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ABSTRACT
Measures of human performance for touch-based systems have
focused mainly on overall metrics like touch accuracy and target
acquisition speed. But touches are not atomic—they unfold over
time and space, especially for users with limited fine motor
function, for whom it can be difficult to perform quick, accurate
touches. To gain insight into what happens during a touch, we
offer 15 target-agnostic touch metrics, most of which have not
been mathematically formalized in the literature. They are touch
direction, variability, drift, duration, extent, absolute/signed area
change, area variability, area deviation, area extent, absolute/signed
angle change, angle variability, angle deviation, and angle extent.
These metrics regard a touch as a time series of ovals instead of
a mere (𝑥,𝑦) coordinate. We provide mathematical definitions
and visual depictions of our metrics, and consider policies for
calculating our metrics when multiple fingers perform coincident
touches. To exercise our metrics, we collected touch data from
27 participants, 15 of whom reported having limited fine motor
function. Our results show that our metrics effectively characterize
touch behaviors including fine-motor challenges. Our metrics
can be useful for both understanding users and for evaluating
touch-based systems to inform their design.
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1 INTRODUCTION
With the proliferation of modern touch-enabled devices such as
smartphones, tablets, watches, and other surfaces, touch input has
become perhaps the most prevalent form of input to computer
systems. As with mouse pointing and text entry [37, 48, 49, 59, 60],
understanding human performance with touch-based systems can
reveal opportunities for improved device and interface design.
To date, most measures of human performance with touch-based
systems have mainly focused on overall performance like accuracy
and target acquisition speed (e.g., [3, 4, 19, 23, 24, 44]). However, a
touch is not an atomic event; it unfolds over space and time [43].
Therefore, examining what happens during a touch might yield
insights into users’ touch behaviors and any underlying causes
of touch inaccuracy. It might also afford designers the chance
to improve device or interface designs, or enable software to
usefully adapt to users’ touch behaviors at runtime. Particularly for
accessibility, measuring what happens during a touch could help
designers make touch interactions more accessible. For example, if
a system measures how much a user “drifts” on the screen while
their finger is down before lifting, the system can enlarge their
widgets at runtime to accommodate.

A similar idea motivated prior work by MacKenzie et al. [37],
who formulated measures for what happens during a mouse
pointing movement, rather than just relying on overall speed
and accuracy to understand pointing performance (Figure 1).
MacKenzie et al. formulated seven new accuracy measures that
captured properties of the cursor’s path of movement. Building
on this work, Keates et al. [33] used MacKenzie et al.’s metrics
with people with motor impairments, introducing six new path
measures along the way. Hwang et al. [26] built upon this work
yet further, conducting submovement analyses of motion-impaired
users with 12 additional metrics. In each case, examining the path
of movement by formalizing new quantitative metrics revealed
why overall speed and accuracy differences emerged.

Inspired by this prior work, we aim to understand why human
performance with touch screens emerges the way it does. Certainly,
some of our touch metrics have been previously used in individual
studies or in ad hoc ways, as was the case for some of the
aforementioned cursor measures. But few of our metrics have
been formalized mathematically so as to be operationalized in a
reusable, generalizable way. Furthermore, our metrics have not,
to the best of our knowledge, been applied to the study of touch
behaviors by people with and without limited fine motor function.

https://doi.org/10.1145/3517428.3544804
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 1: (a) MacKenzie et al. [37] defined metrics for quantifying what happens during a mouse pointing movement, revealing
underlying causes of speed and accuracy outcomes. For example, the variability ("wiggliness") of a movement can be quantified.
(b) In an analogous fashion, we formulate 15 metrics for quantifying what happens during a touch, which is not atomic but
unfolds over time and space, even if only briefly. For example, a user might land outside a target, then slide into the target and
lift, creating touch ovals with various areas, orientations, and dimensions along the way.

To these ends, we formalized 15 target-agnostic touch metrics,
many of which are analogues inspired by MacKenzie et al. [37].
They are: touch direction, variability, drift, duration, extent,
absolute/signed area change, area variability, area deviation, area
extent, absolute/signed angle change, angle variability, angle
deviation, and angle extent. Instead of treating a touch as an atomic
event or single (𝑥,𝑦) coordinate, our metrics regard a touch as a
time series of ovals approximating a finger’s contact area from
finger-down to finger-up. Thus, a “touch process” [43] can contain
movement of the touch oval centroid and change of the touch oval
size, orientation, and shape. For each of our 15 metrics, we provide
a mathematical formula and intuitive description. We also include
visual depictions of some of our metrics to convey their purposes.

In addition, ambiguity arises when multiple fingers touch
concurrently. Although our metrics are defined on a per-finger
basis, we address the issue of how to handle multiple concurrent
touches. Specifically, we discuss three policies for defining the touch
process in multi-finger situations. The three policies are first-down,
longest-lived, and sum-of-all. These three policies converge to the
same definition in the case of a single-finger touch. Our study
results also show that all three policies are viable and result in
similar conclusions, even if their specific values change.

To put our metrics through their paces, we conducted a user
study to collect touch data on a Microsoft Perceptive Pixel (PPI)
interactive tabletop display. Our study collected complete touch
oval information from 27 participants, 15 of whom reported
having limited fine motor function with different specific fine
motor challenges. We then computed all 15 of our touch metrics
on our data and ran both descriptive and inferential statistics.
Our results show that our metrics effectively characterize users’
touch behaviors. Specifically, we found that our metrics uncover
differences among people with no, moderate, and severe fine
motor challenges. We also found that each metric correlates with a
different subset of specific fine motor challenges. Additionally, we
found that for multi-finger touches, the longest-lived policy and the
sum-of-all policy yielded the same conclusions in characterizing
users’ touch processes, while the sum-of-all policy magnifies the
differences between user groups.

Importantly, none of our 15 metrics are “target-aware” [2, 11];
rather, our metrics are “target-agnostic” [56], calculable using only
the touch data itself without knowledge of target locations or
dimensions. Being target-agnostic is an immensely useful property

because, in practice, it is generally infeasible for software to know
what a target is and whether a user was intending to touch [11, 12]
(This challenge becomes trivial in an artificial testbed, but not at
runtime with software “in the wild.”) Despite being target-agnostic,
our touch metrics can nonetheless explain why overall touch
accuracy is low or high. Thus, our metrics can help understand
users’ touch abilities and inform better designs of touch-based
systems that can adapt to these abilities.

The major contributions of this work are:
• Formalizing 15 target-agnostic touch metrics to characterize
what happens during a touch;

• Proposing and investigating three policies for handling
inadvertent multi-finger situations during a touch;

• Exercising our metrics in a formal study of 15 participants
with and 12 participants without limited fine motor function.

2 RELATEDWORK
Our work attempts to “pry the cover” off a touch to characterize
what happens “inside” it. As noted above, prior work by MacKenzie
et al. [37] pried the cover off mouse pointing to understand more
than just speed and accuracy, but how pointing unfolds over time
and space. To this end, MacKenzie et al. devised accuracy measures
that include movement variability, offset, error, axis crossings,
and more for evaluating mouse pointing, revealing differences
among input devices. Keates et al. [33] extended MacKenzie et al.’s
measures to better understand pointing by people with limited fine
motor function. Through a study of mouse movements by users
with motor impairments, Keates et al. characterized movement
distributions and submovement characteristics, finding significant
differences between people with and without upper-body motor
impairments. Hwang et al. [26] further analyzed submovements by
people with motor impairments. These papers inspired the current
work1 and point to the value of characterizing input processes,
not just outcomes. That said, none of the metrics from MacKenzie
et al. [37], Keates et al. [33], or Hwang et al. [26] can be applied
directly to touch. For example, most of their metrics require a
known target and a task axis between the mouse position and
1The current work also builds upon an ACM ASSETS 2021 poster [34]. This offered
only a subset of metrics and exercised only four of them on a previously collected data
set [14] that lacked complete touch-oval information (e.g., no oval major or minor
axes, no areas or orientations). The current work formulates more metrics, collects an
original data set, and exercises all metrics on complete touch-oval information.
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target center; moreover, a mouse cursor only occupies a single (𝑥,𝑦)
position at one time, whereas a touch occupies an area, abstracted
as an oval. Therefore, we developed custom metrics pertaining to
touch; furthermore, our metrics are target-agnostic, making them
practical to deploy in actual systems [2, 11, 12, 56].

Holz and Baudisch [23, 24] sought to understand factors affecting
touch performance bymodeling how users perceive their own touch
input, specifically their intended versus actual point of contact.
They did not formulate a set of metrics for quantifying touch, as
we do here, but they devised the generalized perceived input point
model [23] and the projected center model [24] to help characterize
perceptual aspects of the touch process. Their work examined users’
mental models through user studies, interviews, and analyses based
on a series of pointing studies, identifying sources of inaccuracy
in touch devices as a result of the parallax between the top and
bottom of the finger. Bi and Zhai [6], using a different approach,
conceptualized touch input in target selection as an uncertain
process, and proposed a Bayesian touch criterion to statistically
model the probabilistic distribution of touch selections. In other
work, Bi et al. [5] proposed FFitts law to model finger-touch based
inputs on touch screens, which reflects relative precision due to
the speed-accuracy tradeoff and captures the absolute precision of
finger touch.

Beyond understanding, characterizing, and modeling touch
input, researchers have sought to improve touch performance
through the invention and evaluation of new touch input techniques.
In early work, Potter et al. [45] evaluated three strategies for target
selection on touch screens, finding lift-off with an offset cursor to be
most accurate. Sears and Shneiderman [47] evaluated a stabilization
technique for improving touch accuracy. More recently, Vogel and
Baudisch presented Shift [50], which uses an offset lens to magnify
touch targets when multiple targets are beneath the finger. Cao et
al. proposed ShapeTouch [7] to utilize touch regions and motion to
infer virtual contact forces, enabling pseudo-force-based interaction
techniques. Benko et al. [3] designed high-precision touch selection
techniques by utilizing two fingers that together dynamically adjust
the control-display (C-D) gain. Harrison et al. [21] used machine
learning classification to distinguish the sounds made by finger tips,
pads, nails, and knuckles, extending the “interaction vocabulary”
of touch-based systems. Holz and Baudisch [25] went even further
with Fiberio to detect fingerprints on a touch table with a custom
fiber optic plate. On the output side, Wigdor et al. [54] created
Ripples, which are visualizations accompanying users’ touches to
provide vital feedback and reduce touch errors. These are just some
of the many interaction techniques developed to improve human
performance with touch-based systems. By contrast, our metrics
contribute to understanding human performance at a fine-grained
level. Indeed, they could be used to explain why and how some of
these touch-improvement techniques succeed.

Some work has also attempted to improve touch accuracy,
not through novel interaction techniques, but through advanced
machine learning. For example, Weir et al. [52, 53] used Gaussian
process regression to improve touch accuracy. Kumar et al. [35]
collected capacitive touch images and trained convolutional neural
networks (CNNs) to improve touch accuracy. Mayer et al. [39] used
CNNs to infer finger orientation from capacitive touch images.

The accessibility of touch-based systems for people with
disabilities has also been a focus of prior work, particularly because

touch-based systems are often inaccessible [8]. For example,
Findlater et al. [13] studied users’ target acquisition performance
on touch screens, finding that touch accuracy and usability issues
still persist for people with limited fine motor function. To improve
systems’ accessibility, Kane et al. [28] used accessible touch and
gesture interactions in SlideRule to create the first finger-driven
screen reader. Kane et al. [30] also developed Access Overlays for
interactive tabletops—software-based “layers” that impose various
interaction techniques on displayed content to make it more
accessible to blind users. This approach was extended to physical
documents using computer vision in Access Lens [29]. Similarly,
Guo et al. [20] used computer vision and crowdsourcing in StateLens
to model dynamic touch screen interfaces, and provide guidance
for blind users while using existing inaccessible touch screens.
Using hardware, Kane et al. [31] created Touchplates to provide
physical-tactile landmarks when interacting with tabletop displays.
In a related fashion, Zhang et al. [61] created Interactiles to provide
physical-tactile interactions on smartphones. Wacharamanotham
et al. [51] presented Swabbing for improving target selection
accuracy for users with tremor. A similar technique proposed by
Mertens et al. [40] called TRABING enables users to continuously
move over desired targets, improving accuracy for people with
tremor. Guerreiro et al. [19] studied characteristics of mobile
touch screen interfaces to provide tools for better interface design
for motor-impaired users. Montague et al. [41, 42] investigated
shared user models and user interface adaptivity for making
touch applications more accessible, and examined motor-impaired
touchscreen interactions in the wild. Sarcar et al. [46] proposed the
Touch-WLM model for making predictions of how users with given
abilities enter text, then optimized touch screen layouts for users
with tremor and dyslexia. Mott et al. created both Smart Touch [43]
and Cluster Touch [44] to resolve intended touch locations by people
with motor impairments through template matching of segmented
“frames” of the touch process and clustering, respectively. Cluster
Touch was also directed towards people incurring situational
impairments [55] due to walking; similarly, Goel et al. created
WalkType [17] and ContextType [18] for improving touch accuracy
on smartphone keyboards while walking. Although some of our
metrics (e.g., touch drift) were used in an ad hoc fashion in prior
work, they were not formalized mathematically, leaving them open
to variations of implementation and interpretation.

Relatedly, researchers have analyzed touch behaviors to detect
specific diseases that relate to impaired motor function. Mastoras
et al. [38] extracted statistical features from keystroke sequences to
detect depressive disorder. Giancardo et al. [16] and Arroyo-Gallego
et al. [1] used hold time (e.g., the interval between key press and
release) and flight time (e.g., the interval between one key’s release
and the next key’s press) to distinguish early-stage Parkinson’s
disease (PD). Iakovakis et al. [27] used normalized flight time and
normalized pressure to detect declines in fine motor function in
early PD patients. Kay et al. [32] created PVT-Touch to implement
the Psychomotor Vigilance Task [10] as a robust clinical tool for
assessing issues related to sleep loss. These projects demonstrate
the ability to use touch behaviors for disease- or condition-specific
diagnoses and tracking. In contrast, our touch metrics are general,
capable of illuminating touch behaviors that could be useful in a
variety of applications (e.g., we provide examples in Section 7).
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Figure 2: (a) A sequence of 𝑛 touch ovals 𝑃0, ..., 𝑃𝑛−1 from
finger-down to finger-up along a time axis. (b) The first touch
oval in the sequence has centroid (𝑥0, 𝑦0), angle 𝜃0, major
axis 𝑎0, and minor axis 𝑏0. The last touch oval has centroid
(𝑥𝑛−1, 𝑦𝑛−1), angle 𝜃𝑛−1, major axis 𝑎𝑛−1, andminor axis 𝑏𝑛−1.

3 OUR TOUCH METRICS
In this section, we formalize 15 touch metrics for characterizing
what happens during a touch. Although some of our metrics are
admittedly not new (e.g., touch duration), most have never been
previously conceptualized or given to mathematical formalism.
As a general principle, our metrics result in values closer to zero
when touches are closer to “perfect” (i.e., when a single finger
lands and lifts instantaneously from the same place). Similarly, our
metrics generally increase in magnitude as touches are further from
“perfect” (i.e., as a finger moves, rotates, changes area, or persists on
the screen). We begin by conceptualizing the “anatomy of a touch”
as a time series of ovals.

3.1 Anatomy of a Touch
Our touch metrics are designed to capture what happens during a
touch process, which, in the very least, consists of a finger-down
oval and a finger-up oval (Figure 2). Additional ovals might be
created if the finger moves during the touch or if the touch software
samples the finger position at regular intervals. Our metrics are
defined assuming only one finger is in contact with the screen, an
assumption we revisit in Section 3.5.

Let 𝑛 be the total number of touch input events captured from
finger-down to finger-up, inclusive. A touch process can be defined
as a sequence of touch ovals 𝑃0, ..., 𝑃𝑛−1, where finger-down is 𝑃0
and finger-up is 𝑃𝑛−1. Then, for the 𝑖𝑡ℎ oval:

• (𝑥𝑖 , 𝑦𝑖 ) is the location of its centroid;
• 𝑎𝑖 , 𝑏𝑖 are the lengths of its major andminor axes, respectively;
• 𝜃𝑖 is the angle, in radians, of the major axis relative to the
+𝑥 axis (i.e., straight right on the screen);

• 𝑆𝑖 is the oval’s size, calculated as 𝜋𝑎𝑖𝑏𝑖/4;
• 𝑇𝑖 is the oval’s timestamp.

3.2 Metrics Based on Touch Location and Time
In our first of three categories, we formalize five touchmetrics based
on location and time. These metrics are touch direction, variability,
drift, duration, and extent.

3.2.1 Touch Direction. Touch direction is the angle formed
between the centroids of the finger-down and finger-up ovals.
Intuitively, this metric indicates the overall direction that a touch
moved. Conceptually, we define straight right (+𝑥) from the
finger-down centroid as 0◦, straight left (−𝑥) as 180◦, straight
up (−𝑦) as 90◦, and straight down (+𝑦) as 270◦, although our

Variability Low High High High Very High
Drift Medium Low High Low High
Extent Medium Medium High High High

Table 1: Example traces of touch oval centroids and their
touch variability, drift, and extent. This table was inspired
by Figure 5 from MacKenzie et al. [37].

mathematical definition uses radians.

Direction =


tan−1 [(𝑦𝑛−1 − 𝑦0)/(𝑥𝑛−1 − 𝑥0)], if 𝑥0 ≠ 𝑥𝑛−1
𝜋/2, if 𝑥0 = 𝑥𝑛−1, 𝑦0 > 𝑦𝑛−1 (straight up)
3𝜋/2, if 𝑥0 = 𝑥𝑛−1, 𝑦0 < 𝑦𝑛−1 (straight down)
undefined, if 𝑥0 = 𝑥𝑛−1, 𝑦0 = 𝑦𝑛−1 (no movement)


∈ [0, 2𝜋)

3.2.2 Touch Variability. Touch variability is the total distance
covered by successive touch inputs from finger-down to finger-up.
Intuitively, this metric indicates how much distance was covered
during a touch (e.g., its “jitter”).

Variability =

𝑛−1∑︁
𝑖=1

√︃
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 ∈ [0,∞)

3.2.3 Touch Drift. Touch drift is the Euclidean distance from
finger-down to finger-up. Intuitively, this metric indicates how far
away a touch finished from where it started.

Drift =
√︃
(𝑥𝑛−1 − 𝑥0)2 + (𝑦𝑛−1 − 𝑦0)2 ∈ [0,∞)

3.2.4 Touch Duration. Touch duration is the time elapsed from
finger-down to finger-up. Intuitively, this metric indicates how long
a touch persisted.

Duration = (𝑇𝑛−1 −𝑇0) ∈ [0,∞)

3.2.5 Touch Extent. Touch extent is the Euclidean distance
between the most distant two oval centroids. Intuitively, this
metric indicates the spatial range of the touch process.

Extent = max
𝑖, 𝑗∈0,...,𝑛−1

√︃
(𝑥 𝑗 − 𝑥𝑖 )2 + (𝑦 𝑗 − 𝑦𝑖 )2 ∈ [0,∞)

3.3 Metrics Based on Touch Area
In our second of three categories, we formalize five touch metrics
based on touch area. The metrics are absolute area change, (signed)
area change, area variability, area deviation, and area extent.

3.3.1 Touch Absolute Area Change. The absolute area change of
a touch is the change in area between finger-up and finger-down
ovals. Intuitively, this metric indicates the difference in area
between the start and end of a touch.

Absolute Area Change = |𝑆𝑛−1 − 𝑆0 | ∈ [0,∞)

3.3.2 Touch Area Change. The (signed) area change of a touch
is the same as above, but positive if finger-up is larger than
finger-down; negative or zero otherwise. Intuitively, this metric
indicates whether a touch grew (+) or shrank (-), and by how much.

Area Change = (𝑆𝑛−1 − 𝑆0) ∈ (−∞,∞)
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Figure 3: Depictions of (a) touch variability, (b) touch drift, and (c) touch extent. The blue ovals centered at the black and red
dots represent the first and the last touch ovals of the sequence, respectively. The dark-blue line represents the centroid trace,
and the yellow line represents the respective metric.

3.3.3 Touch Area Variability. The variability in touch area is the
cumulative change in area over all touch ovals from finger-down
to finger-up. Intuitively, this metric indicates how “stable” the size
of a touch was during its lifetime.

Area Variability =

𝑛−1∑︁
𝑖=1

|𝑆𝑖 − 𝑆𝑖−1 | ∈ [0,∞)

3.3.4 Touch Area Deviation. The deviation in touch area is the
standard deviation of touch oval area over the duration of the
touch. Intuitively, this metric indicates how much the area changed
from one oval to the next during the touch process.

Area Deviation =

√︄∑𝑛−1
𝑖=0 (𝑆𝑖 − 𝑆)2

𝑛 − 1
∈ [0,∞), where 𝑆 =

𝑛−1∑︁
𝑖=0

𝑆𝑖/𝑛

3.3.5 Touch Area Extent. The extent of a touch’s area is the
difference between the largest and smallest touch areas from
finger-down to finger-up. Intuitively, this metric indicates the
range of touch areas that occurred during the touch process.

Area Extent =
[(

max
𝑖∈0,...,𝑛−1

𝑆𝑖

)
−
(

min
𝑗∈0,...,𝑛−1

𝑆 𝑗

)]
∈ [0,∞)

3.4 Metrics Based on Touch Angle
In our third of three categories, we formalize five touch metrics
based on oval angles, that is, the angle of the major axis relative to
the +𝑥-axis (straight right), which is defined as 0◦. These metrics
are absolute angle change, (signed) angle change, angle variability,
angle deviation, and angle extent.

Note that two touch angles with greatly different values can, in
fact, be quite close to each other (e.g., 359◦ and 1◦ are only 2◦ apart).
Therefore, to make our metrics accurately reflect the amount of
angle change during a touch, we define the angle change from 𝜃1
to 𝜃2 as

𝜃2 − 𝜃1 = Δ𝜃1,2
where Δ𝜃1,2 is the angle between 𝜃1 and 𝜃2 in (−𝜋, 𝜋]. Also,
counter-clockwise is considered positive and clockwise is considered
negative.

3.4.1 Touch Absolute Angle Change. The absolute angle change
of a touch is the change in the major axis angle from finger-down
to finger-up. Intuitively, this metric indicates how much the finger
orientation changed between the start and end of a touch.

Absolute Angle Change = |𝜃𝑛−1 − 𝜃0 | ∈ [0, 𝜋]

3.4.2 Touch Angle Change. The (signed) angle change of a touch is
the same as above, but positivewhen counterclockwise and negative
when clockwise. Intuitively, this metric indicates whether the finger
rotated counterclockwise or clockwise, and by how much.

Angle Change = (𝜃𝑛−1 − 𝜃0) ∈ (−𝜋, 𝜋]

3.4.3 Touch Angle Variability. The variability in touch angle is the
cumulative change of the major axis angle over the duration of the
touch. Intuitively, this metric indicates how “jittery” the orientation
of the finger was during a touch.

Angle Variability =

𝑛−1∑︁
𝑖=1

|𝜃𝑖 − 𝜃𝑖−1 | ∈ [0,∞)

3.4.4 Touch Angle Deviation. The deviation in touch angle is the
standard deviation of the major axis angle over the duration of
the touch. Intuitively, this metric indicates how much the finger
orientation changed from one oval to the next during a touch.

Angle Deviation =

√︄∑𝑛−1
𝑖=0 (𝜃𝑖 − 𝜃 )2

𝑛 − 1
∈ [0,∞), where 𝜃 =

𝑛−1∑︁
𝑖=0

𝜃𝑖/𝑛

3.4.5 Touch Angle Extent. The extent of a touch’s angle is the angle
between the two major axes that are farthest apart in orientation.
Intuitively, this metric indicates the range of angles that the major
axis covered throughout the touch.

Angle Extent =
(

max
𝑖, 𝑗∈0,...,𝑛−1

|𝜃 𝑗 − 𝜃𝑖 |
)
∈ [0, 𝜋]

For a theoretical “perfect touch,” where the finger-down
oval exactly coincides with the finger-up oval and the touch
is instantaneous, 14 metrics will equal zero and touch direction will
be undefined. In practice, of course, there should be some elapsed
time between finger-down and finger-up, with distinct ovals for
each captured event. Of course, the number of ovals and their
properties one receives depend upon the software and hardware
comprising the sensing platform one is using. For example, some
Android smartphones and tablets do not reliably report major and
minor axis information. In our study, described below, we used a
Microsoft Perceptive Pixel (PPI) display with custom software that
we wrote to ensure all necessary oval information was reported for
calculation of our 15 touch metrics.

Table 1 offers a few example touch centroid traces to illustrate the
intuitive differences among three of our touch metrics. Recall that
touch variability is the total distance covered by successive touch
ovals; touch drift is the distance from finger-down to finger-up; and
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Figure 4: Depictions of (a) touch angle change, (b) touch angle variability, (c) touch angle extent. The blue ovals represent the
touch oval sequence, the orange & yellow lines represent the major axes of ovals, and the green arcs represent measured angles.

touch extent is the distance between the two most distant touch
ovals that occurred during the touch process.

3.5 Handling Multiple Concurrent Fingers
Our 15 metrics assume that a single finger is performing a touch.
Indeed, future research could explore additional metrics specifically
meant to characterize multi-touch behaviors. But our metrics can
nonetheless be used in multi-touch situations, and inadvertent
multi-touch events can and do occur, especially for people with
limited fine motor function or for people in impairing situations.
Therefore, we address the question of which “policy” to adopt for
our metrics when multiple concurrent touches occur. To this end,
we explore three policies: first-down, longest-lived, and sum-of-all.

In discussing these three policies, we regard a touch trace as the
successive touch ovals associated with a single finger, and a touch
process as the collection of touch ovals from the first finger-down
to the last finger-up, even if they are different fingers. Under this
view, a single touch process can contain multiple touch traces if
multiple fingers touch the screen.

3.5.1 First-Down Policy. As a baseline, we examined the first-down
policy, which defines a touch process by whichever finger is first
to land on the touch-sensitive display. If other fingers land on the
display while the first finger is still present, they are simply ignored.
This policy is obviously naïve and sometimes incorrect, but serves
as a useful point of comparison.

3.5.2 Longest-Lived Policy. With the longest-lived policy, a touch
process is defined bywhichever finger persists on the touch-sensitive
display the longest. Thus, all fingers are tracked during the touch
process, and once the process has ended, the finger with the
greatest duration is used to calculate our 15 touch metrics. This
policy has the benefit that short-lived fingers are often the result
of unintentional contact with the display surface.

3.5.3 Sum-Of-All Policy. With the sum-of-all policy, we avoid
trying to discern which finger is most “indicative” of the user’s
intended touch process, and instead include all touch traces in
the calculation of our metrics. As unintentional finger-touches are
often short-lived and produce relatively few touch events, they
naturally contribute little to the sum of touch oval data than the
finger indicative of the user’s actual intentions. For people with
limited fine motor function, multiple fingers contacting the screen
can even be an indicator of their fine motor abilities and can be
reflective of their challenges using a device. Thus, for this policy, we
first calculate our 15 metrics for the touch traces of all fingers that

appear, and then simply sum these over the entire touch process.

The above three policies provide a pragmatic approach to
handling cases where multiple fingers appear in a touch process
that only requires a single finger. As we show below, all three
policies resulted in similar empirical conclusions in our user study,
which only required single-finger touches and no swipe or pinch
gestures to be performed. As for metrics to specifically characterize
multi-touch behaviors, we leave their formulation to future work.

4 STUDY METHOD
In this section, we describe a formal user study to put our 15 metrics
through their paces.We conducted this study using custom software
we built for the Microsoft Perceptive Pixel (PPI) display, which is
capable of giving complete oval information for touch down, move,
and up events. The goal of our study was to understand whether
and how our metrics might characterize users’ touch behaviors,
particularly any differences between users with and without limited
fine motor function.

4.1 Participants
We recruited 27 participants, 15 of whom reported having limited
fine motor function (LFMF), using email solicitations, phone
calls, convenience sampling, and snowball sampling (Table 2). On
average, participants with LFMF were 63.8 years old (𝑆𝐷 = 18.8),
with 8 women and 7 men. Reported health conditions included
essential tremor (5), arthritis (4), Charcot-Marie-Tooth disease (1),
enhanced physiological tremor (1), idiopathic tremor (1), referral
nerve pain (1), spinal cord injury (1), tendinitis (1), and traumatic
brain injury (1). Reported specific fine motor challenges included
tremor (53.3%), spasm (40.0%), numbness (6.7%), stiffness (53.3%),
pain (46.7%), rapid fatigue (26.7%), poor coordination (13.3%),
low strength (33.3%), slow movements (20.0%), difficulty gripping
(33.3%), difficulty lifting (20.0%), difficulty holding (20.0%), difficulty
holding still (26.7%), difficulty forming hand postures (26.7%), and
difficulty controlling movement direction (13.3%) and distance
(13.3%). Participants without LFMF were, on average, 34.8 years old
(𝑆𝐷 = 22.0), with 8 women and 4 men.

4.2 Apparatus
To collect touch data, we developed a custom testbed program for
use on a Microsoft Perceptive Pixel (PPI) 55-inch tabletop display
connected to a PC runningWindows 10. The testbed ran a Universal
Windows Platform (UWP) application we wrote in C#. The purpose
of the testbed was to present participants with a series of crosshairs
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Participants w/ Limited Fine Motor Function (LFMF) Participants w/o LFMF
ID Gender Age Diagnosis Fine Motor Challenges ID Gender Age
A1 woman 22 Tendinitis in wrist Stiffness, rapid fatigue B1 woman 21
A2 man 68 N/A Low strength B2 woman 23

A3 man 77 Arthritis

Stiffness, pain, slow movements,
difficulty gripping, difficulty holding,
difficulty holding still,
difficulty forming hand postures

B3 man 23

A4 man 59 Mild referral
nerve pain

Pain, poor coordination,
difficulty forming hand postures,
difficulty controlling movement distance

B4 woman 25

A5 woman 75
Arthritis,
Charcot-Marie-Tooth
disease

Tremor, spasm, stiffness, pain, rapid fatigue,
poor coordination, low strength,
slow movements, difficulty gripping,
difficulty lifting, difficulty holding still,
difficulty forming hand postures

B5 woman 26

A6 man 71 Essential tremor Tremor, slow movements B6 woman 29
A7 woman 67 Essential tremor Tremor, spasm, pain B7 man 23

A8 woman 68 Essential tremor Tremor, spasm, stiffness, low strength,
difficulty gripping, difficulty holding B8 woman 37

A9 woman 81 Arthritis Tremor, stiffness, pain,
difficulty gripping, difficulty lifting B9 woman 80

A10 woman 71 Essential tremor

Tremor, stiffness, pain, rapid fatigue,
low strength, difficulty holding still,
difficulty controlling movement direction,
difficulty controlling movement distance

B10 woman 24

A11 man 78 Essential tremor Tremor B11 man 24
A12 man 34 Enhanced physiological tremor Spasm, pain, rapid fatigue B12 man 82

A13 woman 78 Arthritis, Samilial
idiopathic tremor

Tremor, spasm, stiffness, low strength,
difficulty lifting, difficulty holding still,
difficulty controlling movement direction

A14 man 32 Spinal cord injury Spasm, difficulty gripping, difficulty holding,
difficulty forming hand postures

A15 woman 76 Traumatic brain injury Numbness, stiffness
Table 2: Demographics of participants with and without limited fine motor function (LFMF).

Figure 5: Our custom tabletop testbed. Four buttons in
the top-left enabled the experimenter to control the study:
start session, resume session, restart session, and undo.
The participant ID and trial number were displayed at the
top. The large white rectangular region was defined by
the participant to indicate their comfortable reach area.
Crosshairs were randomly generated within this region.

that they touched as accurately as they could. All touch events
(finger down, move, and up) were logged as touch ovals. Each oval
was reported with its centroid location, orientation, major and
minor axis lengths, and a timestamp.

To ensure participants could reach the crosshairs presented to
them, before the trials began, participants were asked to indicate the
area of the tabletop that they could comfortably reach by touching
the four corners of a rectangle of their choosing (Figure 5). During

Figure 6: (a) A participant using a finger to tap on a crosshairs
target. (b) The sitting posture for participants who preferred
it. (c) The standing posture for participants who preferred it.

trials, crosshairs were generated at random (𝑥,𝑦) locations only
within this rectangle. The crosshairs themselves had a line thickness
of 1 pixel and a radius of 10 pixels, and participants were told to
touch the crosshairs’ centers as accurately as they could. The PPI
display was placed on a desk for participants who preferred to stand,
or on a coffee table for participants who preferred to sit (Figure 6).

4.3 Procedure
Study sessions were conducted in-person following all COVID-19
health and safety protocols, with approval from our university’s
Institutional Review Board (IRB). After a brief introduction to
the study and the collection of demographic information via a
questionnaire (see Table 2), participants were asked to draw a
rectangular area on the screen indicating the region in which they
were comfortable reaching. Each participant then completed 10
practice trials to familiarize themselves with the study. A single
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trial consisted of touching a crosshairs that was drawn at a random
(𝑥,𝑦) location within the comfortable reach area. After the practice
trials, each participant completed 10 blocks of 20 trials for a
total of 200 trials. (With 27 participants, our data set consisted
of 200 × 27 = 5400 touch trials in all.) Short breaks were offered
between each block of trials. Upon completing all pointing trials,
participants were asked to rate how challenging they thought the
trials were on a Likert-type scale ranging from “1=very easy” to
“7=very difficult.” They were also asked about anything they found
challenging during the trials, and any difficulties they have using
touch screen devices in their daily lives. The study session took ∼45
minutes for participants with limited fine motor function (LFMF),
and <30 minutes for participants without LFMF. Participants with
LFMF were compensated $40 USD and participants without LFMF
were compensated $15 USD.

4.4 Design and Analysis
The purpose of our study was to exercise our touch metrics and see
how they differ for participants with and without limited fine motor
function (LFMF). In formal experiment terms, our study involved
a single between-subjects factor indicating whether someone
reported having LFMF or not. That said, during our study sessions,
we observed that the touch abilities of participants with LFMF
varied a great deal, as some participants experienced significant
difficulty touching crosshairs while others had almost no difficulty.
To ensure that our analysis took into account such differences, we
further grouped our participants into three levels having different
degrees of fine motor challenge: None, Moderate, and Severe.

The None group included participants who did not report having
LFMF and who did not show any observable signs of having
limited fine motor function during the study. The Moderate group
included participants who (1) reported having LFMF, but reported
that they were having a “good day” on the day of their study
session, or (2) reported having LFMF, but reported that they found
ways of accommodating their fine motor challenges such that
their touch screen use was not affected, or (3) did not report
having LFMF, but showed some observable signs of having limited
fine motor function during the study. Finally, the Severe group
included the participants who both reported having LFMF and
showed observable signs of having fine motor challenges. These
participants also described having difficulty operating touch screen
devices in their everyday lives. In total, we had 11 participants
in the None group, 10 participants in the Moderate group, and 6
participants in the Severe group.

For inferential statistics, because most of our metrics were
conditionally non-normal, we used the rank transform procedure
of Conover and Iman [9] to apply midranks to our 15 touch metrics
before conducting our analyses of variance using linear mixed
models [15, 36], resulting in nonparametric analyses. Our single
factor was Impairment with three levels: None,Moderate, and Severe,
as described above. In addition, we ran separate analyses with each
specific fine motor challenge (e.g., “tremor”) as a dichotomous fixed
effect. As is customary, all models included Participant as a random
factor to account for repeated measures [36]. Any post hoc pairwise
comparisons following significant or marginal omnibus tests were
corrected with Holm’s sequential Bonferroni procedure [22].

5 RESULTS
In this section, we present the results of our study. These results
include an examination of the effects of Impairment and of each
specific fine motor challenge on our 15 touch metrics. The boxplots
in Appendix A show each of our 15 touch metrics by the three
levels of Impairment. We also show associations between specific
self-reported fine motor challenges and the 15 touch metrics (see
Table 3). But first, we discuss our choice of touch policy for resolving
inadvertent multiple touches (see Section 3.5).

5.1 Choosing a Touch Policy
Overall, 1.2% of trials had more than one finger touch the surface.
By level of Impairment, multiple fingers occurred in 0.1% (None),
0.5% (Moderate), and 4.4% (Severe) of trials.

We calculated our 15 touch metrics using the policies discussed
in Section 3.5. In conducting our analyses, we found that the results
from all three touch policies generally agreed. Specifically, our
analyses revealed that in 77.2% of touch processes that had multiple
fingers, the finger to land first on the table was also the longest-lived
finger, explaining the convergence of results for the first-down and
longest-lived policies. The sum-of-all policy also resulted in the
same conclusions, but with the differences magnified, owing to
the inclusion of all fingers that touched the surface during a touch
process. Given the convergence of the three policies, we proceed
using the sum-of-all policy for the remainder of our analyses.

5.2 How Our Metrics Reveal Touch Behaviors
Appendix A shows means and standard deviations for all 15 metrics
by level of Impairment. Visually, it is apparent that the Severe
group tended to have somewhat higher values for many of our
touch metrics. Non-parametric analysis indicates a significant main
effect of Impairment on touch variability (𝜒2

2,𝑁=5400 = 15.55, 𝑝 <

.001), drift (𝜒2
2,𝑁=5400 = 11.58, 𝑝 < .01), duration (𝜒2

2,𝑁=5400 =

10.85, 𝑝 < .01), extent (𝜒2
2,𝑁=5400 = 12.86, 𝑝 < .01), and area

change (𝜒2
2,𝑁=5400 = 6.46, 𝑝 < .05). Furthermore, Impairment had a

marginal effect on absolute area change (𝜒2
2,𝑁=5400 = 4.78, 𝑝 = .092).

Post hoc pairwise comparisons among levels of Impairment
revealed that the Severe group had significantly higher touch
variability (𝑡24 = −3.76, 𝑝 < .01), drift (𝑡24 = −3.27, 𝑝 < .01),
duration (𝑡24 = −3.28, 𝑝 < .01), and extent (𝑡24 = −3.43,
𝑝 < .01) than the None group, and marginally higher area change
(𝑡24 = −2.51, 𝑝 = .057) than the None group. The Severe group also
had significantly higher touch variability (𝑡24 = −3.31, 𝑝 < .01),
drift (𝑡24 = −2.80, 𝑝 < .05), and extent (𝑡24 = −2.98, 𝑝 < .05) than
the Moderate group. Thus, it seems that some of our metrics are
indeed capable of revealing differences in touch behaviors among
our three groups.

Along with examining the effects of Impairment on our 15 touch
metrics, we also examined correlations between specific fine motor
challenges and our metrics. Recall that at the start of our study,
participants indicated whether or not they experienced various
fine motor challenges (see Section 4.1), namely tremor, spasm,
numbness, stiffness, pain, rapid fatigue, poor coordination, low
strength, slow movements, difficulty gripping, difficulty lifting,
difficulty holding, difficulty holding still, difficulty forming hand
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Tremor Spasm Stiffness Pain
Poor

Coordi-
nation

Difficulty
Lifting

Difficulty
Holding
Still

Difficulty For-
ming Hand
Postures

Difficulty Con-
trolling Movement

Distance
Direction – – 3.08 · – – 5.66 ∗ 3.91 ∗ – –
Variability 8.07 ∗∗ – 3.38 · 4.95 ∗ – 3.89 ∗ – – –

Drift 6.39 ∗ – 2.74 · 4.45 ∗ – 3.46 · – – –
Duration 8.27 ∗∗ 3.57 · – – – – – – 3.11 ·
Extent 7.04 ∗∗ – 3.02 · 4.64 ∗ – 3.52 · – – –

Absolute Area Change 3.94 ∗ – – – – – – – –
Area Change 3.90 ∗ – – – – – – – –

Area Variability 2.73 · – – – – – – – –
Area Deviation 2.71 · – – – – – – – –
Area Extent 3.04 · – – – – – – – –

Absolute Angle Change – – – 3.72 · – – – 4.01 ∗ –
Angle Change 2.86 · – – – 6.00 ∗ – – – 2.77 ·

Angle Variability – – – 3.51 · – – – 3.08 · –
Angle Deviation – – – – – – – 3.50 · –
Angle Extent – – – 3.30 · – – – 3.23 · –

Table 3: Chi-square (𝜒2) statistics for all significant (𝑝 < .05) and marginal (𝑝 < .10) effects of each fine motor challenge on the
touch metrics for people with vs. people without the given challenge. All 𝜒2-statistics are for 𝜒2

2,𝑁=5400. Significance indicators:
·𝑝 < .10, ∗𝑝 < .05, ∗∗ 𝑝 < .01.

postures, difficulty controlling movement direction, and difficulty
controlling movement distance. These challenges were indicated in
a dichotomous fashion (“yes” or “no”) at participants’ discretion.

All significant (𝑝 < .05) and marginal (𝑝 < .10) correlations
between these specific fine motor challenges and our touch metrics
are presented in Table 3.2 This table reveals, for each specific fine
motor challenge, the touch metrics with which it significantly (or
marginally) correlates compared to people without that challenge.
For example, people who self-reported experiencing tremor showed
a significant correlation with touch variability, drift, duration,
extent, and absolute area change; and marginal correlations with
area variability, area deviation, area extent, and angle change
compared to people who did not report experiencing tremor. Taken
as a whole, then, we can use these results to understand how
people experiencing different fine motor challenges tended to
exhibit certain corresponding touch behaviors, as revealed by our
touch metrics.

6 DISCUSSION
Overall, touch variability, drift, duration, extent, and (signed) area
change distinguished well among our three Impairment groups,
especially between the None and Severe groups. To a lesser extent,
the same can be said of absolute area change. Our results match
our expectations that people with limited fine motor function
might experience more challenges while using touch screens,
and therefore would have higher values for some metrics. Our
findings also comport with those of Findlater et al. [13], which
showed increased pointing errors on touch screens and a high
frequency of spurious touches for people with limited fine motor
function. Moreover, our results also align with what we observed
during our study sessions, namely that participants in the Severe
group experienced greater difficulty touching accurately than those
2Fine motor challenges mentioned in Section 4.1 but not shown in Table 3 exhibited
no detectable correlations with our touch metrics; they are omitted for clarity of
presentation.

in either the None or Moderate groups. Furthermore, the touch
behaviors of participants in the None and Moderate groups were
often difficult to distinguish during study sessions, and so we
are not surprised to find few statistically detectable differences
between them.

Many or all of touch variability, drift, duration, and extent were
associated with tremor, stiffness, pain, and difficulty lifting. Touch
duration was also associated with spasm and difficulty controlling
movement distance. Touch direction was associated with stiffness,
difficulty lifting, and difficulty holding still. Touch extent was
associated with tremor, stiffness, pain, and difficulty lifting. Touch
angle change was associated with tremor, poor coordination, and
difficulty controlling movement distance. These associations, once
revealed by our analyses, generally are quite intuitive.

Although most of the area and angle metrics did not show
significant differences between Impairment groups, they were
nonetheless useful in characterizing different specific fine motor
challenges. The touch area metrics were positively correlated
with tremor (absolute area change, signed area change, area
variability, area deviation, and area extent). Certain touch angle
metrics were also positively correlated with tremor (signed angle
change), pain (absolute angle change, angle variability, angle
extent), poor coordination (signed angle change), difficulty forming
hand postures (absolute angle change, angle variability, angle
deviation, and angle extent), and difficulty controlling movement
distance (signed angle change).

Among all specific fine motor challenges, tremor had an impact
on the most individual touch metrics. This finding is intuitive,
as tremor directly affects people’s finger movements and use of
touch screen devices. Also, stiffness was correlated with touch
direction, variability, drift, and extent, which also comports with our
expectations, as stiffness might result in reduced finger movement.
Although challenges like pain, difficulty lifting, and difficulty
forming hand postures also had associations with a few of our
metrics, their expected effects on our touch metrics are less directly
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predictable. Regardless, our findings on the whole show that our
metrics are useful in characterizing a number of different fine
motor challenges, and can be helpful for understanding users’
different behaviors and challenges while using touch screens.

Our findings also match findings in the earlier ACM ASSETS
work which analyzed a subset of the metrics [34], that people who
self-reported as having limited fine motor function tended to have
significantly larger touch variability, drift, duration and extent than
people who did not self-report thusly. We believe that our metrics
can benefit future accessibility research, by providing additional
information for understanding motor-impaired touch behaviors
in empirical studies, as well as enabling inventions of accessible
systems with our metrics – for example, ability-aware systems that
dynamically adapt to users’ touch abilities (Section 7).

6.1 Limitations
As with any study, ours had limitations. To acquire full touch-oval
information, our study was run on a Microsoft Perceptive Pixel
(PPI) tabletop display, which required us to be co-located with
our participants in a lab setting. A more ecologically valid touch
data set could be obtained from people’s everyday smartphone use,
although based on our testing, many Android smartphones fail to
report complete touch-oval data, making this approach challenging.
Future smartphone models might remedy this limitation.

Although we were able to recruit 15 participants who reported
having limited fine motor function, and 12 participants otherwise,
our sample of 27 participants was still relatively small considering
the large variety and severity of fine motor challenges. With
more participants, we would probably be able to identify stronger
and more correlations between fine motor challenges and our 15
touch metrics, likely resolving many of our marginal results into
statistically significant ones. Furthermore, many of our participant
volunteers were quite tech-savvy, and might have found ways
to adapt their touch behaviors to accommodate their fine motor
challenges. Our distinguishing of participants with moderate and
severe fine motor challenges enabled us to detect performance
differences between them, but having more participants in each
group would enable some statistical trends to further emerge.

Finally, our goal was to isolate participant touches using a testbed
showing crosshairs as, effectively, single-pixel targets. It remains to
be seen whether participants’ touch behaviors would be the same
on “real” user interfaces with, for example, buttons, hyperlinks,
scroll bars, and menus, to name a few. A future version of our study
could not only include crosshairs as targets, but also genuine user
interfaces whose targets are typical of touch-based applications.

7 FUTUREWORK
In addition to addressing the limitations above, strategic directions
for future work are numerous. This work provided an initial
scientific exploration into 15 touch metrics and their association
with limited fine motor function. Going forward, systems could
be implemented that observe a user’s touch behaviors and offer
possible adaptations for improving the usability or accessibility
of their user interfaces, even at runtime. For example, if a system
detects high touch variability, drift, extent, area change, area
variability, and angle change, it might be reasonable for it to

hypothesize that its user experiences tremor and could benefit from
larger target sizes, an idea consistent with ability-based design
[57, 58]. Note that such a hypothesis could be drawn without
knowing anything about the specific targets in the user interface
or the particular user’s intention, as all 15 of our touch metrics are
target-agnostic [56]. This property of our metrics makes them easy
to implement in a way that avoids the vast complications of having
to identify targets in a user interface [2, 11, 12, 56]. Besides adaptive
or personalized user interfaces, our metrics might also be used by
software designed to diagnose or track human motor functioning.
For example, a personal health application of our metrics might
allow a user to self-track their touch performance with our 15
metrics to see whether they are affected by medication, time of
day, fatigue, therapy, or progressive symptoms. Yet another future
application of this work is in studies comparing touch screens,
user groups, or user situations. We anticipate that numerous future
research and development projects might benefit from measuring
more than just touch accuracy and speed, using our metrics to
understand why overall touch performance is what it is.

8 CONCLUSION
Current human performance measures for use with touch-based
systems have focused mainly on overall performance like touch
accuracy and target acquisition speed. But to understand what
happens during a touch, we formalized 15 target-agnostic touch
metrics: touch direction, variability, drift, duration, extent, absolute
/ signed area change, area variability, area deviation, area extent,
absolute / signed angle change, angle variability, angle deviation,
and angle extent. Instead of treating a touch as an atomic event, our
metrics regard a touch as a time series of touch ovals approximating
a finger’s contact area from finger-down to finger-up. For each of
our 15 metrics, we provided the mathematical formula and intuitive
description of what the metric means. We also included visual
depictions of some of our metrics to aid understanding. We also
described three policies to handle cases where multiple fingers
inadvertently contact the screen during a touch.

To exercise our 15 metrics, we built a custom testbed for an
interactive tabletop and collected complete touch-oval data from
27 participants, 15 of whom reported having limited fine motor
function. Our analysis showed that our metrics could effectively
distinguish unimpaired from impaired touch behaviors. Our metrics
were also significantly associated with different self-reported
fine motor challenges. Thus, our metrics can shed light on the
underlying causes of touch inaccuracy, and can further help
understand users’ touch abilities. Conceivably, our metrics might
inform the design of touch-based systems. Touch devices and
touch accuracy will remain important for many years to come; our
metrics can contribute to a better understanding of both.
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A DISTRIBUTION OF VALUES OF TOUCH
METRICS BY LEVEL OF IMPAIRMENT

The 15 boxplots below show distribution of values of all 15 touch
metrics by level of Impairment. The plots are vertically organized
such that the first column shows metrics based on touch location
and time (Section 3.2), the second column shows metrics based on
touch area (Section 3.3), and the third column shows metrics based
on touch angle (Section 3.4).
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