US008621034B1

a2z United States Patent (10) Patent No.: US 8,621,034 B1
Kembel et al. 45) Date of Patent: Dec. 31, 2013
(54) INDEXING, SORTING, AND CATEGORIZING (56) References Cited
APPLICATION MEDIA PACKAGES
U.S. PATENT DOCUMENTS
(76) Inventors: John Albert Kembel, Palo Alto, CA 5375.199 A 12/1994 Harrow et al. ... 715/771
(US); George Andrew Kembel, Menlo 5,599,756 A 2/1997 MatSuooocorccrrerirris 501/127
Park, CA (US); Daniel S. Kim, Palo 5,625,781 A 4/1997 Cline et al.
Alto, CA (US); John Russell, Palo Alto, gggg ; fli? ﬁ 1(7); }gg; gerguiont | 1716
. ,682, posato et al.
CA (US); Jake Wobbrock, Palo Alto, 5740540 A 4/1998 Reilly et al.
CA (US); Geoffrey S. Kembel, Menlo 5,745,718 A 4/1998 Clineetal.cocoonn..... 715/777
Park, CA (US); Jeremy L. Kembel, Palo 5,761,662 A 6/1998 Dasan
AhO CA (US) LyIlIl D. Gabbay 5,774,670 A 6/1998 Montullicccoeneee 395/200.57
Sunnyvale, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
%atselg T Slezer;declilogrl Zijmed under 35y WO0180086 A2 10/2001
S.C. 154(b) by Vs OTHER PUBLICATIONS
(21) Appl. No.: 11/932,663 Alexa 1.4.1 Support Pages, 9 pages, www.alexa.com/support/index
1.html, Jan. 1999.
(22) Filed: Oct. 31, 2007)
(Continued)
Primary Examiner — Sulaiman Nooristany
Related U.S. Application Data (74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
(63) Continuation of application No. 09/558,925, filed on Pittman LLP
Apr. 26, 2000, now Pat. No. 7,660,868. (57) ABSTRACT
(60) Provisional application No. 60/131,083, filed on Apr. An Application Media Package for accessing and displaying
26, 1999, provisional application No. 60/131,114, Internet content includes a definition for rendering a graphi-
filed on Apr. 26, 1999, provisional application No. cal user interface and a URL pointing to the Internet Content
60/131,115, filed on Apr. 26, 1999, provisional to be downloaded and presented within said user interface. An
application No. 60/176,687, filed on Jan. 18, 2000 Application Media viewer may be used in association with
provisional application No. 60/176,699, filed on Jan. the Application Media Package to manage the collection,
18, 2000. organization, sharing, and rendering of a plurality of such
Packages. A user is provided with the option of arranging
(51) Int.CL multiple Application Media Packages, such as in groups, and
GOGF 17/00 (2006.01) such as vertically, horizontally, etc. By selecting, dragging
(52) U.S.CL and dropping, Packages are snapped or docked together such
USPC oo 709,217 that they may be move individually or in mass on the client
(58) Field of Classification Search display. The organization and groupings may be shared with
USPC oo 709/219,217 others.

See application file for complete search history.

Client 199

Request Dot
Definition

u
:

ui !
Retrieve Dot :
Definition

Dot Server 153

Retrieve Dot
Definition from
Template DB

Transmit Dot
Definition to

Build Dot
Frame
Request Dot
Content

H

us 4
Present Dot H
Content in Dot
Frame

12 Claims, 14 Drawing Sheets

Content Server 155

242

243

Transmit Dot il
Content to
Client

US 8,621,034 B1

Page 2
(56) References Cited 6,343,377 Bl 1/2002 Gessneretal. 717/10
6,356,905 Bl 3/2002 Gershmanetal. ... 707/10
U.S. PATENT DOCUMENTS 6,369,840 Bl 4/2002 Barnett et al.
6,370,552 Bl 4/2002 Bloomfield 715/513
5794230 A 8/1998 Horadan et al. 6,374,273 Bl 4/2002 Webstercccooen 707/513
5796393 A 8/1998 MacNaughton et al. 6,385,506 Bl 52002 Wiseretal. ..ccccococcorrere 705/51
5.796.952 A 8/1998 Davis et al. 6,393,407 Bl 5/2002 Middleton et al.
5801702 A 0/1998 Dolan et al. 6,401,134 Bl 6/2002 Razavietal ... 709/310
5802530 A 9/1998 Van HOFE vvvvvee, 715/513 6,411,992 Bl 6/2002 Srinivasan et al.
5:805:829 A 0/1998 Cohenetal. oo, 395/200.32 6,414,677 B1* 7/2002 Robertsonetal. 345/419
5,809,248 A 9/1998 Vidovic 6,418,440 Bl 7/2002 Kuo et al.
5,818,446 A 10/1998 Bertramet al. 715/746 6,434,563 Bl 8/2002 Pasquali et al.
5,835,088 A 11/1998 Jaaskelainen, Jr. 715/303 6,434,508 Bl 82002 Gish .cooooiovivviirnnnnns 709/203
5,838,906 A 11/1998 Doyle et al. 6,452,609 Bl 9/2002 Katinsky et al. ... 345/716
5,860,068 A 1/1999 COOK oo, 705/26.81 6,453,348 Bl 9/2002 Bamnieretal. 709/225
5,864,676 A 1/1999 Beer et al. .. 709/229 6,460,029 Bl 10/2002 Fries et al.
5,864,868 A 1/1999 CONLOLS wevvevvereerrerrerrnnen, 707/104 6,476,833 Bl 11/2002 Moshfeghic......... 345/854
5.890.172 A 3/1999 Borman et al. 6,484,149 B1 11/2002 Jammes et al.
5803.091 A 4/1999 Hunt et al. 6,487,566 Bl 11/2002 Sundaresan
5806533 A 4/1999 Ramos et al. 395/680 6,487,663 Bl 11/2002 Jaisimha etal. 713/193
5:918:237 A 6/1999 Montalbano 715/206 6,496,203 B1 12/2002 Beaumont et al. ... 345/762
5,919,247 A 7/1999 Van Hoff et al. . 709/217 6,510,466 Bl 1/2003 Coxetal.covciernn. 709/229
5,922,044 A 7/1999 Banthia 709/203 6,537,324 Bl 3/2003 Tabata etal.
5,923,845 A 7/1999 Kamiya et al. . 709/206 6,538,673 Bl 3/2003 Maslov
5,923,885 A 7/1999 Johnson et al. 717/176 6,549,612 B2 4/2003 Gifford et al.
5,948,061 A 9/1999 Merriman et al. 6,560,639 Bl 5/2003 Dan et al.
5,959,621 A 9/1999 Nawazetal.cc...... 345/329 6,571,245 B2 5/2003 Huang et al.
5,966,715 A 10/1999 Sweeney etal. 707/203 6,594,682 B2 7/2003 Peterson et al.
5,973,692 A 10/1999 Knowlton et al. 345/348 6,606,657 Bl 82003 Zilberstein et al. 709/224
5974,446 A 10/1999 Sonnenreich et al. 6,629,143 Bl 9/2003 Pang e 709/226
5,974,546 A 10/1999 Anderson ..o, 713/2 6,662,341 Bl 12/2003 Cooper et al. ... 715/513
5077964 A 11/1999 Williams et al. 6,681,368 Bl 1/2004 Kawabata 715/501.1
5083227 A 11/1999 Nazem ef al. 6,687,745 Bl 2/2004 Francoetal. 709/219
5,987,513 A 11/1999 Prithviraj et al. 6,691,130 B2 2/2004 Kawasaki et al. ... 707/102
5995756 A 11/1999 Hermann 6,694,484 Bl 2/2004 Mueller ... 715/513
6.006.252 A 12/1999 Wolfe 6,718,015 Bl 4/2004 Berstisccoeveininnne 379/88.17
6:012:090 A 1/2000 Chung et al. 6,724,403 Bl 4/2004 Santoro etal. 345/765
6,012,098 A 1/2000 Bayeh et al. 6,751,606 Bl 6/2004 Fries et al.
6,018,344 A 1/2000 Harada et al. 6,757,716 Bl 6/2004 Blegenetal. 709/217
6,023,698 A 2/2000 Lavey, Jr. etal.c......... 707/10 6,766,454 Bl 7/2004 Riggins 713/185
6.026.433 A 2/2000 D’Arlach et al. 6,784,900 Bl 8/2004 Dobronsky et al.
6.031.904 A 2/2000 Anetal. oo, 379/201 6,816,880 Bl 11/2004 Strandberg et al.
6.034.652 A 3/2000 Freiberger et al. . 215730 6,819,343 Bl 11/2004 Sobeski et al. 715/848
6,044,403 A 3/2000 Gerszberg et al. . . 709/225 6,819,345 Bl 112004 Jomes etal.ccooovv.re. 345/856
6,061,695 A 5/2000 Slivka et al. 707/513 6,834,302 Bl 12/2004 Harvellcccccoeeene. 709/224
6,061,696 A 5/2000 Leeetal. ..ooorrivnnrn, 707/513 6,842,779 Bl 1/2005 Nishizawa
6,065,044 A 5/2000 Ogasawara 6,879,994 Bl 4/2005 Matsliach et al. 709/204
6,088,717 A 7/2000 Reed etal. ..oooovvveevern. 709/201 6,938,041 Bl 82005 Brandow etal. 707/10
6091411 A 7/2000 Straub et al. . 715/747 7,039,857 B2 5/2006 Becketal. 715/500.1
6,091,412 A 7/2000 Simonoff et al. 345/335 7,039,859 Bl 5/2006 Sundaresan .. o 715/513
6,101,510 A 8/2000 Stone et al. 7,076,737 B2 7/2006 Abbottetal. ... 715/744
6,104,391 A 8/2000 Johnston, Jr. et al. . 715/745 7,107,548 B2 9/2006 Shafron
6,105,063 A 8/2000 Hayes, Jt. 709/223 7,216,300 B2 52007 Dang
6,115,040 A 9/2000 Bladow et al. . 345/335 7,222,303 B2 52007 Orenetal. ..ccoonrrrnn. 715/744
6,128,655 A 10/2000 Fields etal. 709/219 7,356,569 Bl 4/2008 Kembel et al.
6.133.916 A 10/2000 Bukszar et al. 7,574,649 Bl 82009 Safarsetal. ... 715/200
6.161.112 A 12/2000 Cragun et al. 7,660,868 Bl 2/2010 Kembel etal. 709/217
6,177,936 Bl 1/2001 Cragun 7,756,967 Bl 7/2010 Kembel etal. 709/224
6.192.407 Bl 2/2001 Smith etal. wooveveoveoviin, 709/229 7,792,947 Bl 9/2010 Kembel et al. 709/224
6.199.082 Bl 3/2001 Ferrel ot al. 8,020,083 Bl 9/2011 Kembel etal. 715/201
6:215:490 Bl 4/2001 Kaply ..coocccovvvrvivirannnns 715/788 8,346,887 Bl 1/2013 Kembel et al. 709/217
6.216.141 Bl 4/2001 Straub et al. .oveveeven, 707/513 8,510,406 B2 82013 Kembel etal. 709/217
6.230.173 Bl 5/2001 Ferrel et al. 8,510,407 Bl 82013 Kembel etal. 709/217
6.237.030 Bl 52001 Adams et al. 8,521,833 Bl 82013 Kembeletal. .. 709/217
6:240:555 Bl 5/2001 Shoffetal. oo, 725/110 2001/0011341 Al 82001 Hayes, Jr. et al. L T712/11
6.268.856 Bl 7/2001 Bruck et al. 2001/0042107 Al 112001 Palmcccoooevvviiininnn. 709/218
6.275.854 Bl 82001 Himmel et al. 2002/0065896 Al 5/2002 Burakoffetal. 709/206
6.278.448 Bl 82001 Brown et al. ..., 345/333 2002/0078136 Al 6/2002 Brodsky et al. 709/203
6:278:449 Bl 8/2001 Sugiarto etal. 715/826 2002/0089526 Al* 7/2002 Buxton et al. .. 345/700
6,286,034 Bl 9/2001 Satoetal. 709/204 2002/0089536 Al 7/2002 Dang ... 345/749
6,289,362 Bl 9/2001 Van Der Meer 715/273 2002/0091697 Al 7/2002 Huangetal. 707/10
6,292,185 Bl 9/2001 Koetal. 2002/0130900 Al 9/2002 Davis 345/744
6,292,186 Bl 9/2001 Lehmanetal. 345/335 2002/0161879 Al 10/2002 Richard e 7097223
6,297,819 Bl 10/2001 Furst 2003/0051027 Al 3/2003 Aupperle et al. ... 709/224
6,314,451 Bl 11/2001 Landsman et al. 2003/0069944 Al* 4/2003 Barlock et al. 709/220
6,317,759 Bl 11/2001 Osmondccco........ 715/513 2004/0041836 Al 3/2004 Zaner etal. 345/751
6,339,826 B2 1/2002 Hayes, Jr. etal. 713/166 2004/0165007 Al 82004 Shafron T15/781
6,341,305 B2 1/2002 Wolfe 2005/0273718 Al 12/2005 Naas v 715/745
6,342,907 Bl 1/2002 Petty etal.ccooo....... 345/762 2008/0040681 Al 2/2008 Synstelien et al. 715/765

US 8,621,034 B1
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0134018 Al 6/2008 Kembel etal. 715/234

2008/0163202 Al 7/2008 Kembel etal. . . 717178
2008/0229217 Al 9/2008 Kembel etal. . . 715/760
2010/0235757 Al 9/2010 Kembel etal. . . 715/745
2010/0257442 Al 10/2010 Kembel etal. . . 715/234
2012/0117479 Al 5/2012 Kembel etal. 715/736

OTHER PUBLICATIONS

Alexa general faqs, 4 pages, www.alexa.com/whatisalexa/faq.
html#general, Jan. 1999.

“Custom Explorer Bars Give Sites an Edge,” 2 pages, www.
microsoft.com/Windows/le/IES/custom.asp, Jan. 1999.

“Flexibility Across the Web,” 2 pages, www.microsoft.com/Win-
dows/le/IES/choice.asp, Jan. 1999.

“Web Accessories Overview,” 2 pages, www.microsoft.com/work-
shop...er/accesory/overview/overiew.asp, Jan. 1999.

“Browser Extensions Overview,” 2 pages, www.microsoft.com/
workshop/browser/ext/overview/overview.asp, Jan. 1999.

Alexa Technology, 4 pages, www.alexa.com/support/technology.
html, Jan. 1999.

“Creating Custom Explorer Bars and Desk Bands,” 13 pages, www.
microsoft.com/workshop/browser/ext/overview/Bands.asp, Jan.
1999.

Alexa Internet Tour, 1 page, www.alexa.com.whatisalexa/index/
html, Jan. 1999.

“Revolutionary Ad Model,” Advertise on Alexa, 1 page, www.alexa.
com/company/advertise. html, Jan. 1999.

“The Alexa Service Appears on Your Desktop in Its Own Window,” 1
page, www.alexa.com/tour/overview.html, Jan. 1999.

“Know More About The Sites You Visit,” 1 page, www.alexa.com/
tour/site__stats html, Jan. 1999,

“Find Related Web Sites,” 1 page, www.alexa.com/tour/related
links html, Jan. 1999.

500,000 Sites and Growing,: 1 page, www.alexa.com/tour/archive.
html, Jan. 1999.

“Research Tools at Your Fingertips,” 1 page, www.alexa.com/tour/
ebhtml, Jan. 1999.

“Reporting,” 1 page, www.alexa.com/company/reporting.html, Jan.
1999.

“Alexa Internet’s Related Links Integrated Into Netscape Browser,” 1
page, www.alexa.com/company/netscape.html, Jan. 1999.
“Demographics,” alexa.com/company/demographics.html, Jan.
1999.

“Ads Appear in the Pop-up and on the Bar,” 1 page, www.alexa.com/
company/adspecs.html, Jan. 1999.

“Alexa Why Crawl,” 1 page, www.alexa.com/support/why_ crawl.
html, Jan. 1999.

GIF Image 590x329 pixels, Alexa, 1 page, www.alexa.com/tour/
images/alexa_ overview.gif, Jan. 1999.

“It’s X-treme!,” Alexa, PC Magazine: The Best of 1998, 1 page,
www.zdnet.com/pcmag/special/bestof98/internetS html, Jan. 1999.
“Search While You Surf,” PC Magazine: Search the Web, 1 page,
www.zdnet.com/pecmag/features/websearch98/surf.html, Jan. 1999.
MindSpring MyYahoo, pp. 1-16, www.mindspring.com/myyahoo.
contents htm, Dec. 1997.

Morrison., XML unleashed, Sams Publishing, Dec. 21, 1999.
Flanagan, JavaScript; The Definitive Guide, 3rd Ed., O’Reilly, Jun.
1998.

Patent Application entitled “Parallel Web Sites”, U.S. Appl. No.
09/192,633, filed Nov. 16, 1998.

Microsoft Computer Dictionary, Fifth Edition, 2002, Definition of
“Web Browser”.

Williams, Margot, “Cyberspace Calendars: The Web’s Growing Date
Base”, Nov. 30, 1998, The Washington Post, p. 1.

Bott, Ed., et al., “Special Edition Using Windows 95 with Internet
Explorer 4.0”, Publisher: Que, Feb. 17, 1998, pp. 585 and 435.
McFedries, Paul, “Windows 98 Unleashed”, Publisher: Sams, May
12, 1998, pp. 594-596.

U.S. Appl. No. 60/153,917, filed Sep. 14, 1999, Franco et al.
McFedrues, Paul, “Windows 98 Unleashed”, Publisher: Sams Pub-
lishing, May 12, 1998, pp. Xix, XX, xxXi, Xxiv, 2-4, 44-46, 69, 70, 79,
80, 97-116 ,148, 158-163, 251, 551, 787-792, 799-807, 885, 899,
900, and 904-906.

McCrickard, D. Scott, et al,“Supporting Information Awareness
Using Animated Widgets”, Proceedings of the 7th USENIX Tel/Tk
Conference, Feb. 14-18, 2000, 12 pages.

“Streaming Internet Technologies”, PR Newswire, May 18, 1999, 2
pages.

“NewsEdge Delivers the Power of Real-Time News in a Browser”,
Business Wire, Nov. 9, 1998, 3 pages.

McCartney, Terrance Paul, “End-User Construction and Configura-
tion of Distributed Multimedia Applications”, ProQuest Disserta-
tions and Theses, 1996, 197 pages.

“Microsoft Eyes Marimba’s Castanet”, by CNET News.com Staff,
Dec. 24, 1996, printed from <http://news.cnet.com/Microsoft-eyes-
Marimbas-Castanet/2100-1001__3-25749 1. html>, 2 pages.
Williams, Dennis, “Application Delivery on a Grand Scale”, Network
World Fusion, Mar. 22, 1999, printed from <http://www.
networkworld.com/reviews/0322revmarimba.html>, 4 pages.
Whitehead et al., “WEBDAV: IETF Standard for Collaborative
Authoring on the Web”, Sep. and Oct. 1998, Retrieved from the
Internet <URL:ieeexplore.ieee.org/xpls/abs_ all.
jsp?arnumber=722228>, pp. 1-7 as printed.

* cited by examiner

US 8,621,034 B1

Sheet 1 of 14

Dec. 31, 2013

U.S. Patent

S5BGEIED SOISTIEIS

aseqe)ep yul[RJeys

) 3

",

=
O
™~

N 9]lj0Jd Jasn

T 9|youd L.mm:

aseqeyep [yod Jasn

) &)

Jabeuew aseqeiep 3|1j0Jd Jasn

™~

™~

aseqeieq abexdeq RIps|y UOedl|ddy

\2

3INPO SISAJBUP [2NSIIEIS

™~

o
o
~i

JuBWBbeUR 3bBYIR RIPSY UONRRII|ddY

)

v <) o)

~—i

=
~i
o
—i

NEEEERES

\

T TREES

~—
1
—
(98]
~—

3|NPOW JBAJSS 1Senbay

d|npous AJdAI[RQ

™~

O

9|nNpoL J0SS330.4d 3|1J04d J3sN

9Npow uonepljeA uibol

w

JUU0D UIBOT

J1010n.35U00 UIbo

x/) o) o

9

o~

3NpoW UIboT]

)) B &

EINESEIN

J
09

cO
LN

S

A51d

_ ~—0g

\nmm

VERREN)

}OMIBN

Ndd

RN N JUBWaP JUBIU0D [~
05 | A P |N-¥6
8 76 J3SMOIG QoM |~
s W9ISAS bunelado | z-+6
T-¥6
VRENTR)
< [_HomieN — \)om\ E
89—/ Nd 98 8
JOMBIA RIS co_ﬁu__am/.\ 611
] :
U-v0T [3Bexoeq eipopy uonedddy | H~1-v0T
— 3|npoul buIss320.d
601 90R}I91U] 9beSSay /0T
IAeq 0/1 135N anpow boj WaAg | |86
e uoijedjjdde JasJed Juaj|) Jr—8¢
oooooooon !—OWEOL@ ng ‘Ilom
g fasibay | e
Nv\. W)sAs bunessdg H~z¢€
| N - L e
180~ 9¢ 1SIq
«—> JFRENR) Ndd]
5 JJOMISN 7 a4
b ~—02
/2

U.S. Patent Dec. 31,2013 Sheet 2 of 14 US 8,621,034 B1

/ 100

Dot Content Dot Definition

Visual Object(s)

Internet Content

Operation Element(s)

103

U.S. Patent Dec. 31,2013 Sheet 3 of 14 US 8,621,034 B1

Application Media Package (Dot) |~

XML Definition _5)5 Dot Definition
1

Appearance | __~

Control |’

Network reference =

DMA message data |/

Dtags | L

Categories

Dot Definition

Events

FIG. 3

U.S. Patent Dec. 31,2013 Sheet 4 of 14 US 8,621,034 B1

160
164

168\ s 1T
_/© / X
i | o
5 162
: L

\

U.S. Patent Dec. 31,2013 Sheet 5 of 14 US 8,621,034 B1

136 132 / 128

=130

U.S. Patent Dec. 31,2013 Sheet 6 of 14 US 8,621,034 B1

@\

Dot Database 202 Standard Internet Content 262
— Home Dot 200 Serve Dot Content 263
201 Dot Index/Shares 204
Dot User Login Accounts 205
Use Statistics 206
Java Servlets/JSP Content Server
Dots AppServer | ' Oracle8 Enterprise 155
153 Solaris A A

Internet / '

199's

210\ JHTTP(S)
XML :

Caching Layer : (D)HTML 2315

k 219 s0,] o | GIF 232:

Flash 2344
Streaming Media 233,

Home Dot
200 260

P 230

User Login 211
App State 212
DotDefinitions 213
UseState Logs 214
Shares 215 '

U.S. Patent Dec. 31,2013 Sheet 7 of 14 US 8,621,034 B1

m\

Dots AppServer Content Server
153 155
307 1 303 1 304
Email ShareID\/\
Internet
: /330 :
' [Sharelink 320 HomeDot 200 331 E
i . User Profile 310 / :
+ |_Dotlink 321 <ALL_CONFIG>311 :
Dotk Packs)|__,| SPrrertosi :
) B <HOMEDOT>314 :
E Dot "On” :
. m Y :
: I \ 4 :
E 199 Dot 120 '
L S (DHTML !
' Streaming Media '
: Flash :
: I :

U.S. Patent Dec. 31,2013 Sheet 8 of 14 US 8,621,034 B1

Client 199 Dot Server 153 Content Server 155
240
User logs in L/ :
2 241 i
Request Dot |-/ 1
Definition "
" . 242
' Retrieve Dot | /
N\l Definition from
' Template DB
] Y 243
244 | Transmit Dot |/
Retrieve Dot |/ ' Definition to

Definition le——"1_ | Client

v 245
Buldoot |
Frame :

4 246 i
Request Dot -/ :

Content
247
Content to
248 Client
Present Dot |-/
Content in Dot

Frame

FIG. 8

U.S. Patent

Dec. 31,2013 Sheet 9 of 14 US 8,621,034 B1
500-\
/A® DoDots™ GetNewDot [®](/®DoDots™ HomeDot™ Beta ©®
/@ AnyDay Calendar A @tegories "AII My Dots |v
/@ AnyDay Lalendar —
A® AnyDay Contacts O AnyDay Contacts T
£® eHow O CalcDot
. QO ClockDet
A® Merriam-Webster Word Search O DoDots Feedoack
® Merriam-Webster Word of the QO eHow to: 502
504 Day O Merriam-Webster Word Search j
@ mySimon Keyword Search QO MP3 Dot
/@ mySimon Lite @) myS?mon Academy Awards
/@ mySimon Academy Awards ||| © MYSimon Lite
) _ O PhotoPoint Photo of the Day
A® mySimon Winter Sports O Welcome to DoDots
A® PhotoPoint Photo of the Day O Work.com Business Search
L £® Work.com Business Search = O ZDNet Breaking News —

Eznlele)

FIG. 9

U.S. Patent Dec. 31,2013 Sheet 10 of 14 US 8,621,034 B1

Client 199 Dot Server 153 Content Server 155

251
Log User In and
\ Provide User |/
v | Profile to Client
Receive user / ’
Profile with :

Collected Dot
Definitions

User logs in

! 253

User Opens Dot

Build Dot Frame | 254
With User
Profile Dot
Definition

Y

Request Dot J 256
' Content to
257 i Client
PresentDot |/
Content in Dot '

Frame

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Y 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

U.S. Patent Dec. 31,2013 Sheet 11 of 14 US 8,621,034 B1
4_00\
0N 404 405 07~
User
Run Add Dot
requoetsts Operation a1
Ve
Requested Dot opens.
KeepMe Dot opens.
User may activate KeepMe operation
(Note: KeepMe Dot may be provided by a
406 408 third party Dot provider or as a default Dot)
AR I
User is informed of User accepts\No___|User gets “You Decided Not
need for software download? To Get the Dot"” message.
User gets trust peration €nds \
certificate 409
414\

User gets license agreement
and software location dialog

Yes/User accepts> No
trust cert.? To Get the Dot” message.

416\

User accepts license\No
and file location?

A

Yes

N—412
AN

User gets “You Decided Not

Operation ends

413

Operation ends

User gets "You Decided Not
To Get the Dot” message.

User elects to

change file location

' 418\

\ 4

User is given file browser
to change directory for the
files to be downloaded

ins

Installer download and background

tall operation.

Requested Dot opens.
KeepMe Dot opens.
User may activate KeepMe operation

(Note: KeepMe Dot may be provided by a
third party Dot provider or as a default Dot)

N—419

_|User may initiate KeepMe
~|operation

FIG. 11

U.S. Patent Dec. 31,2013 Sheet 12 of 14 US 8,621,034 B1

600
T

_/ FTTTTIIIoToooomeee- -
d |
! 1| 653
658/_T [849 W/
arrs sL |
656 65\9_4: :
FIG. 12A
655/ 6% | 5 647 i
d_ . | 653
P 649 | J
656 65\?\ i 8-
FIG. 12B
655\
661 e 549 st |
1 T A
N T ">~ 659
656 d
(658)
FIG. 12C

U.S. Patent Dec. 31,2013 Sheet 13 of 14 US 8,621,034 B1

500
Internet / 555
............................. [Lk

DoDot
Network
512

Dot Client E
501 "

\ | o [Senvetisp :

Dot Client : EBVSer engine :
502 . = 206 Qi

) 514 i

Dot Client ; Web [Serviet/35p -
: 207 508 ;

! Web T'Serylet/ISP E

: Server engine .

: 209 510 :

US 8,621,034 B1

Sheet 14 of 14

Dec. 31, 2013

U.S. Patent

750\\

o

753
754
757/

754
767/

702

~
11
—
200

US 8,621,034 B1

1

INDEXING, SORTING, AND CATEGORIZING
APPLICATION MEDIA PACKAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of and incorpo-
rates by reference U.S. Non-Provisional patent application
Ser. No. 09/558,925, filed Apr. 26, 2000, which claims prior-
ity from and incorporates by reference U.S. Provisional
Application Ser. Nos. 60/131,083, filed Apr. 26, 1999,
60/131,114, filed Apr. 26, 1999, 60/131,115, filed Apr. 26,
1999, 60/176,687, filed Jan. 18, 2000, and 60/176,699, filed
Jan. 18, 2000. The present application claims priority to U.S.
Non-Provisional patent application Ser. No. 09/558,925, filed
Apr. 26, 2000 and each of the aforementioned applications to
which it claims priority.

The present application is also related to and incorporates
by reference the following U.S. patent applications: Non-
Provisional application Ser. No. 09/558,922, filed Apr. 26,
2000, now U.S. Pat. No. 7,756,967; Non-Provisional appli-
cation Ser. No. 09/558,923, filed Apr. 26, 2000, now U.S. Pat.
No. 7,792,947; Non-Provisional application Ser. No. 09/558,
924, filed Apr. 26, 2000, now U.S. Pat. No. 7,356,569; Non-
Provisional application Ser. No. 11/932,286, filed Oct. 31,
2007, titled “Component For Accessing And Displaying
Internet Content”; Non-Provisional application Ser. No.
11/932,286, filed Oct. 31, 2007, titled “Server Including
Components For Accessing And Displaying Internet Content
And For Providing Same To A Client”; Non-Provisional
application Ser. No. 11/932,392, filed Oct. 31, 2007, titled
“Method For Accessing And Displaying Internet Content™;
Non-Provisional application Ser. No. 11/932,427, filed Oct.
31,2007, titled “Component For Coordinating The Accessing
And Rendering Of An Application Media Package”; Non-
Provisional application Ser. No. 11/932,456, filed Oct. 31,
2007, titled “Tracking and Tracing User Activity with Appli-
cation Media Packages”; Non-Provisional application Ser.
No. 11/932,553, filed Oct. 31, 2007, titled “Displaying Time-
varying Internet based Data using Media Application Pack-
ages”’; Non-Provisional application Ser. No. 11/932,585, filed
Oct. 31, 2007, titled “System and Methods for Creating and
Authoring Internet Content using Application Media Pack-
ages”’; Non-Provisional application Ser. No. 11/932,630, filed
Oct. 31, 2007, titled “Methods of Obtaining Application
Media Packages™; Non-Provisional application Ser. No.
11/932,692, filed Oct. 31, 2007, titled “System and Methods
of Messaging between Application Media Packages™; and,
Non-Provisional application Ser. No. 11/932,763, filed Oct.
31, 2007, titled “Component For Accessing And Displaying
Internet Content In Association With a Web Browser Appli-
cation”.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention is related to accessing and viewing
Internet content, and more specifically to a method and appa-

20

25

30

35

40

45

50

55

60

2

ratus for providing a unique frame, independent of a Web
Browser application and window, for the retrieval and display
of such content.

2. Description of the Prior Art

A user operating a client computer typically accesses the
Internet by using a viewer application, such as a browser to
view Internet content provided at a destination address, typi-
cally a web page. In this context, Internet content and web
applications are designed to fill the entire web page. It is
known to divide the Internet content into different regions of
a single web page. For example, personalized web pages can
be specified, such that a user views a variety of content
sources in a single page, such as stock information, weather
information, and sports information, which is aggregated at
the server that delivers the web page to the user, who then
views the aggregated content in a single web page. Observe
that even when disparate content is aggregated, in this man-
ner, it is reassembled into a full web page and is served
through a full-screen browser.

Users and application developers therefore have limited
control over the presentation of internet content: content is
typically trapped within the frame of the browser. A develop-
er’s only alternative to engaging a user page-by-page in a
browser is to develop, distribute, and support custom client
software. In the Web browser scenario, it is the content pro-
vider, not the user that aggregates the information that is
viewed by the user. Thus, the user is not in a position to
separately aggregate the content at a client computer, instead
the user is constrained to view the content that has been
delivered in the manner provided by the server computer
hosting the web page. There is a growing desire for individual
users to fully control the aggregation and presentation of
content and web applications that appears on a client com-
puter.

A user who wishes to view multiple web pages or applica-
tions can open multiple instances of a browser. However, the
user will not be able to view each “full-screen” page at the
same time. Instead, the user must adjust the windows corre-
sponding to each browser instance and view only part of each
page. The information appearing in each browser is not
designed for viewing in this manner. Thus, the user cannot
create an optimized display of content from multiple sources.

Currently, content providers and end users have limited
tools to alter the browser in which content appears. That is, the
controls associated with a browser are not fully configurable.
Thus, the vendor of a browser is in a position to brand the
browser and regulate the controls associated with the browser.
There is a growing desire for content providers to not only fill
a browser with their content, but to also fully brand and
control the frame in which the content appears. Further, in
some instances, content providers desire to limit the controls
associated with a browser or viewer, so that a user is more
inclined to view a single set of content, for example, by
having limited access to previously viewed content. However,
the current browser applications provide very limited control
to a user or content provide to alter the frame and controls
provided by the browser window.

In summary, therefore, the current model of the Internet has
the following attributes and limitations:

a) Internet content is typically viewed one page at a time,
with each page displayed serially displayed in a browser
application window which typically takes up the major-
ity of the user’s computer screen real estate.

b) Internet content is designed for delivery in web pages.
Even if content is modularized, it is reassembled into a

US 8,621,034 B1

3

full web page and viewed serially in the window of
browser application taking up a significant portion of the
user’s desktop.
¢) There is a distinction both visually and architecturally
between the “viewer application” (browser) and the
“content/document” (web page) such that a browser
window is not tailored to the content being displayed,
but rather is capable of displaying any web content.
d) Internet content is effectively limited and trapped within
the “frame” of the browser (viewer application). There-
fore, content developers, users and web-application
developers are limited in how the user experience is
controlled.
e) Although internet programming technologies (such as
Java script, CSS, layers, flash, etc.) are giving web pages
more functionality, the pages have limited access to
application functionality such as access and control of
the window and frame, the size of the frame, branding,
application behavior such as size and menu items, etc.
) “Web-applications™ such as web-mail and web calendars
are being packaged and viewed through the page-by-page
web model. Even though web-applications are being imple-
mented by many online companies, the web is currently a
destination page-based model where, for example, a user
visits one page, then goes to another page and so on. It is
therefore a sequential, linear experience, e.g., one full page at
a time.

In view of the foregoing, there is a need in the art to provide
a technique for accessing multiple instances of distributable
computer readable web content in which these instances are
typically smaller than the full pages used in current web pages
and web applications, and which may be displayed in user- or
content provider-controlled frames. Preferably, such tech-
niques allow such access to be done simultaneously. There is
a further need for providing the user with flexibility in select-
ing, collecting, relating and viewing such web content and for
giving the content provider flexibility in directing media to a
specific user and controlling the framework in which media,
such as web content, is presented. Finally, there is a need to
gather more accurate information regarding the type of con-
tent that a user enjoys, so that the user can be automatically
provided with this content.

SUMMARY OF THE INVENTION

The present invention is directed to systems and methods
by which predefined web content or predefined references to
web content may be organized both by a user and by a distri-
bution server. The system and methods rely on the structure
defined herein as an Application Media Package. Application
Media Packages are web browser-readable code that is
executed on a non-browser-based installed client application.
The client application, referred to herein as an Application
Media Viewer, executes independently from a web browser.
The Application Media Viewer parses and executes the Appli-
cation Media Package code to create the user experience. The
terms Application Media Package and Dot are used synony-
mously herein.

In addition to the Home Dot, the Dot Server provides a
central collection and distribution point for Dots. The Dot
server is communicated to directly by the Home Dot appli-
cation, by Dot users, and by third party Dot developers. Third
party Dot archives are organized by category, time/date,
popularity, and other methods that enable defining and sorting
of a multitude of database entries, including text search,
image galleries, and the like.

20

25

30

35

40

45

50

55

60

65

4

Because the present invention enables versatility in the
manner of packaging and operating with Internet media
(forming Application Media Packages), and because the
breadth of Internet media and the scope of available informa-
tion is expansive, the present invention provides for methods
of Dot organization on a user’s client computer. More spe-
cifically, the Home Dot provides for Dot management of a
large number of Dots. Such methods of management include
grouping Dots into an organized layout for persistent display,
categorizing and grouping Dots into collections referred to
herein as Dot packs, opening and closing sets of Dots or Dot
packs according to a user’s current information requirements,
and configuring individual Dots either by user defined cat-
egorization or customization parameters that have been
enabled by a Dot’s developer.

According to the present invention, the Home Dot enables
the means by which Dots may be selected and grouped
together into rows and columns which are uniform in the
preferred embodiment. By selecting, dragging and dropping,
Dots are snapped or docked together such that they may be
move individually or in mass on the client display.

Knowledge is derived from the context of information and
its application and as such, the present invention provides for
methods by which individuals as well as companies may
group Dots, share information between Dots, and share these
groupings with others. In other words, the present invention
provides for methods by which a user or other third party or
collectively, third parties, may build upon the utility of Dots
as an atomic media element by adding their context through
grouping and configuration. In doing so, the present invention
enables the addition of third party knowledge that may or may
not include the participation of the original Dot developers.

Furthermore, the present invention provides for mecha-
nisms by which this knowledge is shared. These mechanisms
include saving the customization states of individual Dots,
grouping of a plurality of Dots and saving them to a Dot
server, emailing links of these postings to other users or
installing these links in a web page. Additionally, the present
invention provides for third parties to share collaborative
efforts by posting such groupings and customizations on a
Dot server for general availability.

As an illustration, a user arranges a first Application Media
Package that represents a scrolling stock ticker at the bottom
of an output means, such as a computer screen, a second
Application Media Package that tracks the NASDAQ top ten
most heavily traded stocks in the upper left corner of the
output means, and a third Application Media Package that
tracks headline news on the upper right hand corner of the
output means.

Then, the user distributes the three Application Media
Packages in this customized arrangement to other users.
Observe that in this example a user of a client computer is
aggregating separate sets of information in different Applica-
tion Media Packages. This stands in contrast to prior art
approaches where a web server running on a server computer
aggregates information in a single page.

The above is a summary of a number of the unique aspects,
features, and advantages of the present invention. However,
this summary is not exhaustive. Thus, these and other aspects,
features, and advantages of the present invention will become
more apparent from the following detailed description and the
appended drawings, when considered in light of the claims
provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings appended hereto like reference numerals
denote like elements between the various drawings. While
illustrative, the drawings are not drawn to scale. In the draw-
ings:

US 8,621,034 B1

5

FIG. 1 is an illustration of the overall architecture of a
network in which the present invention may operate.

FIG. 2 is an illustration of the elements of an Application
Media Package (Dot) according to one embodiment of the
present invention.

FIG. 3 is an illustration of the elements of an Application
Media Package (Dot) definition according to one embodi-
ment of the present invention.

FIG. 4 is an illustration of an instantiation of a generic GUI
according to one embodiment of the present invention.

FIG. 5 is an example of an instance of an Application
Media Package (Dot) according to one embodiment of the
present invention.

FIG. 6 is an illustration of the communication flow associ-
ated with the acquisition and instantiation of an Application
Media Package (Dot) according to one embodiment of the
present invention.

FIG. 7 is all illustration of the communication pathways
associated with the building of a user profile, and the acqui-
sition of Dots through links, packs, and sharelinks according
to one embodiment of the present invention.

FIG. 8 is an illustration of the communication pathways
associated with the acquisition and instantiation of an Appli-
cation Media Package (Dot) according to one embodiment of
the present invention.

FIG. 9 is an example of a display showing Application
Media Packages (Dot) available for downloading as well as
Application Media Packages (Dots) already downloaded
according to one embodiment of the present invention.

FIG. 10 is an illustration of the communication pathways
associated with the instantiation of an already-acquired
Application Media Package (Dot) according to one embodi-
ment of the present invention.

FIG. 11 is a flow chart illustrating the download process of
an Application Media Package (Dot) and Application Media
Viewer (Home Dot) according to an embodiment of the
present invention.

FIGS. 12A, 12B, and 12C are illustrations of Application
Media Packages arranged in groups, and arranged in vertical
and horizontal Blocks (position-justified groups), respec-
tively, according to an embodiment of the present invention.

FIG. 13 is an illustration of the client-server model of a
system according to the present invention.

FIG. 14 is an illustration of the message routing paths and
elements of a Dot Messaging Architecture according to the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses a technology that is
capable of processing distributable computer readable media.
Distributable computer readable media includes, but is not
limited to, standard Internet content, such as HTML,
dHTML, images, imbedded ActiveX and Java applications,
JavaScript, CSS, Perl scripts, Streaming Media, and/or Flash.
The present invention is advantageous relative to prior art
systems and methods because it provides improved mecha-
nisms for simultaneously interacting with several indepen-
dent sources of distributable computer readable media, col-
lecting references to such media, and sharing such references
with other users. The disclosed technology is further advan-
tageous because it provides improved systems and methods
for on screen management of distributable computer readable
media.

Central to the present invention is the concept of an Appli-
cation Media Package. As used herein, the term Application
Media Package refers to a component which includes a fully

—

5

20

25

30

35

40

45

50

55

60

65

6

configurable frame with one or more controls; the frame
through which content is optionally presented. The fully con-
figurable frame utilized in accordance with the invention
stands in contrast to present web browsers, which are branded
by the browser vendor and which have limited means by
which to alter the controls associated with the browser.
Absence of Web Browser

The Application Media Package is a file that is comprised
ofweb browser readable language. According to the preferred
embodiment, the present invention renders, displays, and
updates Internet data without the use of a browser. In fact, no
browser need be installed on the client computer on which the
Application Package is instantiated. The present invention
produces a user experience by parsing and rendering the
Application Media Package through the Application Media
Viewer. The Application Media Viewer is an installed client
application which renders the Application Media Package as
well as provides additional functionality to the user experi-
ence (hence, it is more than simply a viewer application). The
Application Media Viewer may render web browser readable
content (of the type typically supported by a browser appli-
cation) due to it being programmed utilizing the Microsoft
1E4 object for receiving, parsing and rendering web content.
It will be understood by one skilled in the art that, despite its
name, the Microsoft IE4 object is not a web browser applica-
tion. One apparent difference between the Application Media
Viewer and a typical web browser application is that the
Application Media Viewer of the present invention is not
designed to provide user web navigation and page control
typically provided by a web browser.

FIG. 1 is a general illustration of a system in accordance
with one embodiment of the present invention. In FIG. 1, a
network 10 is operated in accordance with the present inven-
tion. Network 10 includes at least one user or client computer
20, at least one server computer of class 50, and optionally
one or more server computers of class 82. User computer 20
as well as server computers of class 50 and 82 are each
connected by transmission channel 44, which is any wired or
wireless transmission channel.

User computer 20 is any device that includes a Central
Processing Unit (CPU) 24 connected to a random access
memory 30, a network connection 28, and one or more user
input/output (“i/0”) devices 40 including output means 42.
Thus, the term “computer,” as used herein, is intended in its
broadest sense to include not only traditional workstations,
laptops and similar devices, but any device containing a CPU
of sufficient operability to utilize Internet data, such as web-
enable cell phones, personal digital assistants (PDAs), and so
forth.

Output means 42 is any device capable of communicating
with a user and includes, for example, a video monitor, a
liquid crystal display, voice user interfaces, and/or integrated
graphic means such as mini-displays present in web-enabled
cell phones, PDAs, etc.

Typically, user computer 20 includes a main non-volatile
storage unit 22, preferably a hard disk drive, for storing soft-
ware and data. Further, user computer 20 includes one or
more internal buses 26 for interconnecting the aforemen-
tioned elements. In a typical embodiment, memory 30
includes an operating system 32 for managing files and pro-
grams associated with user computer 20. In some embodi-
ments, operating system 32 includes a registry 34 that has one
or more references to specified locations in system 10.

The exemplary memory 30 of FIG. 1 further includes a web
browser 36 for viewing Internet content and a separate col-
lection of items, referred to herein as a client parser applica-
tion 38. In some embodiments, client parser application 38

US 8,621,034 B1

7

uses the one or more references in registry 34 to obtain a login
construct from server 50. In various embodiments, in accor-
dance with the present invention, client parser application 38
runs in conjunction with one or more software modules, such
as an event log module 98, which tracks user activity, a
message interface module 107, which serves as a communi-
cation interface between the client parser application 38 and
web server 58 and/or external web servers, an application
media processing module 109, one or more Application
Media Packages 104-1 to 104-z, and an Application Media
Viewer 119 which, among other functions, regulates the char-
acteristics of visual manifestations of Application Media
Packages 104-1 to 104-» when displayed on output device 42.

Server computer 50 includes standard server components,
including a network connection device 46, a CPU 52, a main
non-volatile storage unit 54, and a random access memory 56.
Further, server computer 50 includes one or more internal
buses 48 for interconnecting the aforementioned elements.
Memory 56 stores a set of computer programs, modules and
data to implement the processing associated with the present
invention.

The embodiment of memory 56 illustrated in FIG. 1
includes a web server 58 for processing requests received
from client computer 20. Web server 58 has many compo-
nents, including a variety of modules and data structures to
assist users that want to log into system 10. Namely, login
module 60 handles an entry request from a client computer 20
and accepts a login identifier that corresponds to a user from
client computer 20.

Once auser has successfully logged into system 10, request
server module 72 handles requests for specified Application
Media Packages 104-1 to 104-» from client 20. When such a
request is received, request server module 72 routes the
request to an address that corresponds to the specified Appli-
cation Media Packages 104-1 to 104-» and transmits the
specified Application Media Packages 104-1 to 104-# to cli-
ent 20. One class of specified networked information handled
by request server module 72 is requests for Application Media
Packages 104-1 to 104-». When such a request is received,
request server module 72 searches Application Media Pack-
ages database 74 for the specified Application Media Pack-
age. Application Media Package templates database 74
includes a large number of Application Media Package tem-
plates. Each Application Media Package template defines the
characteristics of a specific Application Media Package,
including fully configurable frame characteristics, viewer and
control characteristics, and Application Media Package con-
tent references.

The web server 58 illustrated in FIG. 1 further includes
additional modules 131 to handle specialized features of the
present invention. For example, one embodiment of the
present invention provides a mechanism that allows users to
distribute Application Media Packages to each other. In such
embodiments, a special server module 131 provides instruc-
tions for storing the Application Media Packages, which are
to be distributed, using a sharelink database 78. Advanta-
geously, Application Media Packages that are distributed to
other users are customizable. A user can, for example, resize
and position a particular Application Media Packages prior to
sharing it with another user. Indeed, it is possible, in such
embodiments, for a user to arrange a series of Application
Media Packages in a unique arrangement and then distribute
the collection of Application Media Packages in the desig-
nated arrangement. As an illustration, a user arranges a first
Application Media Package that represents a scrolling stock
ticker at the bottom of an output means, such as a computer
screen, a second Application Media Package that tracks the

5

20

25

30

35

40

45

50

55

60

8

NASDAQ top ten most heavily traded stocks in the upper left
corner of the output means, and a third Application Media
Package that tracks headline news on the upper right hand
corner of the output means. Then, the user distributes the
three Application Media Packages in this customized
arrangement to other users. Observe that in this example a
user of a client computer is aggregating separate sets of infor-
mation in different Application Media Packages. This stands
in contrast to prior art approaches where a web server running
on a server computer aggregates information in a single page.

System 10 is highly scalable and thus supports a large
number of users. This scalability stems from the fact that the
server 50 is delivering the definition associated with an Appli-
cation Media Package. The content displayed in the Applica-
tion Media Package may be located on a separate computer.
Memory 56 may provide a statistical analysis module 133 for
tracking key events associated with users. This information is
stored in statistics database 80. The information collected by
statistical analysis module 133 is used for a wide variety of
purposes, including server load optimization and directed
advertising, as discussed below. As described below, the sta-
tistical information gathered in accordance with the invention
includes fully traced events defining the type of content and
the duration over which all content is viewed by a user. This
type of comprehensive information is not available using
present techniques. Much of the distributable computer read-
able media that is available for processing is stored as content
elements 94 on server 82. Server 82 is a standard web server
that includes components such as a network connection
device 88, a CPU 86, a main non-volatile storage unit 84, a
random access memory (RAM) 92, and one or more internal
buses 90 for interconnecting the aforementioned elements.
RAM 92 includes some of the content elements 94 stored by
server 82. Other content elements 94 are stored in storage unit
84. In some embodiments, a single web server 58 is capable of
directly accessing content elements 94 located on one or more
servers 82. In other embodiments, each server 82 has a resi-
dent web server module that works in conjunction with server
50 to identify, optionally dynamically generate, and serve
content elements 94 upon demand.

With the general architecture of a system within which the
present invention may operate provided with reference to
FIG. 1, we next turn to a number of definitions of key terms
used herein. Terms not specifically defined herein shall be
understood to have their broadest, generally accepted mean-
ing. Other terms may be defined elsewhere in the present
disclosure. (See also Appendix A and B herein.)

Application Media Package—An Application Media
Package, also referred to herein as a Dot, is computer soft-
ware component, such as XML code and data, representing
the definition of a client-side mini-application, which dis-
plays information and/or provides functionality to an end
user. The Application Media Package combines the packag-
ing, application behavior, and the presentation of Internet
content with the content itself, creating one integrated unit—a
Dot. Therefore, Dots are the integration of application and
media. A Dot may be viewed as a free-floating mini-site. It is
frame in which Internet content is presented (although lack-
ing the most common functionality typically associated with
a browser, navigation).

In one embodiment, Dots are programmed with browser
readable language that is parsed to the Microsoft Internet
Explorer (IE) rendering object (referenced within a control,
so named the Dot Web Conduit) and are capable of displaying
any Internet content supported by IE 4 (however, not neces-
sarily requiring use of Internet Explorer or any browser for
such display). This browser readable language defines the

US 8,621,034 B1

9

appearance of a Dot, its functionality, and what content is
presents. This browser readable language includes XML,
streaming media, dHTML, etc.

Structurally, the Dot or media application package com-
prises initialization data, control calls, and a frame. Content,
such as that obtained from a network reference, is rendered
within the frame. The control calls may include the web
conduit, base controls such as “close” and resize”, base GUI
elements such as a title bar, Dot menu, and Dot bottom bar, as
well as XML Dot calls that are made by the Dot Definition
and executed by the Home Dot. Unlike a downloadable, cus-
tom, client-application (e.g., for delivering custom web appli-
cations to users’ desktops), an Application Media Package is
entirely content. That is, the entirety of a Dot package,
referred to as its definition, is in a browser-readable language.

All that is required to instantiate an Application Media
Package (on the client computer) is its definition assuming
that the client computer has an Application Media Viewer
(discussed below) installed. That is, no browser is needed to
render an Application Media Package. No browser need be
running or be present on the client machine in order to render
an Application Media Package.

Application Media Package Content—Application Media
Package content, also referred to as Dot Content, is Internet
content served off of partner/Dot Developer servers or
another third party server. While in some cases a party devel-
oping and making a Dot available (from a partner/Dot Devel-
oper server) may also host (on the server) content for that Dot,
the developer is free to cause the Dot to point to content from
another party/site for rendering as part of an instantiated Dot.
It is an attribute of the present invention that any internet
content can be accessed, processed, and/or displayed as Dot
Content or Application Media Package Content.

Application Media Viewer—The Application Media
Viewer, also referred to herein as the Home Dot, is a network
enabled, client application that loads and displays an Appli-
cation Media Package on a client computer. Data contained
within the Application Media Package is parsed by the Appli-
cation Media Viewer and rendered within the extent of the
Application Media Package’s frame as defined therein. Data
is web browser readable language including media and Inter-
net references thereto, as well as control calls. These control
calls contained within an Application Media Package are also
parsed and executed. The Application Media Viewer is
required to instantiate an Application Media Package (i.e., to
create a Dot and provide any associated functionality on a
client display device). The Application Media Viewer effec-
tively takes the place of a browser application when rendering
Internet content via an Application Media Package. However,
an Application Media Package contains Internet data and as
such, this data may also be referenced by a browser. In the
preferred embodiment, a browser is not employed to instan-
tiate an Application Media Package, nor to invoke any func-
tionality they may provide. Also in the preferred embodiment,
the Application Media Viewer is a compiled application, pro-
grammed using MFC (Microsoft Foundation Class) or the
like. The Application Media Viewer need only be downloaded
to the client computer one time and may be used to instantiate
any number of Application Media Packages. More than one
Application Media Package may be instantiated at a time, i.e.
the Application Media Viewer is capable of executing and
displaying multiple instantiated Application Media Pack-
ages. The Application Media Viewer is also capable of check-
ing for updated versions of itself (and any Application Media
Package) on the server. The Application Media Viewer sup-
ports a number of facilities including support for standard
internet protocols (http, https, etc.) Additionally, the Appli-

20

25

30

35

40

45

50

55

60

65

10

cation Media Viewer also supports collecting and organizing
Application Media Packages, user login, user activity statis-
tics collecting and reporting, and messaging between Appli-
cation Media Packages.

Block—A group of Dots. Blocks are created and destroyed
by the user through the dragging and positioning of individual
Dots or other blocks.

Computer—as used herein, the term computer is meant to
refer to any device that includes a Central Processing Unit
(CPU) connected to a random access memory, a network
connection, connected and rendering to one or more output
devices, which has sufficient operability to utilize Internet
data, such as web-enable cell phones, personal digital assis-
tants (PDAs), etc. Thus, the term is intended in its broadest
sense to include not only traditional workstations, laptops and
similar devices, but web-enabled cell phones, PDAs, etc.

Content Server—Also called a Partner Web Server, used to
deliver Internet content to a Dot on a client machine.

Controls—A Dot comprises of at least one control, each of
which is arranged within the frame according to the Dot
Definition. In the preferred embodiment, this minimum con-
trol is the Web Conduit which is the Internet data rendering
portion of the frame. Controls are calls that are contained
within the Dot content that enable a Dot, for example with
application behavior amongst other attributes and explained
further herein. The Dot Definition may contain base control
(close, resize) overrides such that the controls are not ren-
dered or are rendered only upon mouse over events rather than
persistent display. Additional media elements and network
referenced media may also be contained within the Dot Defi-
nition.

DoDots—The working product name of the invention
described herein.

Dot Class—An instance of a particular set of binaries to
create a particular type of Dot.

Dot Definition—This software entity contains enough
information to instantiate an Application Media Package (a
Dot) and pointers to location of Application Media Package
content (Dot content). A Dot is defined by its dimensions and
a set of four attributes called Dot components, as will be later
described. A Dot Definition also defines access to Dot Web
Conduit, which is a control element of a Dot and is a fully
functional rendering element that can access available Inter-
net content.

Dot Link—Hyperlink or URL on a server for downloading
a Dot. Based on standard Internet links, these point to or
reference particular Dot Definitions and enable the Home Dot
to quickly access (using standard HTTP/HTTPS requests, for
example) the frame and initialization pointers/URLs in the
Dot Definition to instantiate the Dot and render it.

Dot Messaging Architecture (DMA)—Flements within
Dots and the Home Dot application create a messaging archi-
tecture (the Dot Messaging Architecture) that enables ele-
ments of the system including Dots, controls within Dots, and
the Home Dot application, to communicate with one another.
The DMA enables these elements to exchange information,
request actions or functionality, and respond to system, ele-
ment, or content events.

Dot Pack—A group of Dot templates specified by a par-
ticular Dot developer, provider or aggregator that comple-
ment each other in some way.

Dot Server—Also called an Internet Application Server,
used to deliver Dots to a client machine.

Dot Template—The XML definition of a particular Dot
provider’s Dot in its default state. Information includes the
Dot size, Dot class, starting URL, etc. The Dot template may
be defined by a third party Dot provider. The Dot template is

US 8,621,034 B1

11

used as the starting point for a particular Dot, which may be
customized by the user in some way after the first instantia-
tion.

Frame—The frame, also referred to as a Graphical User
Interface (GUI), defines that area upon a display of the Dot
instantiation in which data may be rendered. As previously
described, the frame may contain rendered Internet data. A
Dot is comprised of a frame or GU], initialization input data
including data and network references to data displayed in
said frame. The appearance of the frame (if any) together with
data that is displayed therein is the visible instantiation of the
Dot. Any Internet data or media data may be contained within
the frame such as an image, Internet content, etc. Additionally
the frame shape and content may be wholly defined by the Dot
developer.

Lead Dot—The controlling Dot within a block. A lead Dot
is the only Dot within a group that presents a control and close
box. The lead Dot is the leftmost, topmost Dot (in that order).

Share—A Share is a XML file that represents a collection
of one or more Dots and/or one or more Snapshots.

Snapshot—A point-in-time data set describing an indi-
vidual user’s overall visible Dot configuration. This includes
location and configuration information on the user’s overall
configuration, and all blocks and Dots.

Web Browser Readable Language—standard Internet con-
tent that is capable of being parsed by a browser, such content
including HTML, Java script, XML, CSS, streaming media,
Flash, HTTPS, cookies, etc.

Web Conduit—a control that accesses and renders stan-
dard Internet content. Dots in conjunction with the Web Con-
duit control can render or process anything a browser appli-
cation can render or process. That is, the web conduit is an
entity which processes or handles standard Internet content
for rendering the GUI (graphical user interface).

The present invention discloses a technology that is
capable of distributing standard Internet content without the
use of and restrictions imposed by a browser as detailed
hereinabove, in a manner that enables developer control of the
user interface. The present invention includes a method and
system in which Internet content is developed, packaged and
delivered from a server. The present invention further
describes methods and systems in which the user obtains
content, interacts with it, and is presented with updates to the
content either in part or including the entire Application
Media Package.

The present invention provides an alternative model of
viewing content obtained from the Internet. Unlike the web
page model requiring a web browser, the present invention is
founded on the premise that the basic unit of the Web and its
media should not be limited or restricted to a webpage-based
display for presentation in a conventional browser nor should
the user’s experience of the Web be limited to one page at a
time as defined by a conventional browser (such as
Microsoft’s Internet Explorer™).

Furthermore, the present invention enables efficient place-
ment of web applications directly onto users’ desktops. The
present invention enables content providers to: break their
Internet-based content up into smaller pieces; package this
content as Application Media Packages (Dots); give Dots an
application behavior through a Dot Messaging Architecture;
and to distribute Dots from one user to another (Viral Distri-
bution Architecture).

The ability to break web-based internet content into
smaller packages (e.g., Dots) for transfer independent of a
conventional browse enables content providers to distribute
their media to: fully brand and control a user’s experience;
obtain direct access to consumers; secure longer on-screen

20

25

30

35

40

45

50

55

60

65

12

presence; give application-media viral characteristics; and
eliminate the need to maintain a software application in order
to achieve these characteristics.

With regard to viral characteristics, for example, the
present invention allows content providers to enable users to:
collect Dots; use Dots in groups (Dot Packs); and share Dots
with others. Therefore, Dots are passed from server to user
and also from user to user via email links. Not only are may
single Dot links be virally distributed, but also collections of
Dots and their links may also be virally distributed from user
to user. Because Dots reference web data including media,
Dots enable the viral distribution of said media although the
media may reside on a server.

Software application download is eliminated because Dot
content is based on standard Internet content (HTML,
dHTML, flash, streaming media, Java, etc.), providing Dots
with certain browser-like functionality. By this virtue, Dots
may be distributed not as software application downloads but
as Internet media downloads, similar to web page downloads.
As a Dot may define the frame within which content is to be
rendered, the visual extent of a Dot is not bound within the
borders of a browser window. Unlike a web page in a third
party browser, a Dot’s graphical user interface may be wholly
defined and/or branded by the developer.

Because Dots are instantiated and rendered upon a client
computer as separate and independent graphical user inter-
faces, and because they may be continuously refreshed with
new internet content, Dots may persist on a user’s screen.
Therefore Dots may possess a longer desktop presence (i.e.,
remain in place, or “On”, while a user attends to other tasks on
adevice, such as interacting with difterent applications, mak-
ing phone calls, etc.

The present invention therefore also allows for persistence
of'displayed Internet content. For example, a dedicated frame
may be rendered on a user’s display, Internet content obtained
from a server, the obtained Internet content presented in the
frame (and possibly periodically updated), and the frame and
content positioned and sized such that it may remain, unob-
trusively, open on the user’s desktop, even when other win-
dows are open. This is fundamentally different than today’s
model where users visit websites and leave them due to size of
the browser window, full use of the content displayed, etc.)

Dots provide Internet content developers and web applica-
tion developers: a unique way to package their content as
custom client application experiences without having to
develop, distribute, and support their own custom client appli-
cation. Developers may repurpose the Internet content that
they have developed and used in web pages to form Dots. In
doing so, according to the present invention, developers may
also add application behavior to Dots such that the user expe-
rience includes interactive graphical user interface elements,
likened more to a custom desktop client application rather
than to a web page. Thus, Dots enable Internet media to
posses application behavior without the use of a browser or
custom application.

From a Dot provider’s perspective, Dots provide direct
access to users; and a persistent branded presence on users’
desktops beyond and without the browser, thus providing full
control of the user’s experience. That is, a Dot that is instan-
tiated on a user’s client computer has the user’s display real
estate. Conversely, a web page typically must be navigated to
through the use of a web browser each time a user views the
web page media, and once the user navigates to a new page,
the display space (browser window) effectively belongs to the
new web page content. As previously described, the branded
experience may be wholly defined by the Dot developer, thus
removing the rendering and branding limitations of a web

US 8,621,034 B1

13

page in a browser. Without the present invention, an alterna-
tive available to the Internet content developer is to develop a
custom application that must be downloaded each time it is
changed or alternate content is desired to be displayed.

In summary, Dots give users a unique way to experience
web media by virtue of its: (1) flexible frame definition; and
(2) a Dot’s persistence when instantiated. Because of their
ability to persist on a user’s desktop apart from a browser,
Dots also provide a convenient method to access content and
services (without separate user selection of a URL). With a
Dot for each of a user’s specific Internet data needs, Dots
eliminate the need to download custom software from mul-
tiple sites for various content. Rather than implementing cus-
tom client applications in Java, C++, etc., Dots are defined
using XML and filled with standard Internet content such as
HTML, GIFs, and the like.

The present invention also provides for the ability to collect
and share favorite content and application-like behavior (i.e.,
sharing Dots). Links to Dots may be easily emailed between
friends. Dots may be collected according to common interest,
usage requirements or the like and defined as groups called
Dot Packs. These Dot Packs may also be shared as links via
email or server.

A fundamental aspect of the present invention is the cre-
ation of a Dot, including packaging of Internet content. The
goal is to create an Application Media Packages (Dots) which
combine the packaging, application behavior, and presenta-
tion of Internet content with the content itself (or typically a
pointer thereto), as a single integrated unit (a Dot). Therefore,
Dots are the integration of application and media.

This is fundamentally different than rendering internet
content in a viewer application or alternatively, developing,
distributing, and supporting a custom client-side application.
Typically, a Dot definition includes details regarding a win-
dow “frame,” and the Dot content has access to the entirety of
this frame. The details regarding the frame is itself Internet
content, so that the entire Dot “package” (including the defi-
nition of the package) is Internet content. Thus, the Internet
content is not trapped in a third party viewer (e.g., Stock
Trading site’s web page in Microsoft’s browser).

Dot content has access to application behaviors of the
window frame (size, position, look and feel) and of the Dot
application system (show other Dots, delete Dots, etc.) For
example, a Dot may change color according to ongoing data
updates that it receives over the Internet. A Dot designed to
display weather information may become increasingly red as
temperature data received for a particular city or region
increases.

Furthermore, a Dot may communicate with other Dots.
Communication between Dots is typically carried out by two
or more Dots that are instantiated on the same client and
enabled such that they may participate in inter-Dot commu-
nication. In one embodiment, communication is carried out
by messages that are passed between Dots via the Home Dot
that instantiated them. These messages may pass data, alter
controls, or result in behavior change for example. Not only
may Dots of the same kind communicate but in one example,
Dots formed between different developers may also commu-
nicate and affect one another. Such communication may be
apparent or may be a background function supporting some
aspect of a Dot’s functionality.

Dot and Dot Definition

With the above general description in mind, we now turn to
a description of a Dot and its definition. With reference to
FIG. 2, the primary components of a Dot 100 are: Internet
content 101, a visual object(s) 102 within which the Internet

20

25

30

35

40

45

50

55

60

65

14

Content 101 may be rendered, and operation element(s) 103,
which perform certain functions, each discussed further
below.

A Dot 100 is an instantiation of a Dot Definition 104, the
components of which are illustrated in FIG. 3. At its broadest,
Dot Definition 104 comprises an XML (or similar) definition
105 (which may include initialization data, control calls, and
a frame definition, discussed further below) and a Network
Reference 108 (e.g., a URL) to Internet content 101. (See, for
example, Appendix A—DoDots XML Specification.)

XML definition 105 includes an appearance definition 106
for defining the appearance of a GUI (discussed further
below), and a control definition 107 for defining controls
associated with the GUIL Definitions 106 and 107 will typi-
cally include initialization data, control calls, and other ele-
ments. Optionally, a Dot may include message data 110 (e.g.,
access to the Dot Messaging Architecture). Application
Media Package 104 (or “Dot Definition”) may also include
tags 112 to identify the Dot.

The XML definition 106 of the appearance of the GUI
typically includes a frame definition, specifying size, loca-
tion, etc. FIG. 4 is an illustration of an instantiation of a
generic GUI 160, which comprises a frame 162 typically
divided into a number of control regions. For example, Frame
162 may include a title bar 164, a bottom bar 166, a menu
control region 168, and other definable control regions 170,
172, and 174. One critical control region, referred to herein as
the Web Conduit 176, is a regions in which many Dots will
present Internet content. Returning to FIG. 3, definition 106 is
responsible for providing the dimensions and general shape
of the GUL

The control definition 107 defines the layout (arrangement
of the controls) and functional routines or pointers to func-
tional routines (what the controls do when accessed by a
user). Control definition 107 may also include XML Dot calls
that are made by the Dot Definition and executed by the Home
Dot (not shown here).

Network reference 108 will typically be a URL containing
the address of a server having stored thereon data (Internet
content) for retrieval and display within the GUI. Function-
ality typically provided by an associated Application Media
Viewer controls the accessing of the server at the URL and the
retrieval and processing of the Internet content for display.
Importantly, retrieval and display of the Internet content may
take place without resort to a Web browser application.
Indeed, no Web browser application need be executing or
even present on the client to support the Dot functionality
(although embodiments in which Dot functionality is opera-
tional in conjunction with browser functionality is within the
scope of the present invention). Internet content obtained
from network reference 108 may be rendered within the
frame defined by and according to the layout definition dic-
tated by the frame appearance definition 106. Internet content
obtained from reference 108 may itself include XML calls
providing certain functionality.

As previously mentioned, Dot Definition 104 is typically
XML code. These definitions are quite simple to author, and
to edit if needed. The definition is content, rather than com-
piled code, which provides additional flexibility at the client
side should it be desired to modify the definition (e.g., allow
a user to edit the network reference). As will be described
further below, when an Application Media Viewer is operat-
ing on the client computer, the Dot is effectively both content
and instructions. This is therefore a method of packaging
internet content as an application (as compared to a hard
coded custom client application) for operation on Internet
content.

US 8,621,034 B1

15

FIG. 5 illustrates a rendering or instantiation of a Dot
Definition as a Dot 120, in this case a visual indicator of
likelihood of rain, expressed as a percentage 122, and ren-
dered against an image of a cloud 124. According to the
above, a definition for Dot 120 includes a definition of the
size, configuration, and location of a first control space 126, a
specification of the layout and functionality of control inter-
faces (or simply controls) located in a second control space
130. Examples of such controls include a “close” button, a
“resize” handle, etc.

The image of a cloud 124 against which the likelihood of
rain is rendered is a static image. The data representing the
instructions for rendering the cloud may be found in the
appearance definition 106, and thus resides within the Dot
Definition 104. Alternatively, the data representing the image
of'the cloud 124 may be obtained from the location to which
network reference 108 points. In either case, the data repre-
senting the cloud is utilized by the Application Media Viewer
104 to render the cloud image.

The actual data representing the likelihood of rain may be
standard Internet content, and will change periodically as
controlled by the source (e.g., the Internet content itself
obtained from a server at network reference 108) of the data.
Since this data changes as controlled by the source, the data is
considered dynamic. This dynamic data is obtained by the
Application Media Viewer from the source, and rendered atop
the static image of the cloud. The frequency of updating and
re-rendering of the dynamic data may be under the control of
the Dot Definition or the source of the data, as a developer
deems appropriate. The data to be rendered with the image
may for example overlay, or be rendered in a layer on top of
the image, beside the image, in the same layer or otherwise, in
alayer under the image layer, etc. However, there is generally
an intended relationship between the position of rendered
Internet content and other items rendered in the graphical user
interface. For this reason, we say that the Internet content is
rendered “in association with” the image within the graphical
user interface.

It will be appreciated that Dot 120 is merely on illustration
of a Dot, and many other types of content, format, layout,
controls, functionality, etc. are contemplated by the present
invention. For example, additional display of information
and/or control may also be presented in top/bottom bars 132,
134, respectively, as will be understood by one skilled in the
art.

Thus, a Dot is defined using, for example, an XML file
which is the embodiment of a Dot Definition 104. The defi-
nition contains enough information that, when instantiated,
the Dot may be rendered and filled with Internet content from
a source. The Dot Definition contains data used to define and
configure a frame and its elements, specify and lay out the
controls, and specify parameters that initialize all the Dot’s
components with content and data.

Frame Definition

A frame can be defined to have a configuration (e.g., base
shape), size (e.g., dimensions), and initial location (which
may be changed by a user upon instantiation). In additional, a
simple Dot may be defined to have four default functional
frame definition controls, for example to encourage user
interface consistency between different Dots. These four
default functional controls include a title bar 132 (Gif ren-
dered with title bar properties), a Dot menu 136 (with flexible
menu entries), an exit control 128, and a bottom bar 124 (Gif
rendered with bottom bar properties) with corner elements
138, 140 (for sizing and consistent user interface). A default
layout of these functional components may be set, such as
positions for the title bar 132 at the top of a Dot (Dot Menu

20

25

30

35

40

45

50

55

60

65

16
130 on its left, exit control 128 on its right) and the bottom bar
134 at the bottom of a Dot (with corner elements on either
side). It will be appreciated that this is one form of layout, of
which many others are within contemplated within the scope
of the present invention.

Title Bar

The title bar 132 may contain a reference title for the Dot
and may provide for a place for a user to grab and drag the Dot
in a windowed environment. It may be implemented as a GIF
rendering control that can be targeted to a local/remote title
bar 132 image (an embodiment supports four title bar
images—normal, mouse-down, mouse-over or hover, inac-
tive). In this embodiment, the title bar 132 has a fixed height
and width that is a function of the frame’s width. The Dot
Definition allows the title bar 132 image to be justified left,
right, or center and for specified number of repeat-pixels, the
title bar image may be tiled the full width of the Dot. Overlay
text can also be specified to layer on top of the title bar 132
image.

The default size and the default position of the Dot are
defined as part of the appearance definition 106 in the Dot
Definition 104. The Dot size can be specified in pixels, or Dot
Units (1 Dot Unitis 40 pixels), etc. Dot Units can define a grid
that keeps Dots sized on the same units so that they more
easily and neatly align as well as cleanly snap to each other
when Dots are used together. Dots can be sizeable or fixed-
size in either dimension or both. The default screen position
for a Dot can also be specified in pixels, or in relative posi-
tion—top, left, center as provided for in the appearance defi-
nition 106 in the Dot Definition 104.

Menus

One embodiment of the present invention reserves the four
corners of a Dot for functional branding elements. The upper
left corner is currently reserved for the menu control 136. The
upper right corner is currently reserved for the Dot exit 128
control. The lower corners 138, 140 are for sizing the Dot if
the Dot is resizeable. Menu entries for branded menu control
136 (upper-left) can be specified in the Dot Definition 104, for
example at 112. The menu items can be named, assigned
images and tooltips, and assigned a specific and targeted
action, for example a DotMessage 110 sent to a specified
element (address). (See DMA messages hereinbelow). The
Dot exit 128 button (upper-right) closes the Dot. An on-close
action (such as a message and address pair) can be assigned to
the Dot close event.

Bottom Bar

The bottom bar 134 may be implemented much like the
title bar 132, including supporting text overlay and additional
functionality. (See Appendix A—DoDots XML Specification
for a list of controls with XML call and their definitions)

Alternative Embodiments for Controls

Dots may be defined so as not to require a rectangular title
bar 132 or bottom bar 134 (at top and bottom). Indeed, either
or both of title bar 132 and bottom bar 134 may be omitted in
a Dot Definition. Other controls (128,130,138, 140) may also
be omitted, provided certain functionality (e.g., exit or close)
is otherwise provided. Furthermore, every functional element
in a Dot may be defined as a control element that is relatively
positioned and layered (in z order)—much like layers in
HTML. Transparency may also be a given property. Different
layers and controls may be given Dot properties (such as a
title-bar-move-property or Dot-menu-property). Very flexible
Dot interfaces may therefore be provided. (See the specifica-
tion for the <DOT> and <CONTROL> DTDs in Appendix
A—XML Specification.)

US 8,621,034 B1

17

Control Space

Between the title bar 132 and the bottom bar 134 is a
control space 126 where one or more controls, images, data,
etc., can be flexibly positioned. For example, control space
126 may include a web rendering control referred to herein as
a Web Conduit (described further below). The Dot framework
supports any Active-X based control which may be posi-
tioned and initialized in a Dot (e.g., an on-line stock trading
company may implement a custom stock chart-rendering
control and define a Dot to permit a user to interface with this
control).

A Dot may be defined to include a static image over which
dynamic data may be displayed, such as the example of FIG.
3 in which a static image of a cloud has rendered thereover
dynamic (changing) data relating to likelihood of rain. Alter-
natively, the Web Conduit may render in control space 126
purely static data obtained from the Dot Definition, a URL, or
the client device, as well as dynamic data resulting from
client-run processes, pushed or pulled Internet content, etc.

The Web Conduit control is just one of many controls that
may be included and positioned in a Dot’s control space 126.
For example, Active-X based control can also be referenced
and inserted. This capability allows a Dot developer to imple-
ment a custom control. For example, a stock ticker display
may be implemented as a custom secure chart control that
renders stock tracking charts with small streams of secure
xml data. Such a custom control can be laid out with a Web
Conduit control next to it if the Dot developer chooses to do
s0. Also, just like a browser, a Dot developer may embed an
active-x control in an HTML page rendered in the Web Con-
duit control as is the practice for use with full screen browsers.

Web Conduit Control

The Web Conduit (mentioned above) control can render
Internet content in a fashion similar to Microsoft’s Internet
Explorer™ (IE). This control functionality may be provided,
for example, by utilizing Microsoft’s Internet Explorer’s
(IE4+) WebBrowser object. Note that the IE4+ object does
not constitute a browser. The Web Conduit merely uses ren-
dering tools of the object—it does not invoke or require the
Internet Explorer application or any other web browser appli-
cation. Rather, functionality is provided to support rendering
of Internet content so as to integrate this control with the Dot
framework and to receive and transmit messages in and out of
the HTML rendered in the control.

Dot Identification

A Dot can be identified (in the Dot Definition 104) by three
1D strings: GloballD, Domain, and Kind reference. These are
defined as follows:

GloballD—A Dot’s GloballD is used when a Dot Defini-
tion is within a Share (described further below); this ID
is unique with respect to other Dot tags in the Share.

Domain—A Dot’s Domain is a unique label for the owning
company Dot developer of the Dot.

Kind—A Dot’s Kind (specified by the Dot developer) is a
helpful identifier for finding the Dot; A Dot’s Kind does
not have to be unique.

Categories

In an embodiment of the present invention, categories are
used as an organizational tool. A Dot Definition 104 (FIG. 3)
may be provided with an element 150 defining the category
(ies) with which that Dot is associated. A mechanism is pro-
vided to allow identification of categories of Dots, useful for
selecting, sorting, organizing, etc. The categories that a Dot
belongs may be edited by editing the string elements in the
Categories element 150 of the Dot Definition 104. (See the
specifications for the <ALL-CONFIG>and <DOT>DTDs in
Appendix B.)

20

25

30

35

40

45

50

55

60

65

18

Events

A Dot Definition may also include an Events element 152
in which actions can be assigned to certain Dot Events such as
the Dot’s ONCLOSE event. DotEvents can be assigned a
specific and targeted action much like a menu control 136
item; currently this action is implemented as a DotMessage
sent to a specified recipient (see DMA messages, below).
When the specified DotEvent occurs, for example
ONCLOSE when the Dot closes, the specified message is sent
to the specified recipient.

Hosting and Serving Dots

Referring again to FIG. 1, web server 50 may serve the Dot
Definitions 104 as an XML file to client computer 20. The Dot
Definition 104 may be served elsewhere such as a third party
or partner server (not shown) along with the Dot content that
fills in the Dot. In one embodiment, this XML specification
may be kept proprietary and Dot developers define and pack-
age Dots indirectly without having to author XML Dot Defi-
nitions. In another embodiment, the xml specification is open,
and content providers (and others) have complete control of
the authoring of Dots.

Dot Definitions 104 are indexed and stored in server 50 in
database 74, and are accessible to Dot-rendering and Dot-
management applications (the Application Media Viewer) via
“DotLinks”. These DotLinks, based on standard Internet
links, point to particular Dot Definitions and enable the Appli-
cation Media Viewer (using standard HTTP/HTTPS
requests) to quickly access the frame and initialization point-
ers or URLs in the Dot Definition to instantiate the Dot and
render it, filling with DotContent (Internet content served by
a partner Dot Developer servers 82).

Dot developers (e.g., content and/or service providers)
serve the Dot content obtained from source or reference 108
(the standard internet content that fills in the Dot). According
to one embodiment, Dots may be served my numerous dif-
ferent non-proprietary servers 50. Content may also be pro-
vided by a non-proprietary server, as specified by the Dot
developer. Of course, it is possible that in other embodiments
specific Dots may only be obtained from certain sources.

Because the Dot Definition 104 contains enough informa-
tion to instantiate the Dot as well as the reference 108 that
address the location at which the Dot content is located, a Dot
is easily and quickly distributed, as well as collected and
shared by users. (This is discussed further herein with regard
to Viral Distribution Architecture.) It is therefore easier and
faster to get information delivered in a Dot than ina web page.

This Dot-based architecture is very different than the cur-
rent model of Internet content. Today, users visit web sites,
following a destination-based model of content access. The
process of accessing media therefore is sequential or linear,
resulting in user viewing of one full-screen web page at a
time. Furthermore, there is no simple to use or inherent
mechanism in place today to share sites short of sending
URL’s.

Enhanced Dot Content

The Dot Definition 104 code is accessible, flexible and
dynamic, enabling it to be modified at any time, even after it
is rendered. For example, Internet content 101 (HTML) can
access and modify its associated Dot Definition 104 by send-
ing messages to other portions of the definition, such as the
definitions of appearance 106 or control 107. Other applica-
tion system-level functionality is also available by sending
messages to the Application Media Viewer 199, discussed
further below.

By using an architecture, referred to as Dot Messaging
Architecture, for communication between Dots, and between
a Dot and the Home Dot, standard Internet content can access

US 8,621,034 B1

19

and enable Dots to exhibit application behavior. That is, con-
tent can provide functionality typically associated with appli-
cations, such as dynamic refresh, contextual presentation,
interactive response between user actions and changes in the
graphical user interface or frame, etc. (See “Dot Messaging
Architecture” below.)

EXAMPLES

The following examples are used to demonstrate key fea-
tures of the present invention. Some of these features include:
a new way to view standard internet content, a fully branded
experience for the user, and a web experience that delivers
true application behavior. Sample companies are used in
these examples to demonstrate branding together with the use
of internet content to produce a novel user experience that
transcends the web page. Trademarks are those of the respec-
tive companies.

E*Trade

E*Trade’s primary business is to enable users to execute
securities trading online. Therefore stock information and
notification are essential elements to their business, as are the
transactions themselves. Persistent display is an important
aspect of Dots as is the ability to provide ongoing data
updates. Below is a list of aspects that illustrate novel advan-
tages that Dots provide for a possible E*Trade Dots system.

E*Trade can leverage their existing content through Dots
(Dots are built on top of standard HTML|

E*Trade can break their content into smaller pieces and
package them into Dots.

E*Trade can give their Dots application behavior. Instead
of being trapped inside a viewer window, content pro-
viders have access to the entire frame, which enables
them to brand the Dot, access to application and system
features. Content providers can also enable users to
resize the Dot click, to open E*Trade Dot, ability to
execute operations in the Dot such as trading stocks as
opposed to only monitoring stock prices.

Because Dots can be left on or actively running and dis-
played on a client computer, they can notify users of
coming/pending/immediate content events. A Dot can
notify a user in many ways, including: popping up a
message box or another Dot. A Dot can resize itself and
show new content and/or bring itself into focus, as a
window application may also do.

Merriam-Webster

In this example, Miriam-Webster has word definition con-
tent that is useful for users to access. Users may be better
served by the Dot format of presenting as opposed to tradi-
tional web pages. Below is a list of features that illustrate this
point.

Miriam-Webster can leverage their existing content to pro-
vide a dictionary “application” in a Dot; the content is
HTML delivered from their servers. In a Dot, Miriam-
Webster can provide direct access to just the information
users are interested in viewing without requiring them to
disengage in other operations such as word processing
work in order to actively seek information from Miriam-
Webster’s servers. Additionally, content providers can
add new functionality to their Dot applications just by
changing the HTML files on their servers that are deliv-
ered to Dots or as Dot Definitions 104. They do not need
to revise and redistribute custom client software.

Ebay

A single company such as eBay can use multiple Dots to
engage users from many points at the same time to facilitate
amore complex process, such as online auctions or shopping.

20

25

30

35

40

45

50

55

60

65

20

Many companies have an enormous amount of assets (con-
tent, services, and applications) that can only be exposed to
users one page at a time. Featuring and exposing new or
important functionality is often difficult to do if they are
buried several pages deep.

Dots enable content providers to feature and expose func-
tionality and services in a new form, leveraging and
featuring all of a company’s assets in a consistent way.
eBay, for example, might provide a “MyBids” Dot that
allows users to more closely follow those items they
have bid on (the current asking price and when the
auction will expire).

eBay can also provide a Gallery Dot. Instead of wading
through thousands of thumbnails in the gallery sectionto
find what their looking for, users can identify categories
they are interested in and window shop these items, click
on a particular item to add new item to MyBids Dot.
When a user finds something that interests him, it’s
added to the MyBids Dot with a single click.

There is a messaging architecture (DMA) that may be
enabled by the Dots architecture disclosed herein which
enables Dots to communicate with each other, thus facilitat-
ing operations between Dots without user intervention. For
example, a user finds an item of'interest in a “Gallery” Dot. He
clicks on that item and it is added to the “MyBids” Dot with
asingle click. Additionally, a “BidDot” may be caused to pop
up for that single item, allowing a user to directly bid and
monitor the auction process. He clicks on a second item in the
“MyBids” Dot and another “BidDot” pops up.

MP3 Dot

By using an embedded MP3 playing control, an MP3 play-
ing Dot can access, play, and manipulate MP3 files and play-
lists from a local hard drive or the web, just like a custom MP3
client application. The significant difference is that the GUI &
controls (the Dot Definition 104) are entirely Internet content
(HTML, javascript, etc.) and can change simply by modify-
ing HTML files online.

Mobile/Other Platforms

Dots can be viewed as a smaller-format package for inter-
net application media. This package is more portable than
executable applications as well as full screen formatted media
for browsers. Portability across platforms requires consider-
ation of diverse screen sizes and resolutions as well as oper-
ating systems and user interface controls. This diversity
requires companies or users who require cross platform
media distribution to scale down their existing content for
portability to mobile devices. No such scaling down is
required when deploying Dots and the Dot architecture.
Application Media Viewer (Home Dot)

As previously mentioned with regard to FIG. 1, a client
computer 20 will ideally have stored thereon a software com-
ponent referred to as an Application Media Viewer (or Home
Dot) 119. As Application Media Viewer 119 performs a num-
ber of functions in the process of acquiring, instantiating,
modifying, etc. Dots, in addition to simply viewing Dot con-
tent, we also refer to an Application Media Viewer as Home
Dot herein. The Home Dot 119 is effectively a client appli-
cation that contains the procedures or calls to procedures for
rendering and managing Dots on the client computer. It there-
fore has attributes of an application. The Home Dot is
designed to operate in conjunction with a Dot Definition, and
vice versa.

Data contained within an Application Media Package
(Dot) is parsed by the Home Dot. Control calls contained
within the Dot are also parsed and executed. The Home Dot
may then instantiate a Dot without relying on functionality

US 8,621,034 B1

21

provided by a browser. In fact, in a preferred embodiment, a
browser is not employed to instantiate or operate an Applica-
tion Media Package.

The Home Dot is a compiled application, and can be pro-
grammed using, for example, MFC (Microsoft Foundation
Class) or the like. The Home Dot need only be downloaded to
the client computer one time and may be used to instantiate
any number of Dots. The Home Dot is capable of executing
and displaying multiple Dots simultaneously.

The Home Dot may be provided with the ability to auto-
matically or manually check for updated versions of itself on
a server. If a newer version is detected, the user may be
provided with the opportunity to download and install the
updated version of the Home Dot.

The Home Dot supports a number of functionalities,
including support for standard internet protocols (http, https,
etc.) Additionally, the Home Dot supports collecting and
organizing Dots, user login to a Dot server, user activity
statistics collecting and reporting, and messaging between
Dots, as discussed further below.

Network Distribution of Dot and Home Dot

Referring now to FIG. 6, a communication flow diagram
299 is shown for an exemplary system enabling the distribu-
tion and use of Dots between a client computer 199, a server
(Dot server) 153 making available one or more Dots includ-
ing a Home Dot, and content server 155, each with a network
address or IP address. It will be assumed for this particular
example that a Home Dot 200 has previously been down-
loaded and installed on client computer 199. It will also be
assumed for this example that Dots 120 and 230 have been
previously requested (the mechanism for this request is
described further below).

Accordingly, Home Dot client application 200 utilizes Dot
Definitions to instantiate Dots 120, 230. There may be ongo-
ing communication 250, 260 between Home Dot 200 and
Dots 120, 230, respectively. This communication may
include data for the presentation of Internet content, mes-
sages, and/or state information. Furthermore, the Home Dot
client application 200 executing on a client computer 199
communicates with Dot server 153 through a channel 210
(such as a broadband Internet connection) as well as Content
server 155 through channel 157. Internet content is received
by Home Dot 200 and rendered into the instantiated Dots 120,
230, as appropriate. The Internet content may be one or more
of many formats, such as XML, HTML, GIF, Streaming
Media, Flash, HTTP, HHTP(S), etc.

The Dot server 153 is communicatively connected to a
physical memory device 201 which holds a database 202
containing software objects for downloading to or access by
a client device such as client computer 199. This physical
memory device 201 may be a RAID hard drive system, a
standard hard drive, removable media, or any other type of
volatile or non-volatile memory known in the art. Database
202 may contain one or more Dot Definitions 104, the Home
Dot client application 200, available for download to the
client device, as well as user account data 205, state data
including use statistics 206 and Dot index/shares 204 (each
described in further detail herein).

The content server 155 is communicatively connected to a
physical memory device 261 which holds the Internet content
262 as well as other forms of data 263. Content/data 262, 263
is communicated to the instantiated Dots 120, 230 where it is
rendered on the client computer 199. In general, content
passes first through the Home Dot application 200 or a similar
client computer 199 program that is capable of receiving and
parsing Internet content. Therefore, the connections between

20

25

30

35

40

45

50

55

60

65

22

content server 155 and Dots 120, 230 are shown as dashed
lines, indicating that for this figure the connection is indirect.

Unlike a downloadable custom client application, the Dot
Definition 104 is comprised entirely of Internet content in a
web browser readable language. To instantiate a Dot on a
client device or computer, only its definition is required (as-
suming that the computer is Dot-enabled, i.e., that the Home
Dot client application 119 has been installed). The Dot Defi-
nition 104 contains just enough information to define, layout,
and initialize a Dot’s components (frame, controls, etc.); this
information configures the graphical user interface which
may then present Internet content therein. Consequently, a
Dot Definition typically has a small file size (~2 KB), and is
therefore a quickly accessible and loaded XML file.

One aspect of software distribution according to the
present invention may proceed as illustrated in FIG. 7. A user
first requests a Dot, or more specifically its Dot Definition
104, by clicking on a Dot link 321 which may be a hyperlink
on the web page of a Dot server 153, a web page of a partner
or content server 155, or selectable menu item on the client
computer 199. A Dot link 321 is an Internet link to a Dot
Definition 104. A Dot link operates in a manner similar to an
HTML link. One added feature associated with a Dot link is
that the server that serves the Dot Definition 104 typically has
a sensing mechanism that can determine whether or not a user
has the Home Dot application 200 installed on his computer
or device 199.

If the user does not have the Home Dot application 200,
then it is downloaded and installed with a first set of Dots
(e.g., 120, 230) that may be user-selected or part of an initial-
ization set. This download process is discussed in further
detail below. From that point forward, the client computer
199 is Dot-enabled and does not require a subsequent down-
load and install of the Home Dot. In short, only a single
application-like software product need be downloaded and
installed on a client device to enable a variety of different
Dots, as opposed to requiring a user to download a different
custom client application for different types of Internet con-
tent.

Once a client machine 199 is Dot enabled, (Home Dot
application 200 installed), Dot 120 may be rendered by sim-
ply clicking on Dot link 321. This rendering is typically faster
than it takes to load and render a small web page. Further-
more, once the Home Dot application is installed on the client
no additional executable software need be downloaded or
install to view and interact with a Dot. The Home Dot appli-
cation 200 accomplishes this by retrieving the Dot Definition
104 specified by the Dot Link 321, instantiating the Dot 120,
obtaining the Internet content specified by the Dot Definition
104, and presenting the Internet content (standard Internet
content from DoDots’ partner servers 155) within the Dot.

Once a user has received a Dot Definition 104, the Home
Dot application 200 remembers the Dot’s Dot Definition 104
as part of a user-profile 310 so that it can instantiate the Dot
and begin filling it with Internet content immediately.
Because a Dot Definition 104 becomes part of a user-profile
310, it can be modified by use (e.g., the image of its default
title bar 125 may be changed, its Web conduit control may be
navigated to a different URL using DMA messages, etc.) and
the Dot will initialize from its last state stored in user profile
310 the next time the Dot is to be instantiated (or “turned on™)
at 324.

A Dot Link 321 represents a Dot. Therefore, this Dot Link
321 (and hence the Dot 120) can be easily and instantly
distributed; the Dot Link 321 can be posted on web sites to
promote the Dot, or shared with friends via email. This is viral
distribution of a Dot, via distribution of the Dot Link 321—

US 8,621,034 B1

23

the Dot server hosts and serves the Dot Definitions 104 to
which the Dot Links 321 point. Dots may also be aggregated
into packs by content providers, or other aggregator, grouped
for example by like subject or perceived common user inter-
est, and the packs of links acquired by a user at 322 as if they
were single Dots. A user may also provide others with access
to Dots when the actual Dot Definition is located on a remote
third party Dot server. This may be accomplished by way of a
Sharelink, which may be provided by a user at 302. Others
may then access the Dot, including setting changes that may
have been made by the user, by accessing the Sharelink pro-
vided at 320.

From the client perspective, one example of a process of
acquiring and instantiating a Dot is illustrated in FIG. 8.
According to this process, a Home Dot is employed to acquire
a new Dot, however it is within the scope of the present
invention to acquire new Dots through other mechanisms,
such as through a web browser application (with utilization of
the Home Dot ultimately required in order to instantiate and
populate the Dot). After logging in at step 240 the user clicks
on the Dot Link signaling a request to acquire the Dot. The
Home Dot application then sends a request to download the
Dot to the Dot server 153 at step 241. Alternatively, the user
may click on a Dot link before logging in, for example if the
link has been e-mailed to the user, and then, after clicking on
the link, log in. In another aspect, the user could view, but not
collect, a transient Dot without ever logging in.

After the user is logged in and has clicked on the Dot, the
Dot server 153 retrieves the Dot template from its Dot data-
base, and provides it to the client in step 243. The client
receives the Dot template from the Dot server 153 in step 244.

For display of the new Dot, the Home Dot creates a frame
in the display of the user interface (42, FIG. 1) in step 245. In
step 246, the client 199 requests the necessary Internet con-
tent stored at the URL(s) identified in the Dot Definition from
the corresponding content server 155. The content server 155
transmits the content in step 247, and in step 248 the Home
Dot presents the content in the viewer. As the type of content
may vary greatly, the content may appear within the frame
(such as text or images) or may be independent of the frame
(such as audio) but the frame including controls for control-
ling aspects of the presentation of the content. In one embodi-
ment, Internet content is presented such that it is enclosed by
the frame, allowing the user to preview the Dot. Alternatively,
the Home Dot may simply collect the Dot, adding it to the
user’s processed user profile 310.

The user may then view the Dot on the user interface
display 42, and may interact with the Dot much in the same
way as a user may interact with typical Internet content or
web applications. This may change the Dot from its present,
“raw” state to a used state reflecting alteration or use of the
Dot by the user. Thus, the user has stored on client 199 a Dot
Definition rather than a Dot template. For example, the user
may direct the Dot to display different content within the Dot
if the Dot content enables the user to do so. Or, the user may
provide information to the content server 155 which allows
the Dot to be personalized. The user may additionally be
given the option of changing the size or location of the frame,
etc.

Ifthe user collects the Dot, the Dot will be added to a user’s
listof collected Dots. For example, the Home Dot may add the
Dot’s definition to a processed user profile (discussed further
below). Thus, the Dot’s “state” will be preserved. Alterna-
tively, the Home Dot may collect the Dot automatically, with-
out waiting for a user command, by adding the Dot Definition
directly to the processed user profile.

20

25

30

35

40

45

50

55

60

65

24

If the Dot’s state has been altered by the user or by the
content—if, for example, the user has directed the Dot to
Internet content other than the initially-displayed content,
provided personalizing information, or changed the proper-
ties of the frame, or if the content itself has caused an alter-
ation in the Dot—this alteration will be reflected in the Dot
Definition stored in the user profile. Information which per-
sonalizes the resulting content, instead of being stored in a
“cookie” on the client device, can be stored as part of the Dot
Definition. This advantageously permits personalization of
content, such as Internet content that is associated with the
Dot content and the user, without storing a cookie on the
client 199. One advantage this provides is that the state of a
Dot can be returned for a user no matter which computer the
user accesses the dot from.

A user may also access a Dot which has been previously
collected, and possibly altered by use as explained above. As
previously described, the user profile includes Dot Defini-
tions for Dots which have been viewed and collected by the
user. A screen shot showing Dots 502, which have been pre-
viously collected by a user is shown in FIG. 9. Also shown are
Dot Links 504 available from a Dot server for download to the
client.

One embodiment of the steps taken to provide the user with
Dots which have been previously collected are shown in FIG.
10. According to this process, acquired Dot Definitions are
maintained on a central server, and a user profile identifies
which Dot Definitions are associated with particular users.
This is useful when a user may be using more than one
computer and wishes to have access to her collection of Dots
on any machine she is using. However, it is equally within the
scope of the present invention that Dot Definitions may
remain resident on a user’s computer and not be stored for that
user on a central server or the like.

As discussed above, on login at step 250 the user’s profile
is retrieved by the Home Dot stored on the client (step 251 and
252). The user’s profile, stored in the user profile database,
includes the Dot Definition for each of the Dots previously
collected, and possibly altered, by each user. The Dot Defi-
nition, as discussed above, includes the Dot frame definition
and the definition of the controls for filling the viewer within
the frame with content. After log in, a local copy of the
processed user profile is stored on the client 199, and this copy
is further processed as the user collects new Dots, or uses new
or collected Dots such that the Dots are altered.

When the user clicks on the name or icon ofa collected Dot
atstep 253, the Home Dot creates a frame in the display of the
user interface (40, FIG. 1) in step 254. At step 255, the Home
Dot causes the client 199 to request the Internet content from
the URL identified in the Dot Definition from the correspond-
ing content server 155. This content is provided in step 256. It
will be appreciated that the URL need not be the same as the
initialization URL in the Dot template stored in the Dot tem-
plate database 202 on Dot server 153, and in fact the content
server need not be the same content server corresponding to
the initialization URL. In step 257, the Home Dot places the
content in the Dot frame, and the Dot is then fully instantiated
with content.

Hosting Dot Definitions

Dot web servers 153 host and serve the XML Dot Defini-
tions 104 and provide the Dot Links 321, Dot Packs 322, and
sharelinks 320 that point to the Dots so that a user can easily
and instantly add the Dot 104 to their Home Dot application
200 (adds Dot 104 to their user-profile 310) simply by click-
ing on the Dot Link 321, pack link 322, or sharelink 320. The
Home Dot application 200 registers with the local browser/

US 8,621,034 B1

25
computer so that Dot Links 321 are handled by the Home Dot
application 200 (and not by the browser).

Dot Templates and the Dot Index

New Dot Definitions 104 get published to a Dot index 204.
A Dot Definition can be modified by a user once downloaded.
Since these new Dot Definitions are resident on the server for
downloading, they are also referred to herein as Dot tem-
plates. The Dot index stores Dots definitions or templates 104
in database 202 on Dot server 153 by category (such as sports,
finance, games, etc.) with descriptions and images for each
Dot. In the preferred embodiment, Dot Definitions 104 are
published to categories specified by the Dot developer. Cat-
egories can also be automatically created to support indexing
Dots that are most popular (most commonly accessed, most
commonly shared, or other sorting criteria).

Dots as well as their index are formatted as Internet con-
tent. Therefore, users can browse or search the Dot index for
new Dots using either a browser or using their Home Dot
application 200 application (via an AddNewDot Dot or like
functionality).

Each of these Dot templates (Dots definitions 104) are
pointed to by a Dot link 321; the Dot link 321 for each Dot is
generated automatically by the server 153 (when the Dot is
published or previewed) to reference that Dot. Clicking this
Dot link 321 adds the Dots definition 104 to the user’s Home
Dot application 200 (via the user profile 310) and turns the
Dot on (instantiates it and fills it in with internet Dot content).

Once a user receives a new Dot (Dots definition 104) by
clicking on a Dot link 321, the Dot template is downloaded
and becomes a Dot Definition 104 forming part of their user
profile 310 (the XML data that defines which Dots the user
has, which Dots they left open, what the state of the Home Dot
application 200 last was, etc.).

The Dot server 153 may optionally host Dot Definitions
104 as part of user profiles 310. Every Home Dot application
200 user has a user profile (expressed in XML) that stores the
Dot Definitions 104 that the user has collected as well as the
last state of the Home Dot application 200. (See also the
specification of the <ALL-CONFIG> DTD in Appendix B.)

In an additional optional embodiment, when a user suc-
cessfully logs into the Home Dot application 200, state res-
toration may be provided by Dot server 153. In this embodi-
ment, authentication may be handled by the Dot application
server 153 (as opposed to the user device and Home Dot). The
Home Dot application 200 requests the user profile’s <ALIL-
CONFIG> file 311 by communicating with Dot server 153 at
303. The Home Dot application 200 then receives the <ALIL-
CONFIG> file 311 from Dot server 153 at 303, and restores
its state (from the <ALL-CONFIG> 311) presenting last user
state, i.e., which Dots were ON, where the Home Dot appli-
cation 200 was positioned on the screen, etc.)

The Home Dot application user interface (UI) enables a
user to turn a Dot ON 324; in this case the Home Dot appli-
cation 200 has the Dot Definition 104 (part of the user profile
310 that was retrieved on login) that contains enough initial-
ization data to instantiate the Dot and fill it with content just
as the user left it.

As previously mentioned, Dot Definitions 104 that are part
of'auser’s profile 310 may differ with use. In other words, the
Dot Template from which they were originally created may
have a different state than a Dot Definition 104 that has been
modified through use. The user profile could also be imple-
mented to point to Dot Definitions 104 that are always hosted
remotely (and/or not entirely part of the user profile).

Centralization of Dots within the Home Dot 200 enables
users to collect Dots. This feature is significantly different
than today’s model of the Internet in which users visit a page

10

20

25

30

40

45

50

55

60

65

26

one at a time, and then leave. Users collect Dots, keep them
running, and share them with others. By packaging Internet
content as a Dot and referencing it by a Dot link 321, Internet
content is given viral characteristics (i.e., Dots can be
instantly distributed). (See also the Session_Config Example
found in Appendix B.)

Shares

Dot servers 153 also host Dot Definitions 104 as part of
Shares. Because a Dot link 321 represents a Dot, this Dot link
321 (and hence the Dot) can be easily shared (distributed via
email) from one user to other users.

Ifauser receives a Home Dot application share and has the
Home Dot application 200 installed (their machine is Dot
enabled) then clicking on the Share Link Dot link 320 in the
share will add the Dot(s) in the share to the user’s Home Dot
application 200. Ifa recipient of a Share Link doesn’thave the
Home Dot application 200 installed, then the Home Dot
application 200 is downloaded and installed (with the user’s
cooperation) with the first Dot(s).

When a user shares Dots, their Home Dot application 200
generates a share file (XML file) that contains the Dot Defi-
nitions 104 of the Dot(s) included in that share. The Share
XML is then sent to Dot server 153; the Dot server 153
automatically generates the Share Link 320 that references
the Share XML. This Share Link 320 rather than the Share
XML is sent or distributed (via email or posted on a web site)
to other users. (See also the specification of the <SHARE>
DTD found in Appendix B.)

Software Product Download Process to Client

Reference is now made to FIG. 11, which is a flow chart
400 illustrating the software product client download process.
According to one embodiment, to begin, a user makes a
request for a Dot at step 402. At step 402 it is determined that
the user does not have the Home Dot application 200
installed. Step 406 comprises of the following:

User is informed of need to download software to view
Dot. The message could be from the site owner (content
provider) or from a Dot server.

“Do you trust [provider/Dot server host]?” dialog is pre-
sented to user at 405. A dialog then tells the user the size of
download and approximate time for download.

In step 408, the user clicks the “Yes” button. (Alternatively,
if the user clicks the “No” button, step 409 executes with an
exit message such as “You decided not to get the Dot™).
Proceeding now to step 410, the user gets a Trust Certificate (a
security process well understood in the art). The user accepts
the Trust Certificate in step 412. (Alternatively, if the user
declines, step 413 executes with an exit message such as “You
decided not to get the Dot”). In step 414, the user accepts and
receives the license agreement and is presented with a dialog
that asks the user to confirm the directory for download loca-
tion. (Alternatively, if the user declines, step 417 executes
with an exit message such as “You decided not to get the
Dot”). In step 416, the user accepts the license and confirms
the file location, and proceeds now to step 418. The download
process begins, followed by the installer download and back-
ground install operation. The requested Dot opens, and the
“KeepMe” Dot opens. Note that the “KeepMe” Dot may be
provided by a third party such as a content provider. [fno third
party-provided “KeepMe” Dot exists, a default “KeepMe”
will open.

In step 420, if the user decides to keep the Dot, the KeepMe
(Dot) Operation initiates (see below). If the user decides to
close the requested Dot before selecting “KeepMe” and then
decides to select “KeepMe” the requested Dot will close, the
Keep Dot operation will initiate and the requested Dot will be
added to the Dot list. Alternatively, if the user closes the

US 8,621,034 B1

27

requested Dot and the “KeepMe” Dot without selecting
“KeepMe” the Home Dot application 200 will remain
installed but the Home Dot application 200 UI will not be
available to the user. Lastly, if the user decides to close the
“KeepMe” Dot before closing the requested Dot the user will
not be able to initiate the Keep Dot operation.

The other branches of the flow chart 400 will now be
described. Beginning once again with step 402, the user
requests Dot. According to the alternate branch leaving step
404, the Home Dot application 200 is found on user’s
machine. In step 405, it is indicated that the user is not regis-
tered. (Alternatively, if the user is registered, the Add Dot
operation is executed step 407 and the process terminates).
Proceeding therefore to step 411, the requested Dot opens.
The “KeepMe” Dot opens (“KeepMe” Dot may be a default
Dot or a “KeepMe” Dot provided by the Dot/content pro-
vider). If the user decides to keep the Dot, the Keep Dot
operation then initiates (see below). Alternatively, if the user
decides to close the requested Dot before selecting “KeepMe”
and then decides to select “KeepMe” the requested Dot will
close, the Keep Dot operation will initiate and the requested
Dot will be added to the Dot list. In another scenario, if the
user closes the requested Dot and the “KeepMe” Dot without
selecting “KeepMe” the Home Dot will remain installed but
the Home Dot Ul will not be available to the user. If the user
decides to close the “KeepMe” Dot before closing the
requested Dot the user will not be able to initiate the
“KeepMe” operation.

The following is a summary of the “KeepMe” registration
operation (assuming an unregistered user has a partner’s Dot
open):

User clicks “KeepMe” button of “KeepMe” Dot.

User registration form launches.

User form displays in “KeepMe” Dot.

User form includes link to privacy statement.

User completes user registration form and submits.

Home Dot appears.

Welcome Dot appears.

In one embodiment of the present invention, it is possibleto
track the referring partner, for example for awarding incen-
tives for referring a user. The form of the incentive is a matter
of business choice. However, in such an embodiment, the
registration operation will comprise the additional step of:

Crediting the referring party (e.g., partner) with the referral

and/or converting user.

For an alternative software download process, referto U.S.
Provisional Patent Application Ser. No. 60/176,687, Appen-
dix F—DoDots Feature Priority List PPA.

It will be appreciated that the present invention addresses
scaling issues by breaking content up into smaller, more
focused software components. These smaller software com-
ponents (Dot Definitions 104) may thus be served to mobile
devices to compensate for bandwidth and content feature
support issues, to overcome a lack of browser functionality
and processing overhead, etc. Furthermore, the architecture
supporting Application Media Packages or Dots offer a con-
sistent experience with application media or Dot content 104
across device types, e.g., similar experiences as between
desktop, laptop, web-enabled phone, PDA, etc. As Dots are
distributed as easily as web pages are viewed/visited, Dots
can be instantly distributed and users can stay connected with
content providers of their choice without having to download
custom client software from each provider, and without
regard to the device type being operated.

For further details on the structure of the XML structure
used for Dots according to one embodiment of the present

20

25

30

35

40

45

50

55

60

65

28

invention, see Appendix A hereof. For further details on the
functions and design of Dot server 153, see Appendix B
hereof.

Application Media Viewer—the Home Dot

One unique aspect of the present invention is the interac-
tion between the application media package 104 and the
application media viewer 119. This aspect is now discussed.

As mentioned, the application media viewer, or Home Dot,
is a network enabled client application. With respect to the
user experience, the Home Dot provides the parsing and
rendering function of the application media packages or Dots.
It also provides for the application behavior of Dots by
executing calls or methods that are parsed from the Dot by the
Dot Definition, user events, system events, or the like. That is,
ata minimum, a Dot comprises a definition ofa graphical user
interface (frame) and content to be rendered within or asso-
ciated with that frame. Thus, a critical function of the Home
Dot is to parse the Dot definition, render the frame, obtain the
content, and render the content in or associated with the
frame.

As previously discussed, the Home Dot comprises Internet
content. Thus, the Home Dot is in part a content parser,
providing rendering of the graphical user interface (GUI)
from Internet content.

Furthermore, Dots originate on remote network devices.
Thus, another function of the Home Dot (client-side) is to
obtain and organize Dots on the computer on which the Home
Dot resides.

The Home Dot is a part of a client/server system. As a client
installed in one of a multitude of client computers, all com-
municating with a Dot server, the Home Dot maintains com-
munication with that server to perform system functions for
the client. These system functions require a defined command
set or functions calls between the client and server. Such
functions may include user login, user account status, use
statistics, Dot downloads, individual Dot configurations or
user customizations, Dot organization, revision updates for
both Dot and Home Dot installations.

Because the present invention enables versatility in the
manner of packaging and operating with Internet media
(forming application media packages), and because the
breadth of internet media and the scope of available informa-
tion is expansive, the present invention also provides for
methods of Dot organization on a user’s client computer.
More specifically, the Home Dot provides for Dot manage-
ment for a large number of Dots. Such methods of manage-
ment include grouping Dots into an organized layout for
persistent display, categorizing and grouping Dots into Dot
Packs, opening and closing sets of Dots or Dot Packs accord-
ing to a user’s current information requirements, and config-
uring individual Dots either by user defined categorization or
customization parameters that have been enabled by a Dot’s
developer.

The Home Dot according to the present invention provides
for methods for grouping Dots, sharing information between
Dots, and sharing these groupings with others. In other words,
the present invention provides for methods by which a user or
other third party or collectively, third parties, may build upon
the utility of Dots as an atomic media element by adding their
context through grouping and configuration. In doing so, the
present invention enables the addition of third party knowl-
edge that may or may not include the participation of the
original Dot developers. Furthermore, the present invention
provides for mechanisms by which this knowledge is shared.
These mechanisms include saving the customization states of
individual Dots, grouping of a plurality of Dots and saving
them to a Dot server, and emailing links to other users or

US 8,621,034 B1

29

installing these links in a web page. Additionally, the present
invention provides for third parties to share collaborative
efforts by posting such groupings and customizations on a
Dot server for general availability.

In addition to grouping and customization, sharing infor-
mation and events between Dots is provided for by the present
invention. The Home Dot routes messages between Dots and
the system. Messaging enables Dots to act upon one another
such that an action or event that affects one Dot may also be
routed to another Dot, thus affecting a change to it or an action
to be taken by it. The resulting actions or changes of the
individual Dots may not be the same. To support messaging
generally, levels of restrictions are also provided for. It is
therefore possible to control the scope of messages received
by a Dot from other Dots according to membership or
domains. Likewise, it is possible to control transmission of
messages to other Dots. Therefore, the present invention pro-
vides for cooperative messaging and information sharing
between Dots as enabled by Dot developers.

In one embodiment, the server is a high availability system
comprising a plurality of individual servers functioning
together on a server network. Such a configuration advanta-
geously services a large number of simultaneously executing
client Home Dots. Whereas the client application or Home
Dot provides for those services surrounding enabled or
instantiated Dots, the server network and its applications as
embodied in a web site, Java servlets, an RDBMS, Dot and
Home Dot distribution support, provides for the development
and distribution of Dots. Additionally, as the Home Dot per-
forms the optional features of collecting statistics surround-
ing Dot usage and posting these statistics to the server, the
server may aggregate these statistics for reporting. According
to one aspect of the invention, the server operating together
with the Home Dot, may source or enable messages to spe-
cific Dots based upon real-time context of user interaction
with Dots. This function enables, for example, real-time con-
text based advertising. (See also the Client-Server Protocols
section of Appendix B.)

Method of Delivering Dynamic Web Data without Web
Browser

With reference again to FIG. 6, according to one embodi-
ment of the present invention, Home Dot application 200
enables users to collect Dots 120, 230, etc., organize those
Dots into collections, manage the collections with organiza-
tional and workspace management functionality (e.g., cat-
egories, Snapshots, group-move), and easily share Dots, Dot-
packs, and Snapshots with others. Also, the Home Dot
application 200 implements and enables a Dot Messaging
Architecture (DMA, discussed further below) providing mes-
saging between Dots and the Dot server system.

When Dots are instantiated on a client machine, the Home
Dot application 200 collects usage statistics (211, 212, 213,
214, 215) and keeps an event log (in XML format) that is
intermittently sent to Dot application servers 153 and stored,
for example as part of the Dot database 202 as use statistics
206. This enables the Dot server to track how the Home Dot
application 200 and the Dots are being used and shared. In one
embodiment this is implemented as a local MFC (Microsoft
Foundation Class) application on the Windows platform, thus
enabling rapid user response (no Internet delay for functional
UI components). Home Dot application 200 functionality
may also be provided across platforms (MAC O/S, Linux,
unix, mobile, wap, etc.)

Home Dot Operation

Each user of a Home Dot application 200 has a Home Dot
application login account 205 that accesses (step 303 of FIG.
7)a personal user profile stored on a Dot server 153 that stores

20

25

30

35

40

45

50

55

60

65

30

the last state 212 of the Home Dot application 200 along with
which Dots a user has collected 213, and how the user has
organized their collection according to categories, Snapshots
or packs.

When the Home Dot application 200 is launched, it queries
the network for configuration information, enables a user to
login, retrieves the user’s profile from the Dot application
server 153, and restores the Home Dot application 200 to the
last state that was stored to the application server 153.

The method used by Home Dot 200 to access remote con-
figuration information (again, step 303 of FIG. 7) creates a
very flexible application that can be configured to support
different application looks, different login sequences,
dynamically by session and for each for each user. The user
profile retrieved at login 303 enables the application to be
personalized for a user, and allows that user to access that
personalized application state on different client computers
or devices 199.

Launching the Home Dot Application

When the Home Dot application 200 is launched, it reads
the registry on the client machine to find the location of a
configuration file (session-config). The session-config (XML
file) directs the Home Dot application 200 to an application
server using a URL as the server address that will handle its
servlet requests. The URL points the Home Dot application
200 to a default graphic element (skin) and generic Dot
graphic elements for controls such as the Title Bar 164 (FIG.
4), Bottom bar 166 (FIG. 4), etc. and it points to Dot defini-
tions 213 for several default Dots, such as a Help Dot, Add
New Dot, and Login Dot (i.e., System Dots that support the
Home Dot application 200, as described further below).

For security, the session-config is served by a servlet
method operating on the Dot application server 153 that only
responds to authorized Home Dot applications 200. The ses-
sion-config can also be served as a flat file from a standard
web/local directory.

The session-config file contains a mechanism to redirect
the Home Dot application 200 to another session-config file.
This mechanism may look like:

<REDIRECT>=“URL” attribute:

When the Home Dot application 200 reads the redirect
attribute, it ignores the current configuration (session-config
file) and attempts to retrieve the configuration stored at the
redirect URL. The Home Dot application 200 will not redirect
if this tag is omitted, if the URL is empty, or if the URL is the
same URL used to retrieve this configuration in the first place.
(This last state is recursive; therefore if redirection were car-
ried out, the two configuration files redirect to each other,
resulting in an endless loop within the Home Dot application
200.)

The session-config file contains a mechanism to force or
provide an option to upgrade the Home Dot application. This
mechanism employs a version tracking, such as:

<VERSION>=“string” attribute:

This attribute is required and must match the version of the
Home Dot application 200. According to one embodiment, if
this attribute is omitted or differs from the Home Dot appli-
cation’s 200 version, the Home Dot application 200 will
download the executable specified in the UPGRADE
attribute and execute it. The mechanism for performing the
upgrade may look something like the following:
<UPGRADE>=“URL” attribute:

This is used only if the VERSION attribute differs from the
Home Dot application’s 200 version. This URL specifies the
location of an executable that will upgrade the Home Dot
application. The Home Dot application 200 will quit, then run
the upgrade executable automatically.

US 8,621,034 B1

31

System Dots

According to one embodiment of the present invention
three system-level Dots are provided with a Home Dot: the
AddNew Dot; the Help Dot; and the Login Dot. Dot defini-
tions for these System Dots are referenced in the session-
config. System Dots are Dot definitions that are not explicitly
listed in the Home Dot application 200 or a user’s ALL-
CONFIG, but are accessible via the Home Dot user interface.

The AddNew Dot enables users to access the Dot Index
through the Home Dot application 200 and find new Dots and
Snapshots to collect. The Help Dot contains help content for
the Home Dot application 200.

The Login Dot is what first comes up when the Home Dot
application 200 is launched. It enables the user to login to the
Home Dot application 200.

Sampling Dots—Trial Dots

One feature of the present invention is the ability to provide
auser with the option to try, or sample Dots. According to one
implementation of this feature, if'a user doesn’t have a Home
Dot application login account (or is not logged in), then the
Home Dot application 200 is in trial mode. Dots can be
sampled (by clicking on Dot links 321) but not kept.

Keeping Dots

A user may decide to keep or not keep a Dot. According to
one embodiment, to keep a Dot, a KeepMe Dot is displayed
with Dots that are sampled (unique to Dot developer or pro-
vider) that informs the user that a Home Dot application 200
login account is required to keep the Dots. The KeepMe Dot
has a mechanism (link) that enables users to create a new
Home Dot application 200 login account 205 and keep the
Dots by adding them to the new user’s Dot definitions 213 or
user-profile 310 (FIG. 7).

User Log in

Each Home Dot application user has a Home Dot applica-
tion login account that accesses a personal user profile (stored
server 153). When a user launches and logs in to the Home
Dot application 200, it retrieves the user profile from server
153 and restores the Home Dot application 200 to the state in
which the user left it, thus recovering their personal applica-
tion experience. When the user logs out, their user profile is
updated on server 153.

This mechanism enables different users to use the same
client computer 199 and receive different application experi-
ences or the same user to use different client computers or
devices 199 and receive the same coherent experience. The
application 200 restores itself to its last saved state no matter
where a user may log in.

After the Home Dot application 200 retrieves its configu-
ration information, it renders the Login Dot from the Dot
definition specified in the SESSION-CONFIG. The Login
Dot’s Dot content asks the user for login and password, sends
the login request to the Dot server servlet (also specified in the
SESSION_CONFIG), and retrieves the user’s profile
required to restore the Home Dot application.

User Profile (<ALL_CONFIG>)

A Home Dot user’s profile holds the state of the user’s
Home Dot application 200 (size, position on the screen,
which Dots were open) along with which Dots 213 the user
has collected, and how the user has organized their collection
(categories, Snapshots or packs). The profile is stored in an
XML file called the wuser’s <ALL_CONFIG>. The
ALL_CONFIG file contains a SHARE and a LASTSTATE
element as described below. The Share may look something
like the following:

ALL_CONFIG’s <SHARE> attribute:

Since a Share can contain Dots and Snaphsots, the Home Dot
200 uses the SHARE XML DTD to represent the user’s

20

25

30

35

40

45

50

55

60

65

32
collection of Dots and Snapshots. The LASTSTATE element
may look something like the following:

ALL_CONFIG’s <LASTSTATE> attribute:

It contains a PRESET element 313 and a HOMEDOT 314
element (FIG. 7). The Home Dot 200 uses the PRESET XML
DTD (Snapshot) to represent the Dot’s that are left open. The
Home Dot application element holds the position/size/state of
the Home Dot itself. (See also the All_Config Example found
in Appendix B.)

The Home Dot Application Server

The Dot application server 153 support much of the func-
tionality of Home Dot application 200 (such as logging
in/out, collecting, adding, and sharing Dots and
Snapshots, Home Dot usages logging, etc.)

All communication 210 between Home Dot application
200 and the Dot application server 153 is secure and occurs
over standard communication protocols (HTTPS). HTTP/
HTTPS is chosen for the socket level client/server communi-
cation protocol because of its simplicity and more impor-
tantly, because most firewalls typically leave the default
handling of the HTTP/HTTPS communication with the cli-
ent.

The Home Dot 200 communicates to the server 153 via an
HTTP request. The HTTP request URL contains an API call.
Any API calls that require the uploading of data to the server
place the data in the message body of the request. API calls
that require uploading/downloading of data send/receive that
data in XML format. All API calls are the end part of a
complete URL that begins with:

http://<someservername>.DoDots.com/DoDots/
where <someservername> is variable and DoDots is an alias
for the DoDots servlet/JSP servlet or servlets directory. Argu-
ments to any of the methods are passed in as name value pairs
in the query string portion or the URL.

The preferred embodiment of the Dot application server
application that supports the Home Dot application 200 cur-
rently supports a number of servelt methods including the
following:

AddUser

The adduser method is used to create a new Dot user
account. Note that this is available as an end-user API to allow
new users to add themselves rather than wait for an adminis-
trator to do it for them.

GetUser

The getuser method retrieves the user’s own demographic
data. This method supports the ability of the Home Dot appli-
cation 200 to then allow updates to the user’s demographic
information using the setUser method (see below).

SetUser

The setUser method is used to update an existing user
account. Note that this is available as an end-user API to allow
existing users to update themselves rather than wait for an
administrator to do it for them.

GetSession Config

The getsession Config method is used to retrieve general
Home Dot application configuration information.

Set Password

The setPassword method provides a mechanism for the
user to change their associated Dot server account password.

getMasterDotList

The getMasterDotlist method requests the list of all Dot
templates known by the server 153. The server 153 returns a
message body in predefined XML format (see the DOT_
MASTERLIST DTD and example) of all possible Dots and
their default template values. Note that included in each Dot
element are a version stamp and dotclass ID’s which allows
the Home Dot application 200 to determine if it has the most

US 8,621,034 B1

33

up-to-date Dot template and Dot class binaries for that Dot.

The Home Dot application 200 may then request the updated

Dot template (see the getDotTemplate method) and/or dot-

class binary zip file (see the getDotClassBinaries method).
setAllConfig

The setAllConfig method sends, at 303, the entire body of
user-specific client-side configuration information 310
including all Snapshots, Dots, general settings, etc. to the
server 153 for persistent storage on behalf of the user. The
user profile data 310 is sent as the message body in a pre-
defined XML format (see the ALL-CONFIG DTD and
example). The response returned by the server 153 indicates
success or failure.

getAllConfig

The getAllConfig method retrieves, at 303, the last user-
specific, server-side saved client side configuration informa-
tion 310 (all Snapshots, Dots, general settings, etc) from the
server 153. The data is sent as the message body in a pre-
defined XML format (see the ALL-CONFIG DTD and
example).

SetAllEvents

The setAllEvents method sends, at 307, usage information
(211, 212, 213, 214, 215, FIG. 6) that has accumulated since
the last call to setAllEvents to the server 153 for later use in
statistical usage report generation (for DoDots’s own use).
The data is sent as the message body in a predefined XML
format (see the ALL-EVENTS DTD and example). The
response returned by the server indicates success or failure.

GetDotTemplate

The getDotTemplate method requests from the server 153
a specific Dot Template (Dot definition) from the Dot data-
base. The server 153 returns the XML that describes the Dot.
This method is called when the Home Dot application 200 has
determined that it does not have the current version of the Dot
and the user wants the most recent version. (NOTE: this
includes when the user is downloading the Dot for the first
time)

Addshare

The addshare method stores at 302 a specific shared Dot(s)
or Snapshot(s). The server 153 takes the XML that was
uploaded by the Home Dot application 200 for sharing and
returns the unique id of the share. The Home Dot application
200 puts the XML stream to be shared in the request body.

GetShare

The getshare method requests from the server 153 a spe-
cific shared Dot(s) or Snapshot(s). The server 153 returns the
XML that was stored for sharing by the original sending user.
The format of the returned XML stream is dependent on what
has been shared.

Caching Layer

Returning to FIG. 6, the Home Dot application 200 may
advantageously implement a caching layer 219 between its
network requests and the network 210. The Home Dot appli-
cation 200 sends network requests to the caching layer and the
caching layer is responsible for completing those requests
(retrying if necessary).

This is used in the event that the Dot application server 153
does not respond. If a user is attempting to log in and the
server 153 does not respond, then the Home Dot application
200 logs in using a locally cached <ALL-CONFIG> (the last
written user application state can be saved in the caching layer
219). If a user attempts to log out and the server 153 does not
respond, then the caching layer 219 retries at a later time to
write the logout application state to the server 153.

Add New Dots/Snapshots (Packs)

To get a Dot and invoke it—that is, turn it on—the Home
Dot application 200 requires the Dot’s definition (XML file

5

20

25

30

35

40

45

50

55

60

65

34

with the information necessary to instantiate a Dot and point
it to Internet content). With reference again to FIG. 7, a user
collects Dots from multiple sources: by clicking on Dot links
321 (Internet link to a Dot’s Dot definition) and/or by receiv-
ing a Share 320 (Dots and Snapshots shared from other users).
In both cases, the Dot definitions for the Dots involved are
hosted and served by a Dot application server 153.

Users can find Dots (Dot links) in the Dot server 153
Dotlndex 204 (online Database of Dots via a web browser or
the AddNew Dot) and/or promoted on a content provider
server 155, e.g., via a web site. When a user clicks on a
DotLink 321 and the Home Dot application 200 is installed,
the Home Dot application 200 retrieves the Dot definition that
the DotLink 321 points to, adds it to the current user’s ALL-
CONFIG file 311 of user profile 310, and turns the Dot on
324. The Dot instantiates the Ul and begins filling it with the
Dot content (Internet content) as defined in the Dot definition.

Once a user receives a Dot, the Home Dot application 200
saves the Dot’s definition as part of the user’s ALL-CONFIG
file 311. Because a Dot definition becomes part of a user
profile 310, it can be modified by use e.g., its default TitleBar
image 132 may be changed or its WebConduit control may be
navigated to a different URL using DM A messages. The Dot
will pick up where it left off next time it is turned on.

Dots can also be received in the form of Shares. A Share
320 is a XML file that represents a collection of one or more
Dots and/or one or more Snapshots. A Share 320 may be
shared, for example by attaching a Share Link 320 to a stan-
dard email message. When a user receives an emailed Share
Link 320 from another user and clicks on the Share Link 320
in the email:

The Home Dot application 200 retrieves the share XML
file from the Dot application server 153 using the get-
share servlet method to which the Share Link 320 points.

The Home Dot application 200 parses the share package
and adds the new Dots and Snapshots to the Share recipi-
ent’s ALL-CONFIG 311. The Share recipient can now
turn on any Dot and Snapshot received as part of the
share.

According to one embodiment of the present invention,
every Dot that a user gets is added to and becomes part of the
user’s ALL-CONFIG 311 and becomes accessible to the user
anywhere they can login to a Home Dot application 200.
According to another embodiment, a user is provided with the
option to keep or discard a sampled Dot prior to adding it the
user’s ALL-CONFIG 311.

Ifthe Home Dot application 200 is not installed on a client
computer 199 when a user first attempts to get/receive Dots,
then the Home Dot application 200 is downloaded and
installed with the first Dots that are received. From that point
forward, the client machine 199 is Dot-enabled and the user is
not required to download and install the Home Dot 200 again
(subject to updates). This method removes the alternative
approach known today in the art which is to download a
custom client application from each company’s web server
105 that is visited.

Once a client machine 199 is Dot-enabled, (i.e. the Home
Dot application 200 technology installed), then every time
that a user clicks on a Dot link 321, the Dot 120 pops up
immediately (faster than it would take to load a small web
page). Rather than download and install software for different
Dots, only the Dot definitions 102 which are packaged web
readable content is collected.

Dot Categories

The Home Dot application 200 enables users to organize
Dots that they have collected (in their ALL-CONFIG 311) by
categories. A Dot can be a member of more than one category.

US 8,621,034 B1

35

Alternatively, a Dot is not required to be categorized (i.e., set
attribute categorized=uncategorized). The Home Dot appli-
cation 200 enables the user to Add/Remove/Rename catego-
ries and edit a category’s contents (those Dots that are mem-
bers of that category). Categories may also be assigned by the
Dot creator (which may or may not be overwritten.)

In the preferred embodiment, Dots keep track of the cat-
egories to which they are members (e.g., there is no master
category list). The categories to which a Dot belongs are
added to the Dot’s definition (in the user’s ALL-CONFIG
311).

The Home Dot application 200 has one unique category:
the ALL MY DOTS category (users cannot rename or remove
this category). This category contains all the Dots that the user
currently has in their collection (in their ALL-CONFIG 311).
Removing Dots from the ALL MY DOTS category removes
it from ALL-CONFIG 311. A user can duplicate a Dot from
within the ALL. MY DOTS category in the event they want
two of the same Dot (e.g., 2 stock watching Dots—one for
monitoring a first security, and the other for tracking a second
security).

Managing Dots

The Home Dot application 200 provides for several fea-
tures enabling visually organizing, collecting, and working
with Dots 102 individually and as a system. Referring to
FIGS. 12A, 12B, and 12C, a series of drawings depicting a
user interface 600 for the organization of Dots on a computer
desktop is shown.

To improve ease of use when working with Dots in groups,
the Home Dot application 200 enables users to capture an
image, or Snapshot, of a workspace that they have defined
with Dots. Such Snapshots may include, for example, which
Dots are on and where they are positioned on a display screen
656. Users can instantly recall these Snapshots to restore the
previously defined set of Dots to their captured locations on
screen 656.

Snapshots can be created to support different work tasks
(e.g., morning news pack, web development pack), different
user groups (e.g., small business pack, runners health pack,
school study pack), or different activities (e.g., day-trading,
dream team sports tracking). Within a Snapshot may be user-
created Share Packs 659 (groupings) of Dots (created, for
example, using Share Links 320). In addition, Dot developers
can create and publish Packs, which are groups of Dots
designed to work together or which may be of similar/related
interested to a user, and online content providers can offer
their users pre-made Packs.

Users can easily and quickly create and configure/recon-
figure their own aggregation of content and functionality as
Dots, thus providing a user-aggregated content/application
system. This is significantly different than current Internet
functions of offering users “My-" versions of a full-screen
Internet site in which the choice of content, arrangement,
presentation style, etc. are quite limited.

Dots may be aggregated together and manipulated as a
block. Blocks are defined as linear clusters of Dots (snapped
together vertically or horizontally). An example of a group
659 of Dots 647, 649, 651 not in a block is shown in FIG. 12A.
That is, in FIG. 12A the group 659 of Dots are not aligned
with one another with reference to either a horizontal or
vertical axis. Two examples of the Dots 647, 649, 651 com-
prising group 659 arranged in a blocks are shown in FIGS.
12B and 12C, respectively.

Blocks of Dots have an orientation: vertical (Dots snapped
to each other in a vertical column as in FIG. 12B) or horizon-
tal (Dots snapped to each other in a horizontal row as in FIG.
12C). In one embodiment, the Home Dot application 200 or

20

25

30

35

40

45

50

55

60

65

36

Dots (647, 649, or 651) expose a Ul mechanism (e.g., CTRL+
0, see slamming) to enable users to change the orientation of
Blocks of Dots.

Blocks of Dots can have a justification. When a block of
Dots are “justified”, they share a common edge such that all
edges on one side of the Dots are lined up. For example, a
vertical block of Dots all snapped toward the right side of the
screen 653 is right justified as shown in FIG. 12B. In one
possible embodiment, the Home Dot application 200 or the
Dots exposes a Ul mechanism (e.g., SHIFT+CTRL, CTRL+
J, see slamming) to enable users to change the justification of
Blocks of Dots (left, center, right).

Slamming blocks of Dots against screen edges (653, 655)
or other window edges is used as a mechanism to alter the
justification and/or orientation of a Block of Dots. For
example, a user may slam a horizontal block against the left
edge of the screen and the Block’s orientation could swing
vertical and justified to the left with all Dots snapped to the
left of the screen. Likewise, a horizontal block that is bottom
justified may be slammed against the top edge 655 of the
screen changing it to a top justified Block.

One feature provided by an embodiment of the present
invention to assist a user with the organization and presenta-
tion of Dots is the snap feature. A Dot (649 for example)
“snaps” to other Dots (647 and 651 for example), other win-
dows (not shown), and screen boundaries (edges) 653, 655.
When Dots 120 are dragged (moved) near an edge (653 or
655), a magnetism behavior is exhibited and the Dot 649
accelerates towards and “snaps” to that edge (653 or 655).
The present invention provides for a magnetic gap 658 such
that even when Dots are snapped to edges, there still exists a
gap (~5 pixels). This gap is supported so that the user may
easily visually recognize independent Dots.

The snapping feature simplifies the task for users to
quickly and neatly align Dots. (See FIGS. 12B and 12C).
When Dots (647, 649, and 651) are snapped together and a
Dot is collapsed or resized, then a Dot that is snapped to
another Dot can move accordingly; for example, staying
snapped or not, according to user preference.

The user interface of the present invention supports the
movement of Dots (647, 649, or 651) in clusters. All Dots
(647, 649, or 651) that share an edge (snapped
together=cluster/group) can be grabbed and moved as a group
659 (which may, but need not be, a block).

The present invention teaches multiple methods of select-
ing a cluster of Dots 659 (as opposed to a single Dot 651 for
example). The simplest method comprises of pressing the
CTRL key before grabbing a member Dot (any one of 647,
649, or 651) of the cluster 659. This method selects the entire
cluster and moves all Dots 120 as one unit.

Another way is to change the user’s selection, that is which
Dots (647, 649, or 651) in the cluster 659 are selected for
moving, by the number of times a user clicks before grabbing
a member Dot (647, 649, or 651) of the cluster 659. For
example:

0 clicks before grabbing a member Dot (647, 649, or 651)

selects and moves the entire cluster 659 of Dots.

1 click before grabbing a member Dot (647, 649, or 651)

selects and moves just the member Dot.

Additional clicks could select all vertical, all horizontal,

etc.

The present invention provides for a unique method of
indicating which Dots (647, 649, 651) in a cluster 659 are
selected (for a group action such as move, or minimize).
When multiple Dots are selected (by either method: CTRL+
Select or Click+Select), a halo 661 appears around the
selected Dots. In one embodiment halo 661 (shown only in

US 8,621,034 B1

37

FIG. 12A) is a contrastingly shaded or brightly colored line
(~3 pixels wide) floating around the outer perimeter edges of
the Dots selected (647, 649, 651) in a cluster 659. The halo
remains visible as the Dots (647, 649, 651) are moved.

Dot Sharing

The Home Dot application 200 provides methods for users
to easily and quickly Share the Dots that they have collected
and the Snapshots that they have created with others. An
exemplary delivery mechanism is email. The user’s default
mail client application is used (a user can use their existing
address book and add a detailed message); a web-based mail
service extended through the Home Dot application 200 or
Dots may also be used. To share and convey shared Dots or
Snapshots in an email, a Share Link 320 is required (an
Internet link that points to stored Share data on the Dot appli-
cation server 153).

When a user sends a Share or Snapshots to another user:

1) A Share XML file 302 is constructed employing the
shared Dots and Snapshots from the sharing user’s ALL-
CONFIG 311.

2) The Share XML file 302 is stored in Dot database 202 on
Dot application server 153 in exchange for a unique
shareID (using the addshare servlet method).

3) An email is constructed with a Sharelink 301 (an Internet
link that points to the stored Share) and placed in a new
email using the user’s default mail client.

When a user receives a Share of Dots/Snapshots from

another user and clicks on the ShareLink 320 in the email:

1) The recipient’s Home Dot application 200 retrieves the
Share XML file from the Dot application server 153
(using the getshare servlet method) to which the Share
Link 320 points.

2) The Home Dot application 200 parses the Share package
and adds the new Dots and Snapshots to the Share recipi-
ent’s ALL-CONFIG 311.

The Share recipient can now turn on any Dot and Snapshot
received as part of the Share. Because the Share was con-
structed from Dot definitions that were part of the Sharing
user’s ALL-CONFIG 311, the recipient receives the Dots just
as the Sharing user had configured them at the time of build-
ing the Share.

Preferred Embodiment of Client/Server System

The client/server model 500 of the preferred embodiment
is described to according to FIG. 13. Paramount for the suc-
cessful implementation of a consumer or high volume system
is the proper separation of responsibilities between Dot cli-
ents (501, 502, 503) and the Dot server system 555. The
architecture presented herein supports the primary operations
of Dot distribution, client installation, use statistics collec-
tion, as well as Dot developer activities. These operations, as
described above, are supported in part by the XML structure
and calls as listed in the attached appendices A and B. It will
be appreciated by one skilled in the art that the list is not
exhaustive but descriptive of an implementation of certain
features of the present invention.

The Dot server system 555 which is required for support of
the general Dot functionality provides for persistent storage
and retrieval of configuration and statistical (usage) informa-
tion and for intelligent software upgrade service for the Dot
clients 501, 502, 503. Users are required to logon to the Dot
server system 555 with a username and password to access
this information. The server 555 also provides for generating
statistical analysis reports. The server 555 is used to provide
small, persistent data storage areas for third-party Dots. The
server 555 may be maintained by a single administration
entity and does not require third-party Dot providers for its
support. The content contained by the Dot however, may be

20

25

30

35

40

45

50

55

60

65

38

provided by the third party developers, with the initial content
optionally being supplied by existing or re-purposed web
pages served by the third party web servers. An administrative
interface is therefore provided according to the present inven-
tion which is used by the administration entity to maintain the
software upgrade information, manage users and generate
statistical usage reports.

The software portion of Dot server system 555 consists of
several architectural components, including:

Web servers (505, 507, 509), Servlet ISP Engines (506,
508, 510) which maintain a Javabased XML Parser with SAX
(Simple API for XML) and DOM (Document Object Model)
interfaces, all of which share a common file system, and at
least one Relational Database Management System
(RDBMS) Server 513 which supports the RDBMS file sys-
tem 514.

According to one embodiment of the present invention,
there are no specific operating systems, application server, or
database server constraints placed on the server 555 (e.g. the
operating system (O/S) may be NT, Solaris, HP-UX, Linux or
FreeBSD, or any other viable server O/S. The RDBMS may
be Oracle, Sybase, Informix, SQLServer etc.).

The client and server transmit and receive data on the
internet 504 in XML format over standard HTTP/HTTPS. An
XML parser residing on the Servlet JSP Engine (506, 508,
510) assists in deconstructing and reconstructing the XML
into and out of the RDBMS Server 513 when the XML stream
contains information that is needed for report generation.
XML parsers with DOM and SAX interfaces are freely avail-
able for most major programming languages. HTTP/HTTPS,
and therefore a web server (505, 507, 509), is chosen for the
socket level client/server communication protocol because of
its simplicity and more importantly, because most firewalls
typically leave the default TCP ports for HTTP/HTTPS (ports
80 and 443 respectively) unblocked.

The Web servers (505, 507, 509) provide the default han-
dling of the HTTP/HTTPS communication with the Dot cli-
ent 501, 502, 503. The Servlet JSP Engine (506, 508, 510)
functions as an in-process extension of the Web servers (505,
507, 509) and provides the infrastructure for the application
logic layer (servlets) and the presentation layer (Java Server
pages). Servlet/JSP is chosen over the architecturally similar
ASP due to consideration in performance, maintenance costs,
and the variety of O/S and application server vendor choices.

The persistent storage mechanism for everything except
the binary software components (client component updates)
is Relational Database Management System (RDBMS) 513.
The binary software component for client updates are stored
in the file system 514 with a pointer (full pathname) which is
stored in the database to each component file. The binary
software components are not stored directly in the RDBMS in
s0 as to improve performance.

Since the configuration data need not be manipulated or
reported on by the server, the configuration data is stored
directly in the RDBMS 513 as a small text file, in the form by
which it is transmitted from the client 501, 502, 503. The
configuration data is not deconstructed and reconstructed into
its constituent parts by the XML parser on the servers (505,
507, 509). The statistical data is used to generate reports on
the server-side by a servlet JSP-based administrative inter-
face. SQL queries are used for statistical report generation to
provide simplicity and flexibility. Therefore, a single statisti-
cal data XML stream is deconstructed upon receipt by an
XML parser residing on the Servlet JSP Engine (506, 508,
510) and stored as discrete RDBMS columns (the entire
stream instance is the RDBMS row) rather than storing the
entire stream in a single text column.

US 8,621,034 B1

39

Development and Testing of Dots

It is possible to provide for the development and testing of
new Dots, Categories, Packs, etc. in a physically separate
system that is a superset (duplicate with additional testing
support) of the production system 500. The development and
testing (dev/test) system has additional server methods and
interfaces, not present in the production system 500 which
requires higher security and simplified maintenance, to facili-
tate the development and testing process. The interfaces to
these additional server methods are HTML/ISP pages to
allow for easy accommodation of new, geographically dis-
tributed Dot content providers.

The development and test system allows the Dot content
providers to easily build and test new Dots and Dot Packs.
When tested to their satisfaction, the Dot content providers
can then, through the interface, submit their Dots/packs for
inclusion in the production system. The Dot administrator
will be able to periodically run a report to see which Dots/
packs were submitted. The Dot administrator is then able to
decide whether or not to approve a Dot/pack for import into
the production system. Migration of an approved Dot/pack
will involve exporting the appropriate data from the RDBMS
on the development and test system, moving the export file
from the development and test system and importing the
export fie into the production system.

Dot Messaging Architecture (DMA)

Dots and the Home Dot application have a messaging
architecture (Dot Messaging Architecture—DMA) that
enables elements of the system including Dots, controls
within Dots, and the Home Dot application, to communicate
with one another. This enables these elements to exchange
information, request actions or functionality, and respond to
system, element, or content events.

FIG. 14 illustrates the message routing paths and elements
700 of the Dot Messaging Architecture. The Dot Messaging
Architecture (DMA) has a messaging addressing and routing
scheme, defined messages, and an extensible message format
(as defined in further detail below) that provides each com-
ponent with access to component, application, and system
features and true application behavior. Also, Dot content has
access to the application rendering system within the Home
Dot 200 and other Dots (711, 751, 761) via the DMA.

All elements of the system can send and receive (via paths
701, 702, and 703) DMA messages. In this embodiment,
these elements fall into three groups: the Dots (711, 751,
761); the Controls in the Dot’s control space including the
WebConduit control (714, 754, 764) and base controls that
encompass menu controls and window operations controls;
and the system control 780 embodied within the Home Dot
application 200.

The DMA enables controls to send and receive messages.
Controls can exchange messages with other elements in the
same Dot (controls in the control space, Dot frame, System)
orin a different Dot (the addressing scheme supports address-
ing elements in other Dots. All Dot controls share a set of
common messages. They also can provide messages that are
unique to that control (see WebConduit Control). Common
control messages include messages such as:

#show

#hide

#get-width

#get-height

fget-size

#is-open

#get-address
These messages query/effect properties/methods of a control
within its Dot’s control space such as layout, size, etc.

20

25

30

35

40

45

50

55

60

65

40

The Web Conduit control (714, 754, 764) supports addi-
tional messages (in addition to the common control messages
explained previously). These unique Web Conduit messages
enable other elements in the Dot System (Controls, Dot
frames, Home Dot application 200) to interact with WebCon-
duit functionality (request actions or functions, and respond
to events). Messages unique to the WebConduit control which
is a wrapped Microsoft IE web control in the preferred
embodiment, include:

##<any javascript>

#navigate.

One of the most significant features of the WebConduit
control is that DMA enables messages to flow IN and OUT of
standard HTML rendered within a control. The preferred
embodiment currently extends DHTML and javascript to
send and respond to DMA messages. The present invention
supports SendMessage (a synchronous method which is used
if return result is required) and PostMessage (an asynchro-
nous method in which no return result required) methods that
can be called using a window.external.<method> call from
DHTML in the Web Conduit control (714, 754, 764).

The preferred embodiment of the message format (ex-
plained in more detail in the following sections) allows for
two types of messages to be sent IN and OUT of HTML with
respect to the WebConduit control. Specific messages and
functions can be called (e.g., #navigate) that cause a Web-
Conduit to perform a specific action or function. In addition,
any javascript (e.g., ##<any javascript>) can be called within
a WebConduit’s document as well.

This provides the messaging architecture with exceptional
flexibility and extensibility in which data can be passed, func-
tions can be called, and variables can be set. Integrating DMA
with standard Web content by enabling DMA messages to
call into HTML and for DMA messages to be initiated from
HTML within the WebConduit control is the basis that
enables Dots to exhibit true application behavior.

Any DMA message that is defined can be sent or called
from DHTML.. This, in conjunction with the application logic
capability that is provided by javascript (and other HTML
scripting languages), provides the application media devel-
opment environment (which includes application develop-
ment platform and language). A Dot developer can thus
author a new Dot application by developing web content
(HTML, GIF files, etc.) and by packaging that content in a
Dot Definition, eliminating the need for compilers and con-
sequently, downloading executables. Therefore, if a client
device 199 has been Dot-enabled (the Home Dot application
200 is installed) then that device can instantaneously view,
open, run Dots as well as modify and save their configura-
tions.

DMA messages can be sent to and received from a Dot.
This enables elements of the system that can send and receive
DMA messages to interact with a Dot. Elements of a Dot’s
definition can be accessed/modified using Dot messages.
Examples of Dot Properties/Dot methods that can be
accessed and modified via the DMA include:

#set-title

#get-title

#set-size <width><height>

#is-open

#close

#collapse

#uncollapse

#set-title-images

<inactive-url>

Since a message can originate from DHTML content
which is rendered in the Web Conduit control as Dot content,

<up-URL> <down-url> <over-url>

US 8,621,034 B1

41

standard web content when rendered in a Dot can therefore
access properties and behaviors of its packaging (the Dot).
Internet content can therefore do such things as modity the
size of the Dot that is rendering it. It can move it or collapse
it.

The present invention therefore enables properties and
behaviors to be tied to and between any Dot content event,
even outside of a Dot affecting another Dot (e.g., an internet
content (DHTML) mouse-over event can change the size and
position of another Dot, etc.)

Most of the DMA examples thus presented are of other
elements sending messages to the Dot frame (711 for
example). An example of a Dot frame 711 sending messages
can be seen in the case of the menu control 712 (discussed
further below). The Dot frame 711 may also send messages
(as can the menu control 712) based upon the occurrence of
certain events such as Dot-moving, Dot-collapsed/expanded,
Dot-infocus/inactive, etc.

The preferred embodiment has the menu control 712
implemented as part of the Dot Frame 711. Menu control 712
entries are given/tied-to actions using the DMA. Each menu
entry may consist of, inter alia, a text-title, an icon, a tooltip,
an ID, and an action. The action is simply a DMA message
that has a recipient specified address. Dot menu control 712
items are defined as part of a Dot definition.

When a menu entry within a menu control 712 is selected
by a user, the specified Dot Message is sent to the specified
recipient (DMA address). This illustrates an example of the
true application behavior that is exhibited by Dot Content
having access to DMA.

As with the functionality described in the previous sec-
tions, the following are examples of types of additional appli-
cation behaviors that are possible:

A menu control 712 entry (e.g., refresh) can send a mes-
sage (to refresh) to a Web Conduit control and cause an
action (e.g., refresh content).

A menu control 712 entry can send a message to the Dot
(itself) and cause it to collapse, or resize, or exit.

A menu control 712 entry can call any javascript (rr<any
javascript>) in the HTML of Dot content rendered in the
same Dot or a different Dot to set variables, change
images, call functions, etc.

DMA messages can also be sent to and received (701, 702,
703) from the system (720)—the functional layer above and
between individual Dots. Some aspects for which the system
is responsible include DMA message routing, adding, remov-
ing, opening, closing Dots, etc. In the preferred embodiment,
the system includes the Home Dot application 200 or equiva-
lent Dot-rendering and Dot-management client application.

Examples of system functions and behaviors that can be
accessed and called using DMA messages include:

#refresh

#install-dot <dot-url>

#have-dot <dot-address>

#delete-dot <dot-address>

#quit

#save-to-server

#get-screen-width

#get-screen-height

#close-all-dots

ffopen-preset <preset-name>

#take-preset <preset-name>

#get-dot-ids <dot-address>

Messages can be sent to/from controls (WebConduit con-
trol—in and out of HTML)), to and from the Dot (DotFrame—
menu control 712, Titlebar 713, bottom bar 717, flexible Dot
Definition), to and from the system (Home Dot application

20

25

30

35

40

45

50

55

60

65

42

200—open and close Dots, system variables and data). The
DMA addressing scheme also provides for messages to be
sent to any Dot, to any control in any Dot, to any HTML, in
any control, in any Dot. This enables Dots to work together as
an application system, enables Dot developers to share func-
tionality and leverage and build on the functionality of other
Dots.

In the preferred embodiment, a DMA message has two
components: a recipient address and the message body itself.
Both are represented as strings. The addressing scheme is
explained in the next section.

The body of a DMA messages is, at its simplest, a text
string which may represent any javascript, for example, sent
to a Web Conduit control. For defined messages, there is a
method element to define the function/behavior call/request
[e.g., #set-size] followed by arguments if the method element
requires them (e.g., height in DotUnits; width in DotUnits).

The present invention provides for two functions that
enable messages to be generated from within DHTML in the
WebConduit control: SendMessage and PostMessage. Send-
Message, which is synchronous, is used if a return value is
required. PostMessage, which is asynchronous, is used oth-
erwise.

Below are examples of messages generated with DHTML
within the WebConduit control:

window.external PostMessage (“#.:”, “#set-position 350

500”)
This message is sent to a Dot and causes it to move to a new
screen position, for example 350x500 pixels.
window.external.SendMessage (“#system, “#get-screen-
width”)
This message asks the system for the current screen’s width in
pixels.

Messages are routed according to three pieces of informa-
tion: Domain, Dot Specifier, Control Specifier.

One of the ways that a Dot is identified is by a Domain. In
the preferred embodiment, the Domain is the same as a Dot
provider’s ID (developer ID). Generally this is a unique iden-
tifier for each company or developer and is specified in a
Dot’s definition.

Dots in the same domain, by default, can communicate to
one another without explicitly specifying the domain in the
address. When no messaging access restrictions are placed on
addressing a Dot according to its domain (by default there are
restrictions), then a Dot can also send messages to another
Dot belonging to a different domain by explicitly addressing
that Dot by its domain and Dot specifier.

Dots are further identified with a kind attribute as a part of
the Dot Definition, and by an ID attribute. The ID is volatile
and is not typically hard-coded into DHTML scripts. The
addressing scheme allows for a Dot to be specified by explic-
itly referencing or querying a Dot’s kind or ID identifier
attribute.

Similarly, controls are identified by kind and by ID (also a
part of the Dot Definition). Controls can also be specified by
explicitly referencing or querying its kind or ID.

In the preferred embodiment, there are several permitted
forms for the address of a message recipient. The fundamen-
tal one is:

#<dot specifier>:<control specifier>
Other accepted address forms are:

#<domain>:<dot specifier>:<control specifier>

#<domain>:<dot kind>:<dot id>:<control kind>:<control

id>

fsystem
If an address does not match any of these forms, the address
defaults to #system.

US 8,621,034 B1

43

Specifiers have four different forms: The first form speci-
fies the unique ID of the Dot/control/domain in question. An
example of this first form is:

<specifier>:=<[D>

The second form allows the sender to address a message to
the closest matching recipient by some form of search crite-
ria. Multiple Dots or controls might be of the same kind,
enabling broadcasting a message to these elements. An
example of this second form is:

<specifier>:=<kind><#search criteria>
Search criteria can be one of:

<search criteria>:=any

<search criteria>:=open

<search criteria>:=closed
Controls that are hidden are considered closed, and controls
that are visible are considered open.

The third form enables reference to a specific Dot or con-
trol, allowing messages to be sent within a Dot. If a particular
control is specified, then it must be specifically referenced in
the Dot. An example of this third form is:

<specifier>:=dot

The final form is specifically for the control specifier. If a
message is to be directed to a Dot and not a control, the control
specifier must be empty. An example of this last form is:

<specifier>:=

The current embodiment supports messages to a specific
recipient: the addressing/routing scheme could support mes-
sages addressed to multiple simultaneous recipients (broad-
cast). Similarly, Dots can address Dots on the same platform
or client (computer or device); the addressing or routing
scheme may also support messages addressed to Dots/Con-
trols/Home Dot applications 200 on other devices or by user.
The Home Dot application 200 routes messages sent between
Dots (711, 751, 761) and resolves addressing queries (e.g.,
address: “#A#Any: =first Dot ofkind “A” found in the Home
Dot application 200).

Since the Home Dot application 200 routes messages
between Dots (711, 751, 761), it can allow or restrict Dots
from addressing and sending messages to other Dots outside
their own domain (the Home Dot application 200 could also
restrict messages to within the same Dot). For example, Dot2
(751) is a member of domain B (750) as is Dot 3 (761),
whereas Dot 1 (711) is a member of Domain A. Home Dot
200 can permit or deny messaging between Dot 1 (711) and
Dots 2 and 3 (751, 761) and vice versa.

The Home Dot application 200 acts to enforce the access
rights to and between published messages built on the DMA
API. In one embodiment, the Home Dot application 200
accesses a database of published message methods imple-
mented by Dot Developers and restricts/allows messages to
pass based on access criteria data posted to the data base.

For example, a Dot developer could specify 2 public func-
tions, 2 functions with access restricted by partner (Domain
710 or 750 for example), and 2 functions with access
restricted by Dot address. The Home Dot application 200 may
allow or restrict messages to be sent to one Dot from other
Dots according to access criteria specified by the Dot devel-
oper.

The Home Dot application 200 also responds to messages
sent to #system. Access to system features/functions/behav-
iors is one aspect of the present invention that enables exten-
sibility of the Home Dot application system.

System messages include:

H#REFRESH—Refreshes the user’s ALL-CONFIG 311.

#INSTALL-DOT<DOT-URL>—Adds the specified Dot

to theuser’s Home Dot application 200 (ALL-CONFIG)

20

25

30

35

40

45

50

55

60

65

44

using the same mechanism that Dot definitions are
added to the system.

#HAVE-DOT<DOT-ADDRESS>—Checks if the user
currently has the specified Dot in their Home Dot appli-
cation 200 (as part of the ALL-CONFIG).

#DELETE-DOT<DOT-ADDRESS>—Removes the
specified Dot from the Home Dot application 200 (and
the user’s ALL-CONFIG).

#QUIT—Quits the Home Dot application 200.

#SAVE-TO-SERVER—Saves the user’s ALL-CONFIG to
the Dot application server 153.

#GET-SCREEN-WIDTH—Returns the width of the
screen in pixels.

#GET-SCREEN-HEIGHT—Returns the height of the
screen in pixels.

#CLOSE-ALL-DOTS—Closes all open Dots.

#OPEN-PRESET<PRESET-NAME>—Opens the speci-
fied user’s Snapshot.

#TAKE-PRESET <PRESET-NAME>—Capture a Snap-
shot.

#GETDOT-IDS <DOT-ADDRESS>—Returns the DotID
of the specified Dot.

Statistics Collection/ Analysis

The Home Dot application/Dot system and method of col-
lecting use statistics from Home Dot applications (and appli-
cation servers) enables the present invention to build and
query a multidimensional use-profiling database. Because
Dots are used in groups and used more often for longer
periods of time than web pages/sites, the present invention
may collect real-time multidimensional use statistics 206 (ac-
cording to which Dots are ON, for example together or simul-
taneously) that over time becomes a valuable multi-dimen-
sional user behavior profiling database. The Dot server 153
collects use statistics 206 from its Home Dot application 200
on clients 199 and manages and tracks Home Dot application
downloads, access to Dot Index 204, etc.

Information on a Dots user can be monitored in a multi-
dimensional fashion. Instead of classifying a user based
solely on their demographic characteristics and linear use of
the internet, the present invention enables tracking on an
additional dimension. A user can be classified according to
which Dots they use at the same time, instead of only how
they navigate within an individual viewer (the browser). This
user information can be packaged and sold to content provid-
ers so that they can better provide services to their users.

Because the present invention enables multi-dimensional
profiling, a service may be provided by the operator of this
system and its partners to customize advertisements and
offerings to users in a more efficient and targeted manner.
Tracking this profiling data in real-time allows the operator to
tailor these offerings to users of specific Dots in a way that is
not otherwise possible today. For example, one content pro-
vider partner can be informed that users of a certain Dot are
also disproportionately monitoring content about a specific
topic through another Dot. This information is then used to
target ads at the moment the peripheral interests of that con-
tent providers Dot users are known. The present invention
enables this information to be tracked as a complete system.
The system can be utilized to facilitate serving advertise-
ments and offerings based on the information that it collects.

The Home Dot application 200 records application events
in an XML log that intermittently gets uploaded to the Dot
application server 153. Application events that are logged
include the following (by timestamp and by session):

When a Dot is opened and when it is closed (particularly,

when Home Dot 200 is opened and closed)

US 8,621,034 B1

45

When a Dot is added from a Dot Template or a Share

The number of times a user clicks through from a Dot to a
full-screen web page (and to which URLs)

The number of page views in a Dot-by-Dot session

When and from which URL did a user download a Home
Dot application 200

The following outlines the types of questions the use sta-
tistics of the present invention can answer regarding Home
Dot application 200 and Dot use:

Duration and frequency of opening Home Dot applications

and Dots—How often is the Home Dot application 200/
Dot used on average (optionally, by user group) during
the parts of a day (e.g., morning)?

Duration: What was the average amount of time that users
leave the Home Dot application 200/Dot ON 324 during
the day

Distribution of Home Dot application 200 and Dots (Point
of Distribution including Shares)—How many users
have downloaded the Home Dot application during a set
period of time? From which URL were they referenced?

How many times has this Dot’s Dot Template been installed
(from the DotIndex)?

From which web site were users referred? How many times
has the Dot been installed from a Share?

Page views in Dots, Click-throughs/URL’s—How does
the page-view performance of a Dot compare to the
comparable content on a full-screen web site?

List the full-screen URLs most often clicked through to (in
ranking order) from this Dot.

Dots used in Groups—Which Dots are used most fre-
quently together? Which Dots do users most often use
with Dot.

The Home Dot application 200 intermittently sends its
event logs to the Dot application server 153 using the set-
AllEvents servlet method. The Home Dot application’s
events are logged and sent as an XML file in a format speci-
fied by the CALL-EVENTS.

Categorizing Dots and/or Dotcontent by “context key-
words” (e.g., CNN Dot and FoxNews Dot="News”; CBS
Sportsline Dot="Sports”) enables the Home Dot application
200 to build a real-time (accessible via the DMA) multi-
dimensional use context on-the-fly, based on which Dots the
user currently has ON (e.g., assemble the keywords of the
currently open Dots into a multi-dimensional keyword
string). This highly resolved view of auser’s behavior enables
the Home Dot application 200 to source a very targeted offer-
ing (commerce opportunity or ad) and/or enable Dot devel-
opers to do the same. In one embodiment, the Home Dot
application 200 supports a DMA message (pay to access) that
provides Dot developers with access to this type of informa-
tion (e.g., SendMessage “#system” ‘#get-use-context-
string”)

The Home Dot application 200 supports a developer toolkit
service that sources ads targeted according to this multi-
dimensional use context generated by the Home Dot applica-
tion 200 (more targeted than currently possible with singular
contexts such as text strings, e.g., searched on “toys”=serve a
toy ad). The Home Dot application 200 and/or Dot applica-
tion server 153 monitors/tracks, and handles incremental bill-
ing for all parties (e.g., anonymously).

Variations

Many variations on the above description are contemplated
and within the scope of the present disclosure. For example,
in an alternate embodiment, the Home Dot application 200
interface is implemented entirely as Dot content served from
Dot application server 153. Furthermore, the Home Dot
application 200 itself may be packaged as a Dot. The Home

20

25

30

35

40

45

50

55

65

46

Dot application Dot has special responsibilities and rights,
but otherwise, it could be as much a Dot as any other Dot. This
embodiment enables the application executable to be signifi-
cantly smaller and the Home Dot application 200 UI to be
significantly more flexible.

In yet another alternate embodiment, the Home Dot appli-
cation 200 is implemented as a plug-in to the web browser.

In still another alternate embodiment, the Home Dot appli-
cation 200 is implemented in Java, thus enabling it to be more
easily portable to other platforms.

Additionally, in another embodiment, a subset of the Home
Dot application 200 functionality is implemented through the
browser using pop-ups; this would be particularly valuable to
mobile Home Dot application 200 users who don’t always
have easy access to a computer with the Home Dot applica-
tion 200 installed.

The present invention enables the definition of an interface
that groups Dots together from different content providers
and offers them to end users as part of a unique system of
content. Content from different internet companies can be
made to interact with each other using aspects of the present
invention provided for in the Dot messaging architecture
(DMA). The Dot server 153 may therefore be provided with
functionality to broker these relationships and facilitate this
interaction in Internet content between companies and
between Dot-enabled internet sites.

Because Dots can work together (via DMA and packs), the
present invention enables companies or content providers to
enable their Dots to work together. The present invention
provides for another layer built upon the DMA API (applica-
tion programming interface) that specifies how different
kinds and types of Dots from different companies or devel-
opers communicate/work together. This layer is optionally
open source so that a large portion of it is self-published by the
Dot Developers themselves.

Dot Developers implement, specify, and publish in a data-
base DMA message methods that other Dot Developers
implement through calls made within their published Dots.
These Dot developer methods may be aggregated and pub-
lished for use in a database provided by the Home Dot pub-
lisher for example and sourced within a developer zone, or as
part of a Dot Definition.

Dot developers may implement these DMA message meth-
ods as Java script functions that other Dot Developers calls
with the DMA’s ##<any Javascript> message. Dot Develop-
ers would need to be able to address a particular Dot’s Web
Conduit control that supports a page implementing the speci-
fied Javascript function and address by domain if different
from their domain. Restricted or variable permissions may be
provided via a web server or defined in a Dot’s Dot Definition
to restrict/enable routing of messages.

A Dot Developer has the option to restrict access to certain
methods according to some criteria e.g., public, partners,
domain. Different types of restriction criteria schemes may be
implemented. A Dot may send a message to another Dot and
query for methods accessible to it. An example of access
levels for functions is provided below.

Public functions—Dot Developer implements and pub-
lishes DMA message methods that any other Dot Devel-
oper could call (e.g., what-time-is-it for a Clock Dot).

Reserved functions—Dot Developer implements, speci-
fies, and publishes a set of DM A message methods that
may be called only by certain types of Dot Developers
(e.g. premier partner), specific Dot Developers, or spe-
cific Dots.

Private functions within the same domain—A Dot Devel-
oper restricts access to certain DMA message methods

US 8,621,034 B1

47

that may only be implemented by other Dots in the same
domain. The preferred embodiment provides for the
option to either allow all messages to flow between
domains, or to fully restrict messages to within a
domain.

Local Private functions within Dot— At the most restricted
level, access is specified such that DM A messages may
only be accessed from within the same Dot.

A published API that specifies ways for Dots to extend
functionality to other Dots enables Dot Developers to lever-
age the development work and functionality of other Dots. As
an example, a Dot Developer may implement a credit card
processing Dot. In one embodiment, this Dot is implemented
as a javascript function that checks the credit available on a
credit card. This developer could specify this as a public
function (in the Dot Definition for example) and publish this
function in a Server Dot Index. Other Dot Developers send a
message to this Dot and call “check-credit”, thus leveraging
the development carried out from the first Dot Developer.

In the above example, the messaging architecture may
provide revenue generation by way of monthly fees, per-
access fees, etc. The Home Dot application 200 and/or Dot
application servers could monitor/track and automatically
handle incremental billing for all parties. By applying this
method to the previous example, a Dot Developer who calls a
credit card processing Dot for a credit check may be incre-
mentally billed for each such call.

It will be appreciated that the methods, in the form of
instructions having a sequence, syntax, and content, of the
present invention may be stored on (or equivalently, in) any of
a wide variety of computer-readable media such as magnetic
media, optical media, magneto-optical media, electronic
media (e.g., solid state ROM or RAM), etc., the form of which
media not limiting the scope of the present invention. A data
processor reading said media is operable to either transfer
(e.g., download) said instructions thereto and then operate on
those instructions, or cause said instructions to be read from
the media and operate in response thereto. Furthermore,
devices (e.g., a reader) for accessing the instructions on said
media may be contained within or connected directly to the
data processor residing on a device on which those instruc-
tions operate, or may be connected via a network or other
communication pathway to said data processor.

While a plurality of preferred exemplary embodiments
have been presented in the foregoing detailed description, it
should be understood that a vast number of variations exist,
and these preferred exemplary embodiments are merely rep-
resentative examples, and are not intended to limit the scope,
applicability or configuration of the invention in any way.
Rather, the foregoing detailed description provides those of
ordinary skill in the art with a convenient guide for imple-
mentation of the invention, by way of examples, and contem-
plates that various changes in the functions and arrangements
of the described embodiments may be made without depart-
ing from the spirit and scope of the invention defined by the
claims thereto.

What is claimed is:

1. A method of grouping of multiple application media
packages, said method comprising:

presenting graphical user interfaces defined by individual
ones of the multiple application media packages on the
display of the client computing device in a spatial
arrangement, a given application media package com-
prising (i) a definition of a graphical user interface
within which content in a web browser-readable lan-
guage may be presented on a display associated with a
client computing device, wherein the graphical user

20

25

30

35

40

45

50

55

60

65

48

interface lacks user controls for manual network navi-
gation with the given application media package, and (ii)
a network reference at which content in a web browser-
readable language is obtained over a network by the
application media package, said graphical user interface
having a plurality of interface boundaries;
associating an identification with said spatial arrangement
of the graphical user interfaces such that the identifica-
tion identifies the spatial arrangement as a whole; and

uploading said spatial arrangement of the graphical user
interfaces and said identification from the client com-
puting device to a server computer,

wherein the spatial arrangement of the graphical user inter-

faces of the application media packages specifies the
relative positions of the graphical user interfaces such
that the graphical user interfaces are aligned parallel to a
boundary of said display of the client computing device.

2. The method of claim 1, wherein the spatial arrangement
of'the graphical user interfaces of the application media pack-
ages specifies the relative positions of the graphical user
interfaces such that the graphical user interfaces are aligned
with at least one of said interface boundaries.

3. The method of claim 2, wherein said alignment is linear.

4. The method of claim 1, wherein the spatial arrangement
of the graphical user interface distributes the graphical user
interfaces across the display of the client computing device in
accordance with user selections received from a user at the
client computing device.

5. A system configured to group graphical user interfaces
of'a plurality of application media packages on a display, said
system comprising:

electronic storage configured to store a plurality of appli-

cation media packages, a given application media pack-
age comprising (i) a definition of a graphical user inter-
face within which content in a web browser-readable
language may be presented on a display associated with
a client computing device, wherein the graphical user
interface lacks user controls for manual network navi-
gation with the given application media package, and
wherein the graphical user interface has a boundary, and
(i1) a network reference at which content in a web
browser-readable language is obtained over a network
by the application media package;

a display; and

one or more processors configured to:

present the graphical user interfaces defined by said
plurality of application media packages on the display
in a spatial arrangement;

associate an identification with said spatial arrangement
of the graphical user interfaces such that the identifi-
cation identifies the spatial arrangement as a whole;
and

upload said spatial arrangement of the graphical user
interfaces and said identification to a server computer,

wherein the spatial arrangement of the graphical user inter-

faces of the application media packages specifies the

relative positions of the graphical user interfaces such

that the graphical user interfaces are aligned parallel to a

boundary of said display.

6. The system of claim 5, wherein the spatial arrangement
of'the graphical user interfaces of the application media pack-
ages specifies the relative positions of the graphical user
interfaces such that the graphical user interfaces are aligned
with at least one of said interface boundaries.

7. The system of claim 6, wherein said alignment is linear.

8. The system of claim 5, wherein the one or more proces-
sors are further configured to receive user selections regard-

US 8,621,034 B1

49

ing the distribution of the graphical user interfaces across the
display, and to arrange the graphical user interfaces in the
spatial arrangement in accordance with the received user
selections.

9. A system configured to group graphical user interfaces
of a plurality of application media packages on a display, said
system comprising:

electronic storage configured to store a plurality of appli-

cation media packages, a given application media pack-
age comprising (i) a definition of a graphical user inter-
face within which content in a web browser-readable
language may be presented on a display associated with
a client computing device, wherein the graphical user
interface lacks user controls for manual network navi-
gation with the given application media package, and
wherein the graphical user interface has a boundary, and
(i1) a network reference at which content in a web
browser-readable language is obtained over a network
by the application media package; and

one or more processors configured to:

transmit, over a network, the application media pack-
ages to a client computing device for execution on the
client computing device resulting in presentation of
the graphical user interfaces defined by the applica-
tion media packages on a display of the client com-
puting device in a spatial arrangement;

—_
<

15

20

50

receive the spatial arrangement of the graphical user
interfaces and an identification associated with the
spatial arrangement from the client computing device
such that the identification identifies the spatial
arrangement as a whole; and

store the spatial arrangement of the graphical user inter-
faces and the identification associated therewith to the
electronic storage,

wherein the spatial arrangement of the graphical user inter-

faces of the application media packages specifies the
relative positions of the graphical user interfaces such
that the graphical user interfaces are aligned parallel to a
boundary of the display of the client computing device.

10. The system of claim 9, wherein the spatial arrangement
of'the graphical user interfaces of the application media pack-
ages specifies the relative positions of the graphical user
interfaces such that the graphical user interfaces are aligned
with at least one of said interface boundaries.

11. The system of claim 10, wherein said alignment is
linear.

12. The system of claim 9, wherein the spatial arrangement
reflects user selections regarding the distribution of the
graphical user interfaces on the display that are received at the
client computing device.

#* #* #* #* #*

