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Figure 1: (left) Participant using a mouse to perform reciprocal pointing tasks. (right) Screen shot of a 1-D reciprocal pointing 
task from the FitsStudy program [68] showing two vertical ribbon targets. The starting target is highlighted in blue. A label 
with the text "Start Here" is shown indicating where to begin the series of pointing trials. 

ABSTRACT 
For over six decades, Fitts’s law (1954) has been utilized by re-
searchers to quantify human pointing performance in terms of 
“throughput,” a combined speed-accuracy measure of aimed move-
ment efciency. Throughput measurements are commonly used to 
evaluate pointing techniques and devices, helping to inform soft-
ware and hardware developments. Although Fitts’s law has been 
used extensively in HCI and beyond, its test-retest reliability, both 
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in terms of throughput and model ft, from one session to the next, 
is still unexplored. Additionally, despite the fact that prior work 
has shown that Fitts’s law provides good model fts, with Pearson 
correlation coefcients commonly at r=.90 or above, the model ft-
ness of Fitts’s law has not been thoroughly investigated for people 
who exhibit limited fne motor function in their dominant hand. 
To fll these gaps, we conducted a study with 21 participants with 
limited fne motor function and 34 participants without such limita-
tions. Each participant performed a classic reciprocal pointing task 
comprising vertical ribbons in a 1-D layout in two sessions, which 
were at least four hours and at most 48 hours apart. Our fndings 
indicate that the throughput values between the two sessions were 
statistically signifcantly diferent, both for people with and without 
limited fne motor function, suggesting that Fitts’s law provides 
low test-retest reliability. Importantly, the test-retest reliability of 
Fitts’s throughput metric was 4.7% lower for people with limited 
fne motor function. Additionally, we found that the model ftness 
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of Fitts’s law as measured by Pearson correlation coefcient, r , was 
.89 (SD=0.08) for people without limited fne motor function, and 
.81 (SD=0.09) for people with limited fne motor function. Taken 
together, these results indicate that Fitts’s law should be used with 
caution and, if possible, over multiple sessions, especially when 
used in assistive technology evaluations. 

CCS CONCEPTS 
• Human-centered computing → Pointing devices; Accessi-
bility design and evaluation methods; User interface design. 
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1 INTRODUCTION 
Fitts’s law [17] was introduced in 1954 – 66 years ago. Since then, 
numerous published works in the feld of human-computer interac-
tion (HCI) and in several other domains including ergonomics and 
psychology have adopted Fitts’s law to both describe and predict 
movement time in aimed pointing movements. Fitts’s law combines 
speed and accuracy into a single metric for pointing efciency called 
“throughput,” [45, 58, 69] which, to date, continues to serve in the 
creation and evaluation of new and existing pointing techniques, 
hardware devices, and software systems [6, 10, 13, 55, 59, 60]. No-
tably, Fitts’s law’s utilization goes beyond customary desktops and 
touch screens, as it has also been employed to assess the perfor-
mance of state-of-the-art devices (such as AR/VR and Leap Motion 
[2, 51]) as well as in diferent environments, including virtual en-
vironments [12, 37], underwater environments [16, 35], and even 
under a microscope [28, 38]). Such a broad range of usage indeed 
shows just how widely adopted Fitts’s law has become. 

Despite its extensive usage, the test-retest reliability (a metric 
widely used in the scientifc community to measure the consistency 
of a metric [53, 64]) of Fitts’s law’s metrics remains unexplored. 
Most Fitts’s law studies consist of a single session per participant, 
and thus never confront the question of how reliable Fitts’s law’s 
throughput metric or model fts actually are, and how their reli-
ability could afect the device or technique being evaluated. Fur-
thermore, Fitts’s law has seen extensive use in assistive technology 
evaluations, particularly for assistive pointing software and devices 
[27, 29, 54, 66]. But whether Fitts’s law is suitable for such evalua-
tions, especially for people with limited fne motor function, is an 
unresolved question. 

In addition to the test-retest reliability of Fitts’s throughput 
metric, our work also investigates the model ftness of Fitts’s law, 
expressed via Pearson correlation coefcient, r , which indicates 
how well Fitts’s law applies to the observed experiment data. Fitts’s 
law states that the time to perform a pointing task is a function of 

its difculty. In other words, the more difcult a task is the longer it 
takes. Mathematically, this relationship between the task difculty 
(referred as “index of difculty”, ID) and movement time (MT ) is 
represented using a regression equation based on the “Shannon 
formulation” [42, 43] (considered as the preferred formulation as 
per prior work [58]). The equation is presented below: 

MT = a + b · ID (1) 

� � 
ID = loд2 

A 
+ 1 

W 

In Equation 1, MT is movement time, a and b are ftted regression 
coefcients, and ID is the index of difculty shown in Equation 2, 
below: 

(2)

In Equation 2, ID is index of difculty, in bits, A is movement 
amplitude (i.e., distance), and W is target width. 

Numerous past studies [4, 21, 43, 44, 58] indicate that Fitts’s law 
provides good model fts in predicting human pointing performance, 
with Pearson correlation coefcients (r ) often at .90 and above. 
However, the model ftness over subsequent sessions, and for people 
with limited fne motor function, is still unknown. Given Fitts’s 
law’s wide applicability in the development of assistive technology, 
it is important to determine whether its suitability as a model 
extends beyond a single session and holds for people with limited 
fne motor function. 

We analyzed the test-retest reliability and model ftness of Fitts’s 
law, both for people with and without limited fne motor function. 
We conducted a study with 21 people with and 34 people with-
out limited fne motor function. The participants performed the 
ISO 9241-9 [33] pointing tasks in a 1-D layout using the FittsStudy 
program [68] (Figure 1). For calculating throughput, we employ 
both the mean-of-means approach [58] and the slope-inverse ap-
proach [69] using the traditional A×W experiment design. We also 
use Guiard’s [26] Form × Scale experiment design, which limits 
varying either A or W from Equation 1, but not both together. 

Our results indicate that the test-retest reliability of Fitts’s law’s 
throughput metric is low for both fne motor function groups, and 
about 4.7% lower for people with limited fne motor function. Addi-
tionally, our fndings show that the model ftness of Fitts’s law as 
measured by Pearson correlation coefcient, r , was .89 (SD=0.08) 
for people without limited fne motor function, which is in line with 
the results from previous studies [4, 21, 43, 44, 58]. However, for 
people with limited fne motor function, the model ftness was 8.9% 
lower, at r=.81 (SD=0.09). In light of our fndings, we urge caution 
when employing Fitts’s law, especially in evaluations of assistive 
technology software and devices. Fitts’s law’s metrics should be 
calculated over multiple sessions, as opposed to a single session. 

2 FITTS’S LAW IN HCI 
Before reviewing work related to our current investigation, for 
context, we provide a brief overview of Fitts’s law in HCI. What 
today is known as Fitts’s law [17] was introduced in 1954 when 
Paul Fitts published his seminal work on modeling aimed pointing 
movements. His 1954 paper introduced a reciprocal pointing task 
between two vertical “ribbon” targets, which required participants 
to alternately tap on targets of diferent widths (W ) and at diferent 
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amplitudes (i.e., distances) from each other (A). Fitts published a 
follow-up to this work in 1964 [18], extending the applicability of 
Fitts’s law from serial to discrete tasks. Fitts’s law was used in HCI 
for the frst time in 1978 by Stuart Card et al. [11] in an empirical 
study that compared the performance of a mouse and an isometric 
joystick. 

From an experiment employing Fitts’s law, two outcomes are 
of interest to our work: throughput and Pearson correlation coef-
fcients (r ). The throughput measure (TP, in bits per second) from 
Fitts’s law represents the efciency of aimed pointing movements. 
This metric is calculated in one of two ways, each of which have 
been defended in the literature. In one way [58], the mean through-
put from each condition is divided by the mean movement time 
from those same conditions. A condition’s index of difculty is 
computed as shown in Equation 2. 

In a competing approach to calculating throughput [69], the 
inverse of the slope of the regression line ftted from Equation 1, 
above, is used. When the y-intercept a in Equation 1 is zero, these 
two methods of calculation result in the same throughput. When 
a is non-zero, they difer. Some prior work has shown practical 
benefts to computing throughput under the frst approach [68]. 

Pearson correlation coefcient, r , communicates model ftness, 
and describes the correlation between the movement time (MT ) and 
the index of difculty (ID). It is a crucial measure in determining 
how well Fitts’s law models the data generated from an experiment. 
In the domain of Fitts’s law, a good model ft is expected to have 
a Pearson correlation coefcients (r ) at .9 or greater, as per prior 
work [4, 21, 43, 44, 58], and anything below .9 does not show a 
reliable correlation between task movement time (MT ) and index 
of difculty (ID). The threshold for what constitutes a “good model 
ft" (r>=.9) was determined based on researchers’ experiences over 
decades of studying these models. After over 60 years of seeing 
results with r>.9, and often even r>.95, we know that r values 
that are considerably lower constitute a signifcant departure from 
typical model fts. For example, results from Hrezo’s work [32] 
show an overall positive Pearson coefcient statistically, but the 
author decided that even with a positive correlation of r =0.72, the 
model was not well ft to the data. In our work, we therefore apply 
the same threshold for determining a good model ft. 

Following Guiard [26], there has been further questioning about 
confounds in Fitts’s law experiments. In particular, Gori et al. [25] 
have pointed out that pooling and averaging data belonging to 
diferent amplitude-width (A, W ) pairs for the same ID can intro-
duce confounds in Fitts’s law experiments. In our work, we heeded 
Gori et al.’s advice by avoiding such pooling, and by utilizing the 
efective index of difculty IDe , which is also recommended in 
prior work [58]. We did not, however, consider an alternative to 
Pearson’s r , when validating Fitts’s law as a model, nor did we 
employ stochastic sampling, using Fitts’s law in line with current 
practice, which is what we wished to scrutinize. 

In a typical experiment involving Fitts’s law, researchers invite 
participants to a controlled laboratory environment and present 
them with pointing tasks under diferent conditions – for example, 
pointing devices, interaction techniques, environments, body pos-
tures, target sizes, or target distances. Then, researchers calculate 
throughput and utilize it to compare and evaluate systems and 

devices, or to compare user groups or user environments. Tradition-
ally, the calculation of the throughput value, the single quantitative 
measure of pointing efciency, involves testing participants in a 
single session each, as opposed to over multiple sessions. Thus, the 
question of test-retest reliability rarely arises. In this work, we ad-
dress this gap by exploring the test-retest reliability of Fitts’s law’s 
throughput metric and model ftness. Additionally, we investigate 
whether Fitts’s law as a model is suitable for people with limited 
fne motor function. 

3 RELATED WORK 
Fitts’s law has been used widely within HCI and beyond. As of 
the date of this writing, Google Scholar indicates that Paul Fitts’s 
original 1954 article has been cited 8,570 times1. We highlight the 
most relevant prior work related to the test-retest reliability of 
Fitts’s law’s throughput and model ftness. Broader surveys of Fitts’s 
law’s use in HCI are available in prior work [43, 58]. 

3.1 Test-Retest Reliability of Fitts’s 
Throughput Metric 

To date, various prior work utilizing Fitts’s law has made use of its 
throughput metric to evaluate and compare, existing and new, de-
vices and techniques. However, none have, to the best of our knowl-
edge, examined the test-retest reliability of Fitts’s law’s throughput 
metric from one session to the next. 

Harada et al. [29] conducted a longitudinal study lasting 2.5 
weeks with people with and without limited fne motor function. 
They introduced their participants to their voice-based user inter-
face control system and used Fitts’s law to measure the improve-
ment in the participants’ target acquisition performance across 10 
sessions. They found that over the sessions the performance of both 
people with and without limited fne motor function improved by 
at least 20%. Specifcally, people without limited fne motor function 
(ranging from 25% to 49%) showed more improvement as compared 
to people with limited fne motor function (ranging from 24% to 
40%). While their work is closely related to ours in terms of calcu-
lating throughput values over multiple sessions, they specifcally 
looked for the efects of their system on the performance of the 
participants; hence, the diference between the throughput values 
was attributed to their system rather than the test-retest reliability 
of Fitts’s throughput metric. 

Brogmus [9] utilized the Fitts’s law data collected by the Bal-
timore Longitudinal Study of Aging2 (BLSA) from 1,318 subjects 
from 1960-1981 and tested 121 unique formulas based on the prior 
modifcations of Fitts’s law to determine the best formula based 
on the standard error of estimate. Then, they examined the efect 
of age and gender using this formula. They found the age had a 
statistically signifcant main efect on movement time but gender 
did not. However, their analyses did not explore the test-retest reli-
ability of Fitts’s throughput metric, and their participant pool only 
included people without limited hand function. Looser et al. [41] 
evaluated 3-D gaming environments as a viable tool for Fitts’s law 
experiments and carried out Fitts’s law studies on 11 participants. 

1https://scholar.google.com/scholar?cites=13463669318867480633 
2https://www.blsa.nih.gov/ 
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They found that the Fitts’s law’s throughput metric from the tra-
ditional 1-D “ribbon tasks” (TP=5.5) and the 3-D game interface 
(TP=5.3) was within 4% of each other. However, their analyses and 
participant pool were similarly limited as Brogmus’s work [9]. Sim-
ilarly, Wobbrock et al. [66] conducted Fitts’s law experiments to 
evaluate the performance of their pointing technique Angle Mouse. 
They found that the Fitts’s law’s throughput metric was better for 
people without limited fne motor function (TP=4.26) than that of 
people with limited fne motor function (TP=3.03). However, they 
only calculated the throughput for each pointing technique over a 
single experiment. Numerous research work [6, 10, 13, 55, 59, 60] 
have followed similar protocols – utilizing Fitts’s law to compare 
performance between diferent factors, but none have, to the best 
of our knowledge, explored the consistency of throughput values 
from Fitts’s law experiments across multiple sessions with the same 
conditions and factors. 

3.2 Model Fitness for People with Limited Fine 
Motor Function 

Numerous research projects have reported Pearson correlation 
coefcients (r ) as model fts for Fitts’s law, including for participants 
with limited fne motor function. However, no conclusive agreement 
has been reached on whether Fitts’s law is suitable for people with 
limited fne motor function. Findings are mixed. 

Wobbrock et al. [67] found that Fitts’s law, both for people with 
and without limited fne motor function, accurately modeled point-
ing performance (R2 = 0.993 and R2 = 0.969, respectively) and 
crossing performance (R2 = 0.996 and R2 = 0.987, respectively). 
However, they noted that their data excluded error trials and as a 
result, the data from people with limited fne motor function was 
not sufcient to delineate a normal distribution of hits, which is 
assumed for Fitts’s law models. Additionally, they found models 
using Crossman’s recommended correction for error normalization 
[15, 65] to be very poor for people with limited fne motor function. 
Rao et al. [54] found Fitts’s law to be a good predictor of pointing 
tasks for people with Cerebral Palsy and people without any known 
neurological or physical limitations, although there is no indication 
of how many, if any, of their subjects with Cerebral Palsy had lim-
ited fne motor function in their dominant hand. Furthermore, they 
difered from our work in their choice of pointing devices used for 
the experiment. 

Gajos et al. [22] developed an alternative method for modeling 
pointing movements and reported that Fitts’s law was a poor ft for 
people with limited fne motor function, but only tested three such 
people, who used diferent pointing devices. Our work presents 
fndings from 21 participants with limited fne motor function, all 
using a mouse as the pointing device. Gump et al. [27] showed that 
pointing data from people with Cerebral Palsy, who had moderate 
to severe spasticity, resulted in a statistically signifcant main efect 
of ID on movement time (MT ), which they consider as the adher-
ence to Fitts’s law. However, they noted that such adherence was 
achieved only after the exclusion of error trials, similar to Wobbrock 
et al. [67], which reduced their sample size to only four participants. 
On the contrary, our work has sufcient data for Fitts’s law mod-
eling, including adequate error trial percentages, increasing the 
power of our analysis to detect signifcant efects. 

Our work contributes fndings showing that the test-retest relia-
bility of Fitts’s law’s throughput metric and model ftness are 4.7% 
and 8.9% lower, respectively, for people with limited fne motor 
function, than for people without such limitations. We arrive at 
these fndings using both the A×W and Guiard’s Form × Scale [26] 
experiment designs. 

4 EXPERIMENT DESIGN 
To examine the test-retest reliability of Fitts’s law’s throughput 
and model ftness, we conducted a 2 × 2 mixed within-between-
subjects experiment with people with and without limited fne 
motor function. The experiment was conducted in-person at our 
laboratory or online, depending on the participant’s preference. 

4.1 Participants 
We recruited 55 total participants for our study. Thirty-four partici-
pants reported no fne motor function limitations in their dominant 
hand. Among this group of 34 participants, 24 identifed as female, 
9 as male, and 1 as genderqueer. A preliminary study with 4 par-
ticipants suggested a medium-to-large efect; we therefore used a 
power analysis to estimate this sample size. All participants were 
right-handed. Their average age was 23.0 (SD=3.3). Of the 21 partic-
ipants who reported limited fne motor function in their dominant 
hand, 14 identifed as female, 5 as male, and 2 as genderqueer. Sev-
enteen participants were right-handed. The average age in this 
group was 43.81 (SD=17.4). Note that the 80th percentile for age in 
this group was 63.8 years old, which is slightly lesser than the age 
at which human pointing performance has been shown to signif-
cantly afect pointing performance (at an average of 64 years old) 
as reported in prior work [30, 36, 56, 62, 63]. As we report below, 
this is in keeping with our fndings, where Age did not have a sta-
tistically signifcant efect on either the throughput or the Pearson 
correlation coefcients (r ) under investigation. 

Out of the total participants, 41 had their sessions run in our 
laboratory setting, while 14 had their sessions run remotely over 
Google Hangouts or Microsoft Skype. Four participants (without 
limited fne motor function) who produced errors greater than 
8% (N =4) were excluded from the analysis. One participant (with 
limited fne motor function) who inadvertently used a touchpad 
instead of a mouse was also excluded. After these exclusions, there 
were 20 and 30 participants with and without limited fne motor 
function in the study. The online participants were screened for 
having similar apparatuses as that used in our laboratory. Partici-
pants were compensated with a $20 Amazon gift card for about an 
hour of their time over two sessions. 

Before each of the two sessions in the study, information was 
recorded from the participants including their gender identifca-
tion, age, dominant hand, current cursor speed setting, fatigue 
level, stress level, and daily usage of a computer. Participants re-
ported their fatigue and stress levels using a Likert scale from 1 
("no/minimal") to 7 ("severe/maximal"). For participants who iden-
tifed as having limited fne motor function, their diagnosis and 
functional limitations were also recorded (see Appendix A, Table 
6). After the end of the second session, additional information was 
recorded including open-ended input of possible external events 
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(such as medications, emotions) that may have caused a perfor-
mance diference between the two sessions, and feedback on im-
proving future studies. 

We recruited participants using word-of-mouth, snowball sam-
pling, and advertisements through channels including social media, 
such as Facebook and Twitter, and from fyers posted in rehabili-
tation facilities. We also advertised on email distribution lists for 
people with disabilities. 

4.2 Apparatus 
The study was conducted on computers running the Microsoft 
Windows operating system. For the laboratory setting, we used 
a Microsoft Surface Book 2 laptop measuring 13.1" by 9" set as 
3000 x 2000 resolution running the Windows 10 operating system 
using 8 GB RAM. The FittsStudy program [68] was used as a soft-
ware testbed, which is publicly available for download and runs 
in full-screen mode to avoid any potential distractions from other 
applications. Participants who preferred to participate online were 
guided through the downloading and installation of FittsStudy. A 
mouse (Dell Optical Mouse for the laboratory setting) was used as 
the pointing device in the study by all participants, with its speed 
set to the default cursor speed setting for Microsoft Windows. (This 
value is a 10 on a scale of 1-20 in the Windows mouse control panel. 
It corresponds to a control-display gain value of about 5.4 [66].) 
The study sessions were observed by at least one author, who took 
detailed notes during the sessions. 

4.3 Procedure 
Each participant took part in two sessions, which were at least 
four and at most 48 hours apart [49]. In each session, participants 
performed 10 target acquisitions for 5 target widths (W : 8, 16, 32, 
64, 128 px) × 3 target distances (A: 256, 384, 512 px), for a total of 
15 A×W conditions and 10×15 = 150 target acquisitions. Each ac-
quisition was a single attempt to click a 1-D vertical “ribbon target” 
(Figure 1). The target sizes and distances were decided based on 
typical icon sizes and the distances between the elements present 
in conventional user interfaces such as Web pages. To account for 
learning efects, the order of the conditions was randomized across 
sessions and participants, as is standard practice in Fitts’s law stud-
ies [58]. Participants were instructed to perform the tasks as quickly 
as possible while conforming to an error rate between 4-8% [43], 
equating to a total of 6-12 target misses per session. Participants 
were given the choice to practice the tasks before the start of the 
session. However, none of the participants chose that option and 
found the instructions sufcient. Additionally, participants were 
encouraged to take breaks in between the A×W conditions but not 
during the trials. 

4.4 Design and Analysis 
The experiment was a mixed factorial design with the following 
factors and levels: 

• Limited Fine Motor Function (LFMF), between-subjects: yes, 
no 

• Session, within-subjects: 1, 2 

Our dependent variables were throughput (bits/s) and Fitts’s 
law’s model ftness expressed as a Pearson correlation coefcient, r . 

We analyzed these dependent variables using a mixed-efects model 
analysis of variance [20, 40], which included the above factors, their 
interaction, and a covariate to control for Age. We also included a 
random efect for Subject to account for repeated measures across 
two sessions. 

In a second analysis, we used a binary representation of model 
ftness (i.e., ft or not for Pearson correlation coefcient, r ≥ .90 as 
per prior work [4, 21, 43, 44, 58]). For this analysis, we used mixed-
efects logistic regression [24] with the same model as described 
above. 

Participants were tested over 15 A×W conditions in each of 
the two sessions, resulting in a total of 10×15×2 = 300 trials per 
participant. With 50 participants, a total of 50×300 = 15, 000 trials 
were produced and analyzed in this study. 

4.5 Approach to Calculating Throughput 
4.5.1 Mean-of-means approach vs. Slope-inverse approach. As dis-
cussed above, two approaches to calculating throughput are the 
mean-of-means approach (TPavд ) [58] and the slope-inverse ap-
proach (TPinv ) [69]. Mean-of-means (Eq. 3) approach calculates 
throughput as an average of indices of difculty (IDe ) divided by 
movement times (MT ), whereas the slope-inverse approach (Eq. 
4) calculates throughput as the reciprocal of the Fitts’s linear re-
gression slope. While the literature contains several discussions 
on the choice of one over the other [58, 68, 69], there has been no 
resolution to the question of which one is “correct.” 

1 N � IDei 
�Õ 

TPavд = , where N = |A| × |W |, 
N MTii=1 

(3)

In Equation 3,TPavд is the throughput in bits/s, ID is the index of 
difculty from Equation 2, MT is the movement time as in Equation 
1, and A and W have their same meanings as in Equation 1. 

TPinv = 1/b (4) 

In Equation 4, TPinv is the throughput in bits/s, and b is the 
slope parameter from Equation 1. 

We compared the diference between the averages of TPavд and 
TPinv from both study sessions. For people with and without limited 
fne motor function, the diferences, in bits/s, between TPavд and 
TPinv were 2.88 vs . 4.83 (with), and 4.77 vs . 7.28 (without), respec-
tively. Furthermore, the standard deviation diferences were 1.06 
vs . 2.43 (with), and 0.45 vs . 2.90 (without), respectively. Thus, there 
were much greater diferences between the two groups with the 
slope-inverse calculation approach than with the mean-of-means 
calculation approach for average throughputs. Furthermore, the 
standard deviations are smaller with the mean-of-means approach, 
with fndings consistent with prior work [68]. 

Additionally, the computed TPavд mean for people without lim-
ited hand function was 4.70 bps for the frst session, 4.83 bps for the 
second session, and 4.77 bps overall. These values were within the 
expected range of 3.7-4.9 bps for people using a mouse suggested 
by Soukoref and MacKenzie [58] based on reviews of prior work 
[34, 46–48, 50]. Unfortunately, such a range for comparison is un-
documented for TPinv and for people with limited hand function. 
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Therefore, in light of these fndings, and in keeping with prag-
matic recommendations [68], we utilize the mean-of-means ap-
proach for calculating throughput in this paper. 

4.5.2 Guiard’s Form × Scale Design. Guiard [26] argues that ma-
nipulating both A and W in a Fitts’s law experiment can introduce 
potential confounds [68]. According to Guiard’s argument, the ex-
periment design should be Form × Scale instead of the traditional 
A×W , where Form is the ID and Scale is either A or W , but not both. 
To remove such a potential confound, Guiard’s practical recommen-
dation is to hold one of either A or W constant and manipulate the 
other during a Fitts’s law experiment [68]. 

In this work, we selected fve target widths (W ) and three target 
amplitudes (A). Given that holding W constant yields only three 
data points for A, which is not enough to calculate a meaningful 
and trustworthy correlation, following Guiard’s recommendation 
[26], we performed additional analyses by holding A constant while 
allowing W to vary. 

5 RESULTS 
In this section, we present the results of the experiment focusing 
on the test-retest reliability of Fitts’s law’s throughput metric and 
model ftness for participants with and without limited fne motor 
function. 

5.1 Test-Retest Reliability of Fitts’s 
Throughput 

Our results, shown in Table 1, indicate that the test-retest reliability 
of Fitts’s throughput metric is low for both participant groups, but 
considerably lower (by about 4.7%) for participants with limited 
fne motor function (see Figures 2 and 3). Below we discuss our 
fndings from the traditional A×W experiment design, as well as 
from Guiard’s Form × Scale design [26]. 

5.1.1 Using Traditional A×W Design. Our results indicate a signif-
icant main efect of Session on throughput overall (F (1,48)=24.08, 
p<.001, Cohen’s d=1.42). Specifcally, the average throughput for 
Session 1 was 3.93 bits/s (SD=1.21). For Session 2, it was 4.09 bits/s 
(SD=1.19). The mean absolute throughput diference between ses-
sions was 0.23 bits/s (SD=0.17). This result indicates that from one 
session to the next, the throughput results were signifcantly difer-
ent, casting doubt on the test-retest reliability of Fitts’s throughput 
metric. 

There was also a signifcant main efect of Limited Fine Mo-
tor Function (LFMF) on throughput overall (F (1,47)=34.30, p<.001, 
Cohen’s d=1.71). Specifcally, participants with limited fne mo-
tor function had an average throughput of 2.88 bits/s (SD=1.06), 
while participants without limited fne motor function had an aver-
age throughput of 4.77 bits/s (SD=0.45). This result indicates that 
our participants with limited fne motor function had an average 
throughput about 39.6% lower than those without. 

We also examined whether changes in Fitts’s law’s throughput 
were proportionally similar or diferent from one session to the 
next for participants in each fne motor function group. To do so, 
we examined the Session × LFMF interaction, but found it to be non-
signifcant (F (1,48)=1.05, n.s.). However, the change in the through-
put values between sessions, as shown in Table 2, was higher for 

participants with limited fne motor function (9.16%) compared to 
participants without (2.94%). In combination, this result indicates 
that although throughput values changed signifcantly from one 
session to the next, that change was proportional for participants in 
each of the fne motor function groups, but numerically higher for 
those with limited fne motor function. Specifcally, the test-retest 
reliability of Fitts’s law’s throughput metric was 4.7% lower for 
participants with limited fne motor function. 

Additionally, Age did not have a signifcant efect on throughput 
(F (1,47)=0.69, n.s.). Furthermore, for both participants with and 
without limited fne motor function, we examined self-reported 
fatigue and stress level but found them to have no signifcant efects. 

5.1.2 Using Guiard’s Form × Scale Design. Following Guiard’s rec-
ommendation [26] to hold either A or W constant in a Fitts’s law 
throughput analysis, we recalculated TPavд while separately hold-
ing each of the A values (256, 384, 512) constant while manipulating 
the W values. We re-ran our analyses after excluding participants 
for whom the recalculated error rates were greater than 8%. This 
process excluded 5, 7, and 8 participants from our original 50 for 
each value of A, respectively. Table 2 shows the summary results 
of our additional analyses. 

Our results indicate that for both groups, LFMF had a signifcant 
efect on throughput for all values of A. Similarly, Session also had 
a signifcant efect except for A=384, suggesting that the through-
put values varied signifcantly between sessions when the target 
distances were either small or large. As for the traditional A×W 
design, Guiard’s design did not show a signifcant efect for the 
Session × LFMF interaction, Age, and Fatigue or Stress. These results 
were consistent for each value of A that was held constant. 

5.2 Model Fitness 
Anderson-Darling [1] goodness-of-ft tests of normality showed 
that model fts, as Pearson’s r values, were non-normal. Close in-
spection revealed these values to be conditionally lognormal, and 
so a logarithmic transformation was applied prior to analysis, as is 
common practice [3, 31, 39]. Examination of this log-transformed 
response indicated that it was indeed normal for the traditional 
A×W design (p=.07) as well as for Guiard’s design (p>.5 for all A). 
For ease of communication, plots of this dependent variable are 
shown using the original, non-transformed values. 

In addition to examining model ftness using Pearson correlation 
coefcients (r ) as a continuous dependent variable (Table 3), we 
also analyzed the Pearson correlation coefcients (r ) as a binary 
measure, classifying the data as a “good ft” if r was .90 or greater, 
and a “poor ft” otherwise [58]. Overall, our fndings, as shown 
in Tables 4 and 5, suggest that model ftness difers signifcantly 
between the two LFMF groups, and is worse for participants with 
limited fne motor function (see Figure 4). Here, we present our 
fndings utilizing the Pearson correlation coefcient, r , both as a 
continuous and a binary measure, using the traditional A×W design 
as well as Guiard’s Form × Scale design [26]. 

5.2.1 Using the Traditional A×W Design. For this analysis, we 
treated Pearson correlation coefcient, r , model fts as a continuous 
dependent variable. Session had a signifcant main efect on Pearson 

https://1,47)=0.69
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Figure 2: Diferences in the TPavд values across Session 1 and 2 for people with and without limited fne motor function using 
(a) Traditional A×W design, (b) Using Guiard’s design (A=256), (c) Using Guiard’s design (A=384), and (d) Using Guiard’s design 
(A=512). 

Session LFMF 
d fn d fd F p Cohen’s d d fn d fd F p Cohen’s d 

Traditional A × W 1 48 24.08 < .001 1.42 1 47 34.30 < .001 1.71 
Guiard’s A = 256 1 43 10.68 < .05 1.00 1 42 17.57 < .001 1.30 
Guiard’s A = 384 1 41 1.41 0.24 0.37 1 40 72.53 < .001 2.69 
Guiard’s A = 512 1 40 15.27 < .001 1.24 1 39 22.76 < .001 1.53 

Session × LFMF Age 
d fn d fd F p Cohen’s d d fn d fd F p Cohen’s d 

Traditional A × W 1 48 1.05 0.31 0.30 1 47 0.69 0.41 0.24 
Guiard’s A = 256 1 43 0.11 0.74 0.10 1 42 1.94 0.17 0.43 
Guiard’s A = 384 1 41 0.05 0.83 0.07 1 40 0.75 0.39 0.27 
Guiard’s A = 512 1 40 1.33 0.26 0.37 1 39 2.05 0.16 0.46 

Table 1: Summary results from 50 participants with and without limited fne motor function (LFMF) using a mixed-efects 
model analysis of variance [20, 40]. The statistical model was TP = Session × LFMF + Age + Subject, where Subject was modeled 
with a random intercept. Throughput values were calculated using both the traditional A×W design as well as Guiard’s Form × 
Scale design [26]. Cohen’s d is a measure of efect size [14]. 

correlation coefcients (F (1,48)=5.79, p<.05, Cohen’s d=0.69). Specif-
ically, the average Pearson correlation coefcient, r , for Session 1 
was .85 (SD=0.09). For Session 2, it was .87 (SD=0.09). The mean 
absolute Pearson correlation coefcient, r , diference between ses-
sions was 0.07 (SD=0.08). This result indicates a signifcant change 

in model ftness from one session to the next, calling the test-retest 
reliability of Fitts’s law’s model ftness into question. 

Our results also present a signifcant main efect of LFMF on Pear-
son correlation coefcients (F (1,47)=8.76, p<.05, Cohen’s d=1.35). 
Specifcally, participants with limited fne motor function had an 
average r of 0.81 (SD=0.09), while participants without limited fne 

https://1,47)=8.76
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Figure 3: TPavд values across Session 1 and 2 for people with and without limited fne motor function using (a) Traditional 
A×W design, (b) Using Guiard’s design (A=256), (c) Using Guiard’s design (A=384), and (d) Using Guiard’s design (A=512). 

People with Limited Fine Motor Function (N =20) 
N T Ps1 SDs1 T Ps2 SDs2 ∆T Pavд 

Traditional A×W 20 2.78 1.06 2.98 1.08 0.22 (9.16%) 
Guiard’s A = 256 16 2.80 1.10 3.02 1.08 0.36 (11.30%) 
Guiard’s A = 384 15 2.48 0.93 2.56 0.88 0.19 (5.25%) 
Guiard’s A = 512 13 2.71 1.37 3.03 1.42 0.32 (14.60%) 

People without Limited Fine Motor Function (N =30) 
N T Ps1 SDs1 T Ps2 SDs2 ∆T Pavд 

Traditional A×W 30 4.70 0.44 4.83 0.46 0.23 (2.94%) 
Guiard’s A = 256 29 4.48 0.53 4.66 0.54 0.34 (4.38%) 
Guiard’s A = 384 28 4.69 0.40 4.74 0.47 0.27 (1.24%) 
Guiard’s A = 512 29 4.94 0.52 5.11 0.50 0.37 (3.91%) 

Table 2: Summary results over (top) 20 subjects with limited fne motor function and (bottom) 30 subjects without limited fne 
motor function for the test-retest reliability of Fitts’s law’s throughput metric using 1-D reciprocal pointing tasks. ∆TPavд 
shows the mean absolute and percentage diference between the throughput values obtained from Session 1 and 2 using the 
mean-of-means approach to throughput calculation [58]. 

motor function had an average r of 0.89 (SD=0.08). This result in- We examined the Session × LFMF interaction to investigate 
dicates that participants with limited fne motor function had an whether the Pearson’s r was proportionally similar or diferent for 
average Pearson correlation coefcient, r , that was 8.76% lower each of the fne motor function groups over the two sessions. No 
than those without limited fne motor function. statistically signifcant interaction efect was found (F (1,47)=1.37, 

https://1,47)=1.37
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Figure 4: Pearson correlation coefcients (r ) across Session 1 and 2 for people with and without limited fne motor function 
using (a) Traditional A×W design, (b) Using Guiard’s design (A=256), (c) Using Guiard’s design (A=384), and (d) Using Guiard’s 
design (A=512). 

n.s.). Similarly, Age did not have a signifcant efect (F (1,47)=3.58, 
n.s.). 

Next, we performed a second analysis using a binary representa-
tion of Pearson’s r . Prior work [4, 21, 43, 44, 58] generally indicates 
that r values at or above .90 indicate “good” model fts for Fitts’s 
law. Out of the 20 participants with limited fne motor function, 
each of whom completed two sessions for a total of 40 sessions, 3 
sessions (7.5%) had outcomes where r was at or above .90. Similarly, 
out of the 30 participants without limited fne motor function, each 
of whom also completed two sessions for a total of 60 sessions, 39 
sessions (65%) had outcomes where Pearson’s r was at or above 
.90. Our statistical tests show that only LFMF had a signifcant 
main efect on the Pearson correlation coefcients dichotomized 
as “good” or “poor” model fts (χ2(1, N =50)=8.76, p<.05, Cohen’s 
d=1.53). This result indicates that Fitts’s law as a model fts poorly 
for participants with limited fne motor function, but fts well for 
participants without limited fne motor function. Tables 4 and 5 
show the summary of these results. 

In addition, for both analyses of model ftness and both groups, 
self-reported fatigue and stress level did not have any signifcant 
efect. 

5.2.2 Using Guiard’s Form × Scale Design. Similar to our calcula-
tions for the test-retest reliability of Fitts’s law’s throughput metric, 

following Guiard’s recommendation [26], we regenerated our Pear-
son’s r values, dependent variables and error rates separately for 
each of the target amplitudes (A). We re-ran our analyses after 
excluding participants for whom the recalculated error rates were 
greater than 8%. This process excluded 5, 7, and 8 participants from 
our original 50 for each value of A, respectively. 

Using Guiard’s design [26], the efect of our model terms was 
inconsistent across varying values of A, both when considering 
Pearson correlation coefcient, r , as a continuous measure and as a 
dichotomized “good” vs. “poor” ft measure. Our summary of these 
results can be seen in Tables 4 and 5. 

6 DISCUSSION 
Our experiment shows that Fitts’s law’s throughput metric and 
model ftness ofer low test-retest reliability, both for people with 
and without limited fne motor function. Furthermore, test-retest 
reliability is lower for people with limited fne motor function. 
Additionally, Fitts’s law’s model ftness, as conveyed by Pearson 
correlation coefcients, is generally “good” (r ≥ .90) for people 
without limited fne motor function (M=.89, SD=0.08), but gener-
ally “poor” (r < .90) for people with limited fne motor function 
(M=.81, SD=0.09). Taken together, these fndings cast doubt on 
the suitability of Fitts’s law as a movement model for evaluating 
assistive pointing devices and techniques. 

https://50)=8.76
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Session LFMF 
d fn d fd F p Cohen’s d d fn d fd F p Cohen’s d 

Traditional A × W 1 48 5.79 < .05 0.69 1 47 21.40 < .001 1.35 
Guiard’s A = 256 1 43 0.01 0.94 0.02 1 42 4.08 0.05 0.62 
Guiard’s A = 384 1 41 4.30 < .05 0.65 1 40 7.89 < .05 0.89 
Guiard’s A = 512 1 40 0.23 0.64 0.15 1 39 0.45 0.51 0.22 

Session × LFMF Age 
d fn d fd F p Cohen’s d d fn d fd F p Cohen’s d 

Traditional A × W 1 48 1.37 0.25 0.34 1 47 3.58 0.07 0.55 
Guiard’s A = 256 1 43 1.17 0.29 0.33 1 42 0.67 0.42 0.25 
Guiard’s A = 384 1 41 0.01 0.94 0.02 1 40 5.49 < .05 0.74 
Guiard’s A = 512 1 40 0 0.99 0 1 39 0.01 0.92 0.03 

Table 3: Summary results from 50 participants with and without limited fne motor function (LFMF) using a mixed-efects 
model analysis of variance [20, 40]. The statistical model was Pearson correlation coefcient, r = Session × LFMF + Age + Subject, 
where Subject was modeled with a random intercept to account for repeated measures. Pearson correlation coefcients (r ) 
were calculated using both the traditional A×W design as well as Guiard’s Form × Scale design [26]. Cohen’s d is a measure of 
efect size [14]. 

Session LFMF 
N χ2 p Cohen’s d N χ2 p Cohen’s d 

Traditional A × W 50 1.50 0.22 0.45 50 8.76 < .05 1.53 
Guiard’s A = 256 45 1.08 0.30 0.26 45 5.55 < .05 0.98 
Guiard’s A = 384 43 1.19 0.28 0.33 43 5.88 < .05 0.86 
Guiard’s A = 512 42 0.03 0.86 0.06 42 1.24 0.27 0.34 

Session × LFMF Age 
N χ2 p Cohen’s d N χ2 p Cohen’s d 

Traditional A × W 50 0 0.96 0.24 50 2.06 0.15 0.33 
Guiard’s A = 256 45 1.08 0.30 0.26 45 0.58 0.45 0.25 
Guiard’s A = 384 43 1.19 0.28 0.33 43 3.54 0.06 0.68 
Guiard’s A = 512 42 0.26 0.61 0.17 42 0.01 0.93 0.03 

Table 4: Summary results from 50 participants with and without limited fne motor function (LFMF) using mixed-model logis-
tic regression [24]. The statistical model was Pearson correlation coefcient, r = Session × LFMF + Age + Subject, where Subject 
was modeled with a random intercept to account for repeated measures. Fitts’s law as a model was considered to have a “good 
ft” when r was ≥ .90. Pearson correlation coefcients (r ) were calculated using both the traditional A×W design as well as 
Guiard’s Form × Scale design [26]. Cohen’s d is a measure of efect size [14]. 

People with LFMF (N =20) People without LFMF (N =30) 
N No. of Good Model-fts % N No. of Good Model-fts % 

Traditional A×W 40 3 7.50 60 39 65.00 
Guiard’s A = 256 34 14 41.18 58 48 82.76 
Guiard’s A = 384 33 18 54.55 56 40 71.43 
Guiard’s A = 512 33 17 51.52 58 39 67.24 

Table 5: Results from 100 participant sessions – 20 participants with, and 30 participants without, limited fne motor function 
(LFMF) – from the Fitts’s law experiment using 1-D reciprocal pointing tasks. Fitts’s law models were considered to have 
“good” ftness when their Pearson correlation coefcient, r , was ≥ .90. “No. Good Model Fits” columns represent the number 
of sessions out of total sessions for which this criterion was met. 
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Our analyses included the traditional A×W design as well as 
Guiard’s Form × Scale design [26]. In our results, the Form × Scale 
design did not always produce consistent fndings. For example, 
Guiard’s design produced diferent main efects of Session, Limited 
Fine Motor Function (LFMF), and Age for diferent target distances 
(A), as shown in Table 5. Given the inconsistency in fndings from 
the various Guiard designs, we focus further discussion of our 
results based on the outcomes from the traditional A×W design, 
which mostly agreed with the Guiard designs. 

It is important to emphasize that even though the test-retest 
reliability of Fitts’s throughput metric is low for both participant 
groups, it is lower for people with limited fne motor function, as 
evident from the mean throughput diferences between the two 
sessions for the two participant groups (2.94% vs . 9.16%). Unsur-
prisingly, the throughput values for people with limited fne motor 
function are not only lower than those for people without lim-
ited fne motor function, but they also have greater variation in 
range (see Figures 2 and 3). This observation suggests that Fitts’s 
law should be employed with caution when developing assistive 
pointing devices and techniques. 

Interestingly, despite the signifcant overall diferences between 
the throughput values across sessions, the diferences for some 
participants in both groups were minimal (as depicted in Figure 2). In 
other words, for this subset of participants, Fitts’s law’s throughput 
metric was found to be reliable across the sessions. Similarly, the 
presence of participants in both participant groups for whom Fitts’s 
law was indeed a good model (see Figure 4) suggests that while 
Pearson’s r changes signifcantly across sessions for both groups, 
there are people for whom it is a “reliable” model. Future work 
could examine precisely what kinematic characteristics make for 
reliable Fitts’s law models across sessions. 

Our experiment confrms that Fitts’s law does indeed produce 
good model fts for people without limited fne motor function 
(39 of 60 sessions produced good model fts), but not for people 
with limited fne motor function (only 3 of 40 sessions). In fact, the 
results from only one participant with limited fne motor function 
showed an r greater than .90 in both sessions, suggesting that 
Fitts’s law is generally unsuitable for people with limited fne motor 
function. This result adds to the debate on the suitability of Fitts’s 
law for people with limited fne motor function, in which some 
prior work has found good model fts for people with limited fne 
motor function [57, 66, 67], while other prior work has found the 
opposite [8, 22, 27]. It is worth remembering that in the context 
of Fitts’s law, the Pearson correlation coefcient, r , represents the 
correlation between Fitts’s law’s efective indices of difculty (IDe ) 
and participants’ movement times (MT ). Generally, the harder the 
pointing task, the higher the index of difculty, and the higher the 
movement time. But for people with limited fne motor function, a 
low Pearson’s r might be due to several other factors besides the 
index of difculty of a pointing task. Spasticity, tremors, fatigue, 
limited range of motion, or the efects of medication all might make 
any given pointing task more difcult at any given time. 

The fact that our results question the test-retest reliability of 
Fitts’s law’s throughtput metric and model ftness for people with 
and without limited fne motor function has important implica-
tions for past and future research. As of the date of this writing, 
a keyword search for “Fitts’s law” on the ACM Digital Library 

(http://dl.acm.org/) shows that 1.5% of the total publications at 
ACM ASSETS3, 2.5% at ACM TACCESS4, and 2.4% of the total publi-
cations at ACM CHI5 mention Fitts’s law. Together, this constitutes 
a total of 511 publications in the ASSETS, TACCESS, and CHI pro-
ceedings that use or refer to Fitts’s law. Depending on the capacity 
in which these publications employ Fitts’s law, their claims could 
warrant further scrutiny based on our fnding that Fitts’s law pro-
vides a poor model for people with limited fne motor function. 
Additionally, given that our results indicate that the test-retest reli-
ability of Fitts’s law’s throughput metric and model ftness is low 
for both fne motor function groups, the results from these publica-
tions could be called into question concerning their use of Fitts’s 
law. 

6.1 Recommendations 
Based on our fndings, we ofer the following recommendations 
for future studies that intend to use Fitts’s law to model human 
pointing performance: 

(1) If time and resources allow, measure throughput over multi-
ple sessions. Given that our throughput data were normally 
distributed, both for people with and without limited fne 
motor function, it is reasonable to calculate and utilize the 
mean throughput value for a given participant over multiple 
sessions. 

(2) Similarly, calculate model ftness over multiple sessions. Un-
like throughput, model ftness was lognormally distributed, 
so we recommend using the median Pearson correlation co-
efcient, r , for a given participant when judging the ftness 
of a Fitts’s law model for that person. 

(3) When quantifying human pointing performance for people 
with limited fne motor function, consider alternatives to 
Fitts’s law. For example, speed and accuracy each can be 
reported individually. Custom regression equations can be 
ft to individual participants and involve interface-specifc 
terms other than just target distance (A) and target size (W ). 
For example, the Ability Modeler by Gajos et. al [22, 23] 
takes this approach. 

7 FUTURE WORK 
Our fndings indicate that the test-retest reliability of Fitts’s law’s 
throughput metric and model ftness is low for both people with 
and without limited fne motor function. However, despite the over-
all statistically signifcant main efect of Session and Limited Fine 
Motor Function on throughput, there was the presence of partic-
ipants in both fne motor function groups for whom the point-
ing performance, as measured via Fitts’s law’s throughput metric, 
was consistent over the two sessions. Similarly, when considering 
model ftness, 42 out of the 100 total participant sessions produced 
good model fts. Future work could therefore examine what specifc 
kinematic characteristics of a person’s movement make that move-
ment suitable for modeling by Fitts’s law. Prior kinematic analyses 
3https://dl.acm.org/action/doSearch?AllField="ftts’s 
law"&SpecifedLevelConceptID=119685&expand=all
4https://dl.acm.org/action/doSearch?AllField="ftts’s 
law"&ConceptID=118230&expand=all&SeriesKey=taccess
5https://dl.acm.org/action/doSearch?AllField="ftts’s 
law"&SpecifedLevelConceptID=119596&expand=all 
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[7, 19, 36, 52, 61] might be adapted to formulating individualized 
movement models for people with limited fne motor function. If 
the precise kinematic properties that make Fitts’s law suitable can 
be discovered, then one could determine a priori which participants 
should and should not be modelable by Fitts’s law, and why. 

Additionally, our experiments relied on using a mouse as the 
pointing device, and calculated throughput values from 1-D recip-
rocal pointing tasks, as suggested by ISO 9241-9 [33]. While each 
participant used the same device and the same task dimensionality 
across both sessions, diferent settings for such factors are worth 
exploring. Hence, future work can examine Fitts’s law’s throughput 
metric and model ftness using a diferent pointing device, such as 
a trackball [5], and a diferent task dimensionality, such as the 2-D 
“ring of circles” task [44]. 

8 CONCLUSION 
Fitts’s law has been extensively utilized for decades to quantify 
human pointing performance, both within and outside the feld of 
HCI. In this work, we conducted a Fitts’s law experiment over two 
sessions with 50 participants with and without limited fne motor 
function. Specifcally, we analyzed Fitts’s law’s throughput metric 
and model ftness for both populations using the traditional A×W 
experiment design, as well as Guiard’s [26] Form × Scale design. 
Our results indicate that the test-retest reliability of Fitts’s law’s 
throughput metric and model ftness is low for both fne motor func-
tion groups, and lower for people with limited fne motor function. 
Furthermore, Fitts’s law as a model fts relatively poorly for people 
with limited fne motor function. In light of our fndings, we urge 
caution when employing Fitts’s law in single sessions and for peo-
ple with limited fne motor function. It is our hope that our fndings 
and recommendations will help improve the measurement of hu-
man pointing performance, especially concerning the development 
and evaluation of assistive pointing devices and techniques. 
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A PARTICIPANTS WITH LIMITED FINE MOTOR FUNCTION 

Table 6: Participants with limited fne motor function, their gender identifcation, age, diagnosis, and functional limitations. 
Under the Gender column, M = Male, F = Female, and GQ = Genderqueer. 

Participant Gender Age Diagnosis Functional Limitations 
P35 GQ 23 Congenital Amputee Low strength, Stifness, Numbness, Pain, Dif-

fculty gripping, Difculty holding, Difculty 
forming hand postures 

P36 F 51 Orsteoarthritis, De Quervain’s Poor coordination, Low strength, Stifness, Pain, 
Difculty gripping, Difculty lifting, Difculty 
holding, Difculty forming hand postures, Dif-
fculty controlling movement direction 

P37 F 31 Muscular Dystrophy Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Pain, Difculty gripping, Dif-
culty lifting, Difculty holding, Difculty form-
ing hand postures, Difculty controlling move-
ment direction, Difculty controlling movement 
distance 

P38 M 69 Essential Tremor Tremor, Difculty holding still, Difculty con-
trolling movement direction, Difculty control-
ling movement distance 

P39 F 63 Lupus, Cerebral Palsy Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Tremor, Spasm, Stifness, 
Numbness, Pain, Difculty gripping, Difculty 
lifting, Difculty holding, Difculty holding still, 
Difculty forming hand postures, Difculty con-
trolling movement direction, Difculty control-
ling movement distance 

P40 F 69 Rheumatoid Arthritis Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Spasm, Stifness, Pain, Dif-
culty gripping, Difculty lifting, Difculty hold-
ing, Difculty forming hand postures 

P41 F 67 Essential Tremor, Arthritis Low strength, Tremor, Spasm, Stifness, Pain, 
Difculty gripping, Difculty holding still, Dif-
fculty controlling movement direction 

P42 F 25 Spinal Cord Injury Rapid fatigue, Low strength, Spasm, Stifness, 
Pain, Difculty lifting, Difculty holding, Dif-
culty forming hand postures 

P43 F 27 Spinal Cord Injury Rapid fatigue, Poor coordination, Low strength, 
Stifness, Difculty gripping, Difculty holding, 
Difculty holding still, Difculty forming hand 
postures 

P44 F 37 Spinal Cord Injury Rapid fatigue, Low strength, Slow movements, 
Tremor, Spasm, Stifness, Pain, Difculty grip-
ping, Difculty lifting, Difculty holding, Dif-
culty forming hand postures, Difculty control-
ling movement direction, Difculty controlling 
movement distance 

P45 F 31 Charcot Marie Tooth Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Tremor, Spasm, Stifness, 
Numbness, Difculty gripping, Difculty lift-
ing, Difculty holding, Difculty holding still, 
Difculty forming hand postures 
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P46 F 27 Rheumatoid Arthritis Rapid fatigue, Poor coordination, Low strength, 
Stifness, Difculty gripping, Difculty lifting, 
Difculty holding, Difculty forming hand pos-
tures, Difculty controlling movement direc-
tion, Difculty controlling movement distance 

P47 GQ 24 Symbrachydactyly Rapid fatigue, Poor coordination, Pain, Dif-
culty gripping, Difculty lifting, Difculty hold-
ing, Difculty forming hand postures 

P48 F 70 Spinal Cord Injury Poor coordination, Low strength, Slow move-
ments, Tremor, Spasm, Stifness, Numbness, 
Pain, Difculty gripping, Difculty lifting, Dif-
culty holding, Difculty forming hand postures, 
Difculty controlling movement direction, Dif-
fculty controlling movement distance 

P49 M 34 Spinal Cord Injury Poor coordination, Low strength, Spasm, Stif-
ness, Pain, Difculty gripping, Difculty lifting, 
Difculty holding, Difculty forming hand pos-
tures 

P50 F 54 Charcot Marie Tooth Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Stifness, Difculty gripping, 
Difculty lifting, Difculty holding, Difculty 
holding still, Difculty forming hand postures 

P51 M 38 Spinal Cord Injury Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Spasm, Stifness, Pain, Dif-
culty gripping, Difculty lifting, Difculty hold-
ing, Difculty forming hand postures 

P52 F 63 Bell’s palsy Poor coordination, Low strength, Slow move-
ments, Difculty holding 

P53 M 32 Spinal Cord Injury Low strength, Slow movements, Spasm, Stif-
ness, Difculty gripping, Difculty lifting, Dif-
fculty holding, Difculty holding still, Dif-
culty forming hand postures, Difculty control-
ling movement direction, Difculty controlling 
movement distance 

P54 M 31 Spinal Cord Injury Rapid fatigue, Poor coordination, Low strength, 
Slow movements, Spasm, Stifness, Numbness, 
Pain, Difculty gripping, Difculty lifting, Dif-
fculty holding, Difculty holding still, Dif-
culty forming hand postures, Difculty control-
ling movement direction, Difculty controlling 
movement distance 

P55 F 54 Spinal Cord Injury Poor coordination, Low strength, Slow move-
ments, Spasm, Stifness, Numbness, Difculty 
gripping, Difculty lifting, Difculty holding, 
Difculty forming hand postures, Difculty con-
trolling movement direction, Difculty control-
ling movement distance 
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