forearm and fnger muscles, suggesting that they primarily moved 
their arm about their right shoulder and had little movement in 
the rest of their arm to perform the gestures. However, partici-
pant SCI 4 (fourth from the top) had high muscle activation with 
their forearm’s right extensor (R_ext) and fexor (R_flex) muscles, 
suggesting that they moved their hand about their wrist to per-
form gestures. There are no obvious trends as to specifc muscles 
groups that were activated by participants with the same disability, 
emphasizing the heterogeneity of abilities among our participants. 

4.2 Gesture Properties that Impact Ability 
Assumptions 

We summarize various qualitative gesture properties for the 250 
gestures that participants performed (10 prompted interactions per 
person × 25 participants), including body part used, preference 
of lifting arms of the armrest, dynamic gesture preferences, and 
gesture similarity. Our results suggest that: 1) it is important to 
sense movement in the whole upper-body instead of just the hands 
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Figure 4: Heterogeneity of Activated Muscles. Muscle groups that the participant activated the most (i.e., muscles that contributed to the largest 
variability when performing gestures) are shown in dark purple, whereas muscle groups that the participant activated the least (i.e., muscles 
that did not contribute to variability when performing gestures) are shown in light purple and white. 
SCI = spinal cord injury; MD = muscular dystrophy; PN = peripheral neuropathy; ET = essential tremor. 
R, L indicates the right and left sides, respectively. 
trap = trapezius muscles; delt = deltoid muscles; bic = bicep muscles; tri = tricep muscles; ext = extensor bundle; flex = fexor bundle; 
FDI = frst dorsal interosseous; APB = abductor pollicis brevis. 

and arms, 2) algorithms that assume that a gesture is performed 
in mid-air may not perform well for users who experience fatigue, 
and 3) sensors that require movement to classify gestures may not 
perform well for participants who performed gestures by fexing 
their muscles but not visibly moving. 

4.2.1 Preference on Body Part Used. Out of 250 gestures, 131 (52%) 
were with the right hand, 61 (24%) were with the left hand, 38 
(15%) were with both hands, 12 (5%) were with the head/neck, and 
8 (3%) were with the shoulders. All except one participant (who 
indicated that they were right-handed but used their left hand 
for all gestures) used their preferred hand or had an even mix of 
using diferent body parts. Participants with greater disability (i.e., 
discussed having limited function in one or both arms) tended to 
use their head/neck and shoulders rather than using their hands 
and arms. None of the participants performed gestures that could 
not be captured by the EMG sensors, as the sensor placed on the 
trapezius can sense when the participant moves their head and neck, 
and sensors were directly placed on the rest of the arm. However, a 
sensor that is solely on the user’s wrist would not be able to sense 
the 8% of gestures that participants performed with their head, neck, 
or shoulders. 

4.2.2 Preference on Lifing Arm of Armrest. 120 (48%) gestures were 
with participants’ arms of their armrest, 77 (30%) gestures were 
with participants’ arms on the armrest, and in 53 (21%) gestures, 
participants barely moved their arms of the armrest. Of the 25 
participants, 9 participants lifted their arms of their armrest for 
all gestures, 9 participants didn’t lift their arms of their armrest 
for any of the gestures, 2 participants barely lifted their arms of 
their armrest, and 5 participants were gesture-dependent. Some 
participants initially started with their arms in mid-air like using a 
touchscreen, and then they realized that they could minimize efort 
and decrease fatigue by performing gestures with just their fngers, 
while resting their hand on their armrest. This has implications for 
standard gesture sets—currently, many of the standardized upper-
body gesture sets that are available for gesture recognition for smart 
homes [58], wall-displays [64] or augmented or virtual reality [39, 
40, 71] assume that the user is performing the gesture in mid-air. 
Since we had many participants who did not raise their arms to 
chest-level to perform gestures, this may not be a good assumption 
for users with upper-body motor impairments and cause gesture 
accuracy to decrease for such individuals. Their gestures would not 
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be consistent with where the algorithm expects the hand/arm to be 
relative to the rest of the user’s body. 

4.2.3 Dynamic Gesture Preferences. Almost all gestures (226 or 
90%) were dynamic gestures where participants moved their head, 
shoulders, arms, hands, or fngers. However, 24 gestures (10%) were 
gestures where people activated their muscles, but did not visi-
bly move. The three participants who did the majority of the ges-
tures that involved fexing their muscles discussed experiencing 
signifcant weakness and difculty moving their limbs. This has 
implications for the type of sensors that can be used to identify 
what kinds of gestures people are performing. Sensors that require 
movement to identify which gesture was performed (e.g., cameras, 
IMU sensors) may not work for those participants. For participants 
who experience signifcant muscle weakness, using a sensor like 
EMG sensors that can sense muscle activation without movement 
may be a necessity for accessibility, rather than a preference. 

4.3 IMU and EMG Sensors Can Diferentiate 
Between Personalized Gestures 

To quantitatively characterize whether it would be possible to dif-
ferentiate between personalized gestures for each participant, we 
compared the distances within gestures for a given function (e.g., 
comparing distances between gestures performed for zoom-in for 
one participant) and distances between diferent gestures (e.g., dis-
tance between a gesture performed for zoom-in and select for one 
participant). We wanted to understand whether it would even be 
possible to diferentiate between diferent personalized gestures 
given the small sample size (10 gestures per function) and het-
erogeneity of how the participants performed each gesture (e.g., 
tremoring for one gesture but not another). We analyzed this by 
comparing the average distance from the centroid of gestures per-
formed by each participant (i.e., within gestures), and the average 
distance from the centroid of each gesture performed for a given 
function (i.e., between gestures). Ideally, the within gestures distance 
will be small so that if the person performs the same gesture, it 
can be identifed as the same function, and the between gestures 
distance will be large so that diferent gestures can be identifed as 
diferent functions. 

For both IMU and EMG sensors, the within-gestures distance 
was signifcantly smaller than the between-gestures distance (Fig. 5; 
IMU: � (24) = −4.66, � < 0.0001; EMG: � (24) = −7.85, � < 0.0001). 
The average distance within gestures was 0.49 ± 0.16 (mean ± 
standard deviation) and 0.45 ± 0.11 for the IMU and EMG sensors, 
respectively. The average distance between gestures was 0.73 ± 
0.09 with IMU sensors and 0.66 ± 0.07 with EMG sensors. Our 
preliminary characterization suggests that it would be possible to 
identify diferent personalized gestures for diferent functions with 
IMU or EMG sensors distributed across the upper-body and that 
there are clusters of gestures representing the same function for 
each participant. 

5 DISCUSSION 
Our quantitative and qualitative study results emphasize the wide 
heterogeneity in upper-body gesture abilities of users with upper-
body motor impairments. Even participants with the same self-
reported disability used very diferent muscle groups to perform 

Figure 5: Distances within and between gestures. Distributions (me-
dian, inter-quartile range) of distance within (dark purple) and be-
tween (light grey) gestures for 25 participants with upper-body mo-
tor impairments. Within gestures distance indicates the distance 
within personalized gestures performed for a given function for a 
specifc participant. Between gestures distance indicates the distance 
between personalized gestures performed for all tested functions for 
a specifc participant. Ideally, within gestures distances should be 
small and between gestures distances should be large to diferentiate 
between personalized gestures designed for diferent functions. 

their gestures, and participants used their whole upper-body, in-
cluding their arms, shoulders, neck, and head. We present three 
considerations when designing accessible upper-body gesture inter-
faces and highlight limitations and opportunities for future work. 

5.1 Considerations for Sensor and Algorithm 
Choice for Upper-Body Gesture Recognition 

Our qualitative and quantitative characterization of the personal-
ized gesture sets that participants produced highlights important 
considerations when designing sensors and algorithms for ability-
inclusive upper-body gesture recognition. Below, we summarize 
three considerations to make for sensor choice and algorithm de-
velopment when developing ability-inclusive upper-body gesture 
recognition systems. 

5.1.1 Consideration 1: Track the Whole Upper-Body. To ensure 
ability inclusivity and accessibility of upper-body gestures, it is im-
portant that the sensing mechanism can sense movements from the 
whole upper-body, including the head, neck, shoulders, and both 
arms. Solely measuring gestures from one or both arms provides 
insufcient coverage for the types of personalized gestures that 
users with upper-body motor impairments may perform. Addition-
ally, in line with prior recommendations from Carreira et al. [6], it 
is important to sense gestures from both arms, rather than solely 
from one arm so that users who fatigue easily can switch hands 
during single-handed gestures. This consideration for combating 
fatigue by switching hands also has implications for algorithm de-
sign —for users who experience fatigue, it is important to ensure 
that personalized gestures can be classifed regardless of whether 
the person is using their left or right hand. Sensors that are solely 
placed on the wrist of one hand, like a smartwatch, may not provide 
sufcient coverage to detect gestures using parts of the body other 
than the arm or gestures using the other arm. 
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5.1.2 Consideration 2: Use Sensing Mechanisms that are Agnostic to 
the Location and Orientation of the Body. For participant gestures 
that were performed with the person’s hands and arms, our results 
highlight the heterogeneity in the location of the person’s arm 
relative to the rest of the body when the person performs the gesture. 
Some of our participants performed their hand gestures in mid-
air at chest-level, while others performed their gestures with their 
hands at hip-level or while resting their hands on their laps or on an 
armrest. Such gestures may be challenging to classify if the gesture 
recognizer depends on the hand being at a specifc location relative 
to the rest of the body, such as in mid-air at chest-level. A gesture 
recognition algorithm that takes in features that are not related 
to the location of the hand relative to the rest of the body (e.g., 
joint angles from a depth camera) or using a sensor whose features 
are solely dependent on the movement of that sensor (e.g., IMU or 
EMG sensor on the wrist) may improve classifcation accuracy for 
ability-diverse gestures. 

5.1.3 Consideration 3: Use Sensors That Can Sense Muscle Activa-
tions without Movement. While most of our participants performed 
dynamic gestures where they moved their arm, our participants 
activated their muscles but did not move in 10% of the gestures. 
Gesture classifers that require dynamic movement, such as ones 
that use depth cameras to estimate changes in pose over time, may 
not be able to sense such gestures. To ensure that such gestures can 
be captured and classifed, sensors like EMG sensors that can sense 
muscle activations regardless of whether the user moved or not is 
an important aspect of an accessible gesture classifer. Alternatively, 
in situations where it is not possible to incorporate sensors that 
can track muscle activations, it may be important to incorporate 
sensors that can track eye or facial movement [16, 75]. 

5.2 Adding Isotonic and Isometric Dynamic 
Gestures to Gesture Taxonomy 

Although performing a formal analysis on gesture taxonomy was 
outside the scope of this current work, we highlight and recom-
mend a key addition to the original gesture taxonomy introduced 
in Wobbrock et al. [69]. For user-defned gestures, one of the ways 
in which gestures can be categorized is by the form, and whether it 
is a dynamic gesture or a static gesture. Dynamic gestures involve 
hand or arm movement over time, whereas static gestures do not 
vary over time [61]. During our study, we found that several of our 
participants performed gestures that did not appear to ft into either 
category, where they activated their muscles but did not move their 
arms. To us, this seemed diferent from a static gesture, where there 
is no change over time in the person’s body position. Therefore, 
taking terminology from biomechanics, we recommend introduc-
ing the terms isotonic and isometric gestures as subcategories of 
dynamic gestures [46]. We defne isotonic gestures as ones where 
the person’s hand or arm pose changes over time, and isometric 
gestures as ones where the person’s pose does not change, but their 
muscles fex and activate over time. 

5.3 Sensor Fusion to Optimize Upper-Body 
Gesture Accessibility 

Our quantitative analysis comparing IMU and EMG sensor difer-
entiability between and within gestures demonstrated that both 

IMU and EMG sensors can diferentiate between gestures designed 
for diferent functions. Although IMU sensors are currently more 
widely available, we found that there were some participant ges-
tures where it would be challenging or impossible for motion-based 
sensors like IMU sensors to diferentiate, such as when a gesture 
is an isometric gesture (i.e., the person activates their muscles, but 
does not move). 

One thing to note is that our sensor placements are unrealistic 
for real-world applications, as IMU and EMG sensors were placed 
precisely on the muscles of interest. This was a deliberate choice 
that we made, as we wanted to determine whether it would be 
possible to diferentiate between personalized gestures in an ideal 
scenario with high-fdelity sensors. Sensors that are placed on one 
part of the body, like wristband IMU and EMG sensors [2] are much 
more realistic for real-world applications. However, this is directly 
in confict with our Consideration 1: Track the Whole Upper-
Body. In such scenarios, sensor fusion, where multiple sensor types 
are used for gesture classifcation, could provide the most optimal 
classifcation [28]. For example, IMU or EMG sensors placed on 
the wrist could diferentiate between small hand or fnger gestures 
or isometric gestures, while camera-based sensors could diferenti-
ate between larger gestures involving the head or neck. However, 
too many sensors could make it challenging to process the data 
and result in multiple correlated data streams. New fltering and 
data-dropping methods are needed to ensure optimal classifcation 
performance. 

5.4 Personalized Upper-Body Gestures for All 
Users 

Although this paper focused on personalized upper-body gestures 
for people with upper-body motor impairments, personalized ges-
tures may beneft users without disabilities as well. Prior work 
from Wu et al. [72] demonstrated that gesture agreement is low 
(below 0.36) for participants without disabilities designing mid-air 
gestures, and the types of gestures participants think of may depend 
on cultural context. Wu et al. [72] discussed how the low gesture 
agreement may be because participants are unaccustomed to using 
mid-air gesture interfaces. However, gesture agreement was fairly 
high (between 0.2 and 1.0) in Wobbrock et al. [69] despite partic-
ipants being unaccustomed to tabletop touchscreen interfaces at 
the time. This suggests that the low agreement could also be due to 
the increased degrees-of-freedom aforded by a mid-air interface 
compared to a touchscreen interface. 

Additionally, prior work on mid-air gestures with older adults 
demonstrated the importance of personalizing standardized gesture 
sets to the preferences of the individual (e.g., gesture amplitude 
and speed) [6, 18]. Similarly, prior work on eyelid gestures also 
recommended personalizing gestures as a next step [16]. Fully per-
sonalized gestures may further enhance gesture accessibility for 
users with and without motor impairments. 

Despite the low gesture agreement in our study, many of our 
participants mentioned that their gestures were inspired by the way 
they or others currently interact with computers and smartphones. 
This suggests that there was some legacy bias in participants’ cho-
sen gestures. Indeed, some of our participants discussed how their 
initial gestures mimicked touchscreen gestures, whereas their later 
gestures were more personalized to their abilities. Future work 
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should consider how to prompt participants to consider personal-
ized gestures beyond those that are currently used for computers 
and smartphones. 

Lastly, since personalized gesture sets are easier for users to 
recall than pre-designed gesture sets [45], personalized gesture 
interfaces may improve usability for users without disabilities as 
well, and is a consideration that should be made in future work 
involving mid-air gesture design. 

5.5 Limitations 
There are several limitations associated with our work and oppor-
tunities for future work. First, prior work has demonstrated that 
cultural context may infuence the types of gestures that partici-
pants come up with [72], highlighting the importance of including 
participants from diverse backgrounds. Our study participants were 
limited to participants who lived within driving distance to our 
study site and could arrange for transportation and caregiving 
needs. We attempted to alleviate such barriers by providing re-
imbursement for transportation and a $50 / hour compensation 
for their time spent doing the study. Although we successfully 
recruited participants with representative genders and ages, we 
did experience difculty in recruiting participants who did not 
identify as Caucasian/White. Having many participants from po-
tentially similar cultural backgrounds (e.g., participants who are 
Caucasian/White and live within driving distance to the testing 
site) may have afected the types of gestures that participants came 
up with [72]. 

We additionally solely investigated upper-body gestures, and 
participants were told that the sensors could not detect eye or 
facial movement. Several of our participants mentioned that they 
would be interested in incorporating eye or facial gestures as part 
of their personalized gesture set. Future work could consider how 
the results of our work, Zhao et al. [75], and Fan et al. [16] could 
be combined to further enhance gesture accessibility. 

Another limitation of our study was that we solely compared 
gesture diferentiability between IMU and EMG sensors, and we 
did not compare gesture diferentiability with camera-based sen-
sors that extract poses with computer vision. This was due to our 
interest in quantifying diferentiability of signals measured from 
wearable sensors, as wearable sensors could enable always-on con-
tinuous gesture input. An interesting consideration for future work 
is how distance from camera-based sensors afect the quality of pose 
extraction, as some of our participants sat further away from the 
experimental desk because their wheelchairs did not ft under the 
desk. Lastly, almost half our participants had spinal cord injury and 
implies that the personalized gestures we analyzed in this study may 
be more applicable to this group. Further work should investigate 
participants with other types of upper-body motor impairments 
that may result in diferent movements. 

6 CONCLUSION 
Our work demonstrates the importance of designing personalized 
gestures that ft the diverse abilities of users with upper-body motor 
impairments. We highlight three considerations—1) track the whole 
upper-body, 2) use sensing mechanisms that are agnostic to the lo-
cation and orientation of the body, and 3) use sensors that can sense 

muscle activations without movement—when designing inclusive 
upper-body gesture recognition systems. Both IMU and EMG sen-
sors are suitable for diferentiating between personalized gestures 
designed for diferent functions, and fusing signals from diferent 
modalities depending on the person’s abilities is an important area 
of future work. 
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