a2 United States Patent

US010540083B2

ao) Patent No.:  US 10,540,083 B2

Goel et al. 45) Date of Patent: Jan. 21, 2020
(54) USE OF HAND POSTURE TO IMPROVE (52) US. CL
TEXT ENTRY CPC ... GO6F 3/0488 (2013.01); GOGF 3/0416
(2013.01); GOG6F 3/04886 (2013.01); GO6N
(71) Applicant: University of Washington through its 77005 (2013.01)
Center for Commercialization, Seattle, (58) Field of Classification Search
WA (US) CPC .... GO6F 3/0488; GOGF 3/0237; GO6F 3/0416;
GOG6F 3/04886; GOGF 3/04842,
(72) Inventors: Mayank Goel, Seattle, WA (US); Jacob (Continued)
0. Wobbrock, Seattle, WA (US); .
Shwetak N. Patel, Seattle, WA (US); (56) References Cited
Leah Findlater, Hyattsville, MD (US) U.S. PATENT DOCUMENTS
(73) Assignee: University of Washington, Seattle, WA 6,173,121 Bl* 12001 Tomita .........ccorsunn.. GO03B 5/00
(US) 396/52
2008/0278455 Al* 112008 Atkins ............... GOGF 3/04883
(*) Notice: Subject to any disclaimer, the term of this ) 345173
patent is extended or adjusted under 35 (Continued)
US.C. 154(b) by 257 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.:  14/646,528 WO 2010013276 Al 2/2010
WO 2014093506 Al 6/2014
(22) PCT Filed: Dec. 11, 2013
(86) PCT No.: PCT/US2013/074428 OTHER PUBLICATIONS
§ 371 (c)(1) International Search Report and Written Opinion dated Mar. 4, 2013
2 Date- ’ Mav 21. 2015 in International Application No. PCT/US2013/074428, filed Dec.
(2) Date: ay 21, 11, 2013. 14 pages.
(87) PCT Pub. No.. WO2014/093506 (Continued)
PCT Pub. Date: Jun. 19, 2014 Primary Examiner — Yaron Cohen
(74) Attorney, Agent, or Firm — Perkins Coie LLP
(65) Prior Publication Data
57 ABSTRACT
US 2015/0317076 Al Nov. §, 2015 L
A system for classifying a user touch event by a user
interacting with a device as an intended key is provided. For
L. different hand postures (e.g., holding device with right hand
Related U.S. Application Data and entering text with right thumb), the system provides a
(60) Provisional application No. 61/735,800, filed on Dec. touch pattern model indicating how the user interacts using
11, 2012. that hand posture. The system receives an indication of a
user touch event and identifies the hand posture of the user.
(51) Int.CL The system then determines the intended key based on the
GO6F 3/0488 (2013.01) user touch event and a touch pattern model for the identified
GO6F 3/041 (2006.01) hand posture. A system is also provided for determining the
GO6N 7/00 (2006.01) (Continued)




US 10,540,083 B2
Page 2

amount a presser a user is applying to the device based on
dampening of vibrations as measured by an inertial sensor.
A system is provided that uses motion of the device as
measured by an inertial sensor to improve the accuracy of
text entry.

16 Claims, 8 Drawing Sheets

(58) Field of Classification Search
CPC GO6F 2203/04106; GO6F 2203/04104; GO6N
7/005
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0032891 Al* 2/2012 Parivar ... GO6F 3/04883
345/173
2012/0162078 Al* 6/2012 Ferren ................. GO6F 3/04886
345/168
2012/0324384 Al* 12/2012 Cohen ................. GO6F 3/04886
715/765
2014/0082545 Al*  3/2014 Zhai ... GO6F 3/04886
715/773

OTHER PUBLICATIONS

Azenkot, S. et al., “Touch Behavior with Different Postures on Soft
Smartphone Keyboards”, Proceedings of the 14th International
Conference on Human-Computer Interaction with Mobile Devices
and Services, Sep. 2012, pp. 251-260.

Barnard, L. et al., “Capturing the effects of context on human
performance in mobile computing systems”, Personal and Ubiqui-
tous Computing, Jan. 2007, 81-96.

Behringer, R. et al., “Stabilization of a Display in a Moving
Environment”, Proceedings of the Sth Annual Federated Laboratory
Symposium, Advanced Displays & Interactive Displays Consor-
tium, 2001, abstract only, pp. 131-134.

Bragdon, E. et al., “Experimental analysis of touch-screen gesture
designs in mobile environments”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, May 2011,
pp. 403-412.

Brewster, S. , “Overcoming the lack of screen space on mobile
computers”, Personal and Ubiquitous Computing, May 2002, pp.
188-205.

Canon Inc., “What is Optical Image Stabilizer?”, available online at:
http://www.canon.com/betv/fag/optis.html, Jan. 2012.

Chen, S.F. et al., “An empirical study of smoothing techniques for
language modeling”, Proceedings of the 34th Annual Meeting on
Association for Computational Linguistics, Jun. 1996, pp. 310-318.
Cheng, L-P et al., “iRotate: Automatic Screen Rotation Based on
Face Orientation”, Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, May 2012, pp. 2203-2210.
Choudhury, T. et al., “The Mobile Sensing Platform: An Embedded
Activity Recognition System”, IEEE Pervasive Computing, Apr.-
Jun. 2008, pp. 32-41.

Clarkson, E.C. et al., “Exploring Continuous Pressure Input for
Mobile Phones”, submitted for review to Proceedings of the 18th
Annual ACM Symposium on User Interface Software and Technol-
ogy, 2005, 4 pages.

Crossan, A. et al., “Gait phase effects in mobile interaction”,
Extended Abstracts on Human Factors in Computing Systems, Apr.
2005, pp. 1312-1315.

Essl, G. et al., “Use the Force (or something)—Pressure and
Pressure-Like Input for Mobile Music Performance”, Proceedings
of the 2010 New Interfaces for Musical Expression, Jun. 2010, pp.
15-18.

Faraj, K.A. etal., “BigKey: A Virtual Keyboard for Mobile Devices”,
Proceedings, Part III, 13th International Conference of Human-

Computer Interaction (HCI ’09), Ambient, Ubiquitous and Intelli-
gent Interaction, Berlin: Springer-Verlag, Jul. 2009, vol. 5612 of the
series Lecture Notes in Computer Science, pp. 3-10.

Fergus, R. et al., “Removing camera shake from a single photo-
graph”, ACM Transactions on Graphics (TOG)—Proceedings of
ACM SIGGRAPH 2006, ACM SIGGRAPH 2006 Papers, Jul. 2006,
pp. 787-794.

Findlater, L. et al., “Personalized input: improving ten-finger touch-
screen typing through automatic adaptation”, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
May 2012, pp. 815-824.

Findlater, L. et al., “Typing on Flat Glass: Examining Ten-finger
Expert Typing Patterns on Touch Surfaces”, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(CHI ’11), pp. 2453-2462.

Fitzmaurice, G.W. et al., “Bricks: Laying the foundations for
graspable user interfaces”, Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, May 1995, pp. 442-449.
Fitzpatrick, K. et al., “Another Look at Pedestrian Walking Speed”,
Journal of the Transportation Research Board, 2006, vol. 1982, pp.
21-29.

Games, P.A. , “Multiple Comparisons of Means”, American Edu-
cational Research Journal, May 1971, pp. 531-565.

Go, K. et al., “CATKey: customizable and adaptable touchscreen
keyboard with bubble cursor-like visual feedback”, Proceedings,
Part I, 11th IFIP TC 13 International Conference, Human-Computer
Interaction (INTERACT 2007), Berlin: SpringerVerlag, vol. 4662
of the series Lecture Notes in Computer Science, pp. 493-496., Sep.
2007.

Goel, M. et al., “ContextType: Using Hand Posture Information to
Improve Mobile Touch Screen Text Entry”, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Apr.
2013, pp. 2795-2798.

Goel, M. et al., “GripSense: Using Built-In Sensors to Detect Hand
Posture and Pressure on Commodity Mobile Phones”, Proceedings
of the 25th Annual ACM Symposium on User Interface Software
and Technology, Oct. 2012, pp. 545-554.

Goel, M. et al., “WalkType: Using Accelerometer Data to Accom-
modate Situational Impairments in Mobile Touch Screen Text
Entry,”, Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, May 2012, pp. 2687-2696.

Goodman, J. et al, “Language modeling for soft keyboards”,
Proceedings of the 7th International Conference on Intelligent User
Interfaces, Jan. 2002, pp. 194-195.

Gunawardana, A. et al., “Usability Guided Key-Target Resizing for
Soft Keyboards”, Proceedings of the 15th International Conference
on Intelligent User Interfaces, Feb. 2010, pp. 111-118.

Gupta, S. et al., “SqueezeBlock: using virtual springs in mobile
devices for eyes-free interaction”, Proceedings of the 23rd Annual
ACM Symposium on User Interface Software and Technology, Oct.
2010, pp. 101-104.

Harrison, B.L. et al., “Squeeze me, hold me, tilt me! An exploration
of manipulative user interfaces”, Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, Jan. 1998, pp.
17-24.

Hart, S.G. et al., “Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research”, Human Mental
Workload, P.A. Hancock and N. Meshkati (Eds.), Amsterdam:
North Holland Press, 1998, 46 pages.

Hart, S.G. , “NASA—Task Load Index (NASA—TLX): 20 Years
Later”, Proceedings of the Human Factors and Ergonomics Society
50th Annual Meeting, 2006, pp. 904-908.

Heo, S. et al., “Force gestures: augmented touch screen gestures
using normal and tangential force”, Extended Abstracts on Human
Factors in Computing Systems, May 2011, pp. 1909-1914.

Heo, S. et al., “Forcetap: extending the input vocabulary of mobile
touch screens by adding tap gestures”, Proceedings of the 13th
International Conference on Human Computer Interaction with
Mobile Devices and Services, Aug. 2011, pp. 113-122.

Higgins, J.J. et al., “An aligned rank transform test for interaction”,
Nonlinear World, 1994, pp. 201-211.



US 10,540,083 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Himberg, J. et al., “On-line personalization of a touch screen based
keyboard,”, Proceedings of the 8th International Conference on
Intelligent User Interfaces, Jan. 2003, pp. 77-84.

Hinckley, K. et al., “Sensing techniques for mobile interaction”,
Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology, Nov. 2000, pp. 91-100.

Hinckley, K. et al., “Sensor synaesthesia: touch in motion, and
motion in touch”, Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, May 2011, pp. 801-810.
Holz, C. et al., “Understanding touch”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, May 2011,
pp. 801-810.

Iwasaki, K. et al., “Expressive typing: a new way to sense typing
pressure and its applications”, Extended Abstracts on Human Fac-
tors in Computing Systems, Apr. 2009, pp. 4369-4374.

Johnson, P. , “Usability and mobility: Interactions on the move”,
Proceedings of the 1st Workshop on Human Computer Interaction
with Mobile Devices, University of Glasgow, Scotland, GIST
Technical Report, May 1998.

Johnson, P. et al., “Usability and mobility; interactions on the
move”, First Workshop on Human-Computer Interaction with Mobile
Devices, available online at: http://www.dcs.gla.ac.uk/~johnson/
papers/mobile/HCIMD . html# Toc420818965, May 1998.

Jones, E. et al., “GesText: accelerometer-based gestural text-entry
systems”, Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, Apr. 2010, pp. 2173-2182.

Joshi, N. et al., “Image deblurring using inertial measurement
sensors”, ACM Transactions on Graphics (TOG)—Proceedings of
the ACM SIGGRAPH, Jul. 2010.

Kane, SK. et al., “TrueKeys: Identifying and correcting typing
errors for people with motor impairments”, Proceedings of the 13th
International Conference on Intelligent User Interface (IUT *08),
Sep. 2008, pp. 109-118.

Karlson, AK. et al., “AppLens and launchTile: two designs for
one-handed thumb use on small devices”, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Apr.
2005, pp. 201-210.

Karlson, A K. et al., “Understanding Single-Handed Mobile Device
Interaction”, J. Lumsden (Ed.), Handbook of Research on User
Interface Design and Evaluation for Mobile Technology, Idea Group
Reference, Jan. 2006, pp. 86-101.

Kim, K.-E. et al., “Hand Grip Pattern Recognition for Mobile User
Interfaces”, Proceedings of the 18th Conference on Innovative
Applications of Artificial Intelligence, Jul. 2006, pp. 1789-1794.
Kristensson, P. et al., “Relaxing stylus typing precision by geomet-
ric pattern matching”, Proceedings of the 10th International Con-
ference on Intelligent User Interfaces (IUI °05), Jan. 2005, pp.
151-158.

Kristensson, P. et al., “Shark: A large vocabulary shorthand writing
system for pen-based computers”, Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology
(UIST ’04), Oct. 2004, pp. 43-52.

Kundur, D. et al., “Blind image deconvolution”, IEEE Signal
Processing Magazine, May 1996, pp. 43-64.

Lin, M. et al., “How do people tap when walking? An empirical
investigation of nomadic data entry”, International Journal of Human-
Computer Studies, Sep. 2007, 759-769.

Mackay, B. et al., “Walk *n Scroll: A Comparison of Software-based
Navigation Techniques for Different Levels of Mobility”, Proceed-
ings of the 7th International Conference on Human Computer
Interaction with Mobile Devices and Services, Sep. 2005, pp.
183-190.

Mackenzie, L.S. et al., “Phrase sets for evaluating text entry
techniques”, Extended Abstracts on Human Factors in Computing
Systems, Apr. 2003, pp. 754-755.

Mackenzie, L.S. et al., “Text Entry for Mobile Computing: Models
and Methods, Theory and Practice”, Human-Computer Interaction,
Jun. 2011, pp. 147-198.

Mizobuchi, S. et al., “Mobile Text Entry: Relationship between
Walking Speed and Text Input Task Difficulty”, Proceedings of the
7th International Conference on Human Computer Interaction with
Mobile Devices & Services, Sep. 2005, pp. 122-128.

Mustonen, T. et al., “Examining Mobile Phone Text Legibility while
Walking”, Extended Abstracts on Human Factors in Computing
Systems, Apr. 2004, pp. 1243-1246.

Partridge, K. et al., “TiltType: accelerometer-supported text entry
for very small devices”, Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology, Oct. 2002,
pp. 201-204.

Phielipp, M. et al., “Fast, Accurate, and Practical Identity Inference
Using TV Remote Controls”, Proceedings of the 22nd Innovative
Applications of Artificial Intelligence, Jul. 2010, pp. 1827-1832.
Rahmati, A. et al., “NoShake: Content stabilization for shaking
screens of mobile devices”, IEEE International Conference on
Pervasive Computing and Communications 2009, Mar. 2009, pp.
1-6.

Ramos, G. et al., “Pressure widgets”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Apr. 2004,
pp. 487-494.

Rudchenko, D. et al., “Text Text Revolution: A Game That Improves
Text Entry on Mobile Touchscreen Keyboards”, Proceedings of the
9th International Conference on Pervasive Computing, Jun. 2011,
pp. 206-213.

Sazawal, V. et al., “The Unigesture Approach”, Proceedings of the
4th International Symposium on Mobile Human-Computer Interac-
tion, Sep. 2002, (MobileHCI °02), vol. 2411 of the series Lecture
Notes in Computer Science, pp. 256-270.

Schmidt, A. et al., “Advanced Interaction in Context”, Proceedings
of the Ist International Symposium on Handheld and Ubiquitous
Computing, Sep. 1999, pp. 89-101.

Sears, A. et al., “When computers fade: Pervasive computing and
situationally-induced impairments and disabilities”, Proceedings of
the 10th International Conference on Human-Computer Interaction
(HCI *03), Marwah: Lawrence Erlbaum Associates, Jun. 2003, pp.
1298-1302.

Schildbach, B. et al., “Investigating selection and reading perfor-
mance on a mobile phone while walking”, Proceedings of the 12th
International Conference on Human Computer Interaction with
Mobile Devices and Services, Sep. 2010, pp. 93-102.

Soukoreff, R.-W. et al., “Metrics for text entry research: An evalu-
ation of MSD and KSPC, and a new unified error metric”, Pro-
ceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, Apr. 2003, pp. 113-120.

Strachan, S. et al., “Muscle Tremor as an Input Mechanism”,
Proceedings of the 17th Annual ACM Symposium on User Interface
Software and Technology, Oct. 2004, 2 pages.

Taylor, B.T. et al., “Graspables: grasp-recognition as a user inter-
face”, Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems.

Van Laerhoven, K. et al., “What shall we teach our pants”, Pro-
ceedings of the 4th IEEE International Symposium on Wearable
Computers, Oct. 2000, pp. 77-83.

Weberg, L. et al., “A piece of butter on the PDA display”, Extended
Abstracts on Human Factors in Computing Systems, Mar. 2001, pp.
435-436.

Wigdor, D. et al., “TiltText: using tilt for text input to mobile
phones”, Proceedings of the 16th Annual ACM Symposium on User
Interface Software and Technology, Nov. 2003, pp. 81-90.
Wimmer, R., “FlyEye: grasp-sensitive surfaces using optical fiber”,
Proceedings of the 4th International Conference on Tangible, Embed-
ded, and Embodied Interaction, Jan. 2010, pp. 245-248.
Wobbrock, J.O. et al., “Ability-Based Design: Concept, Principles
and Examples”, ACM Transactions on Accessible Computing, Apr.
2011.

Wobbrock, J.O. et al., “Analyzing the input stream for character-
level errors in unconstrained text entry evaluations”, ACM Trans-
actions on Computer-Human Interaction, Dec. 2006, pp. 458-489.
Wobbrock, J.O. et al., “The Aligned Rank Transform for nonparametric
factorial analyses using only ANOVA procedures”, Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
May 2011, pp. 143-146.



US 10,540,083 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Wobbrock, J.O. et al., “The performance of hand postures in front-
and back-of-device interaction for mobile computing”, International
Journal of Human-Computer Studies, Dec. 2008, pp. 857-875.
Yamabe, T. et al., “Experiments in Mobile User Interface Adaptation
for Walking Users”, 2007 IEEE International Conference on Intel-
ligent Pervasive Computing, Oct. 2007, pp. 280-284.

Yatani, K. et al., “An Evaluation of Stylus-based Text Entry
Methods on Handheld Devices Studied in Different Mobility States”,
Pervasive and Mobile Computing, Oct. 2009, pp. 496-508.
Yesilada, Y. et al., “Small-device users situationally impaired by
input”, Computers in Human Behavior, May 2010, pp. 427-435.

* cited by examiner



U.S. Patent Jan. 21, 2020 Sheet 1 of 8 US 10,540,083 B2

FIG. I




US 10,540,083 B2

Sheet 2 of 8

Jan. 21, 2020

U.S. Patent




U.S. Patent Jan. 21, 2020 Sheet 3 of 8 US 10,540,083 B2

gna

T

Gyroscope S

Auooep, enbuy



US 10,540,083 B2

Sheet 4 of 8

Jan. 21, 2020

U.S. Patent

y OIAd

S s

: ..“m
I
e

. \\\...n R

s

S ....u.“““““““““““ S
e
e

S,



US 10,540,083 B2

Sheet 5 of 8

Jan. 21, 2020

U.S. Patent

gT¥e~z buoTe suoyd JoO




U.S. Patent Jan. 21, 2020 Sheet 6 of 8 US 10,540,083 B2

T s

o :‘3‘5‘:2‘: : S o i

L

-

whl




L DI

US 10,540,083 B2

Sheet 7 of 8

Jan. 21, 2020

. T
Rl T TR

2P0
DRI

PR
Burypeas

Ay W |y

§Angng JR—

U.S. Patent

| soyedfiagug s |




U.S. Patent Jan. 21, 2020 Sheet 8 of 8 US 10,540,083 B2




US 10,540,083 B2

1

USE OF HAND POSTURE TO IMPROVE
TEXT ENTRY

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 61/735,800, filed Dec. 11, 2012, entitled
“SYSTEMS AND METHODS FOR IMPROVED DATA
ENTRY ON MOBILE DEVICES” of which is incorporated
herein in its entirety by reference.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
grant no. I1IS-0811063, awarded by the National Science
Foundation (NSF). The government has certain rights in the
invention.

BACKGROUND

Touch screen devices have become the dominant platform
for mobile computing; however, the lack of tactile feedback
on these devices requires a high level of visual attention to
select targets accurately. Input is particularly challenging
when the user is in motion, a state that can be thought of as
causing situational impairments. Situational impairments
may be caused by a variety of factors including vibration,
divided attention, diverted gaze, body motion, awkward
postures, cold temperatures, clothing, rainwater, glare,
uneven terrain, ambient noise, or encumbering baggage. The
challenges of situational impairments are exacerbated for
mobile text entry on virtual keyboards because of the many
repeated targeting actions that take place in quick succes-
sion.

A significant contextual factors affecting mobile device
use may be a user’s hand posture with which he or she
manipulates a mobile device. Hand postures including grip,
one or two hands, hand pose, the number of fingers used, and
so on may significantly affect performance and usage of
mobile devices. For example, the pointing performance of
index fingers is significantly better than thumbs, as is
pointing performance when using two hands versus one
hand. Similarly, the performance of a user’s dominant hand
is better than that of his or her non-dominant hand.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a sample of the variance in touch behavior
for a user.

FIG. 2 illustrates the rotation, touch size, and swipe
features.

FIG. 3 illustrates the gyroscope signal versus angular
velocity.

FIG. 4 is a block diagram of the major components of
GripSense’s pressure detection module.

FIG. 5 shows motion of the device along the z-axis as a
user walks.

FIG. 6 illustrates that a tap shifts to the left or right as a
users left or right foot strikes the ground.

FIG. 7 shows a block diagram of WalkType’s Model
Building phase.

FIG. 8 illustrates a confusion matrix for adjacent keys.

DETAILED DESCRIPTION

ContextType is a system that uses inference of a user’s
hand posture to improve text entry of a mobile touch screen
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device. ContextType switches between various underlying
key-classification based on inference about how the user is
holding the device while typing without changing the visual
layout. ContextType supports the hand postures of typing
with 1) two thumbs, 2) just the left thumb, 3) just right
thumb, or 4) either index finger. ContextType employs
GripSense, which infers hand posture as left thumb, right
thumb, or index finger. ContextType also detects two-
thumbed hand postures without adding any external sensors
to the device. Once hand posture is inferred, ContextType
combines a users posture-specific touch-pattern information
with a language model to classity the user’s touch event as
a pressed key.

GripSense is a system that leverages mobile device touch-
screens and their built-in inertial sensors and vibration motor
to infer hand postures including one- or two-handed inter-
action, use of digit such as thumb or index finger, or use on
a table. GripSense also senses the amount of pressure a user
exerts on the touchscreen despite a lack of direct pressure
sensors by observing diminished gyroscope readings when
the vibration motor is “pulsed.”

WalkType is a system that uses a touch screen device’s
built-in accelerometer to increase text entry accuracy while
the user is walking. WalkType compensates for imprecise
input by incorporating multiple features computed from the
accelerometer data: displacement, acceleration, and infer-
ence about the user’s movement. Additionally, WalkType
uses tap location and the finger travel distance during taps to
improve the user’s text entry accuracy, features that increase
overall accuracy regardless of movement.

1. Context Type

ContextType combines multiple sources of information to
classify a user’s touch event as a key press. The information
includes data about the user’s hand posture, the user’s touch
pattern, and the letter probabilities from a language model.
ContextType gives priority to data about the user’s hand
posture. ContextType uses different models for different
hand postures. ContextType infers hand posture uses tech-
niques from GripSense, which can infer the left thumb, right
thumb, or either index finger. (See, Goel, M., Wobbrock, J.
0., and Patel, S. N., “GripSense: Using Built-In Sensors to
Detect Hand Posture and Pressure on Commodity Mobile
Phones,” Proc. UIST’12.) ContextType extends this func-
tionality by also inferring two-thumbed postures.

1.1 Two-Thumbed Posture Detection

To detect a two-thumbed posture, ContextType uses tap
sizes and time elapsed between taps. GripSense differenti-
ates between left and right thumb usage by observing tap
sizes. Tap sizes increase relatively as the user tries to touch
the farther side of the screen, i.e., when operated with the left
thumb, the areas touched on the right side of the screen will
be bigger than those on the left side and vice versa. Con-
textType extends GripSense and infers two-handed posture
if the tap sizes in the center of the screen are larger relative
to those on either side. ContextType combines tap sizes with
the relative difference in time elapsed between taps on either
side of the screen. When using one hand to operate the
phone, it takes longer to go from one side of the screen to
another. Hence, if a tap on one side of the screen is followed
by another on the opposite side, the time difference will be
larger than the average time difference because the thumb/
finger needs to travel farther. In contrast, when operated with
two thumbs, the time difference between taps on opposite
sides of the screen will be significantly less.

1.2 Touch Pattern Model

ContextType personalizes the underlying keyboard layout
by modifying the virtual location of the keys according to
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the user’s typing behavior (i.e., the visual layout of the
keyboard remains static). ContextType computes a bivariate
Gaussian distribution (See, Findlater, L. and Wobbrock, J.,
“Personalized input: Improving ten-finger touchscreen typ-
ing through automatic adaptation,” In Proc. CHI’12, 815-
824, May 5-10, 2012) for each key and centers each key at
the centroids of predicted key-presses that are personalized
for each user. Considering that touch behavior varies not
only across users but also across hand postures for the same
user, ContextType uses separate models for different hand
postures. FIG. 1 shows a sample of the variance in touch
behavior for a user. ((A) Left Thumb, (B) Right Thumb, (C)
Index Finger, (D) Two Thumbs.) In case of single thumbs,
the user tended to bias towards the side of the thumb because
of its limited reach.

1.3 Language Model

In some embodiments, ContextType uses a S5-gram letter
model. (See, Goodman, J., Venolia, G., Steury, K., and
Parker, C., “Language modeling for soft keyboards,” In the
Proc. IUI’02.) The model was trained on the Brown corpus,
consisting of American English from a variety of sources.
(See, Kucera, H. and Francis, W. “Computational Analysis
of Present-Day American English,” 1962.) One of the most
important aspects of any language model is how probabili-
ties are smoothed to account for limited data. ContextType
employs the Modified Kneser-Ney method, which has been
successfully used by Goodman in language modeling for
soft keyboards. (See, Chen, S. F. and Goodman, J., “An
empirical study of smoothing techniques for language mod-
eling,” Proc. Association for Computational Linguistics,
1996.)

1.4 Combining Touch and Language Models

ContextType combines touch and language models by
calculating probabilities for each key. The most likely
intended key, k*,, is given by:

k¥ margma py (ki )yp (K1)

where p; is the language model probability, p; is the touch
model probability, k, is the probability for each key, h is the
language model history (last 4 entered characters in case of
5-gram letter model), and 1 €R? is an x and y coordinate pair
denoting the last touch location on the screen.

1.5 Data Collection

ContextType uses touch models built based on typing data
collected from various users. The typing data was collected
using a a custom data collection application for the Android
OS and used a Samsung Galaxy Nexus phone. The interface
was designed to capture the user’s natural typing pattern.
Thus, the interface did not inform users of their mistakes and
the correct letter was always displayed. The interface also
included a swipe from right-to-left that removed the last
character typed. The users were instructed to use this when
they felt that they had made an error. The lack of tap-location
feedback did result in some noise in the data. Thus, the
outliers were removed during post-processing by filtering
out taps that landed outside the Euclidean bounds of the
intended key or its immediate neighbors. The users were
asked to enter 30 phrases in each of the 4 hand postures. The
order of postures was counterbalanced. Short phrases of
English text from MacKenzie and Soukoreff’s phrase set
were used. (see, MacKenzie, 1. S. and Soukoreff, R. W,
“Phrase sets for evaluating text entry techniques,” Proc.
CHI’03 EA.) Apart from these phrases, every fifth phrase
was a randomly select pangram from a lest of 35 pangrams
to ensure sufficient representation of all letters of English
alphabet.
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2. GripSense

GripSense is a system that uses a combination of the
touchscreen and the built-in inertial sensors (gyroscope,
accelerometer) and built-in actuators (vibration motors)
already present on most commodity mobile phones to infer
hand postures and pressure. GripSense detects hand postures
over the course of a small number of interaction steps (e.g.,
tapping, swiping the screen). It infers postures like the use
of an index finger, left thumb, right thumb, which hand is
holding the device, or whether the phone is lying on a flat
surface. GripSense performs this sensing by measuring a
device’s rotation, tap sizes, and the arc of swiping motions.
GripSense additionally leverages the built-in vibration
motors to help infer the amount of pressure being applied to
the screen when interacting with the phone, which can be
used to enable alternate interaction techniques with mobile
devices that have no additional hardware for pressure sens-
ing. As an example. GripSense allows users to zoom-in and
zoom-out of maps using pressure input, in addition,
GripSense is able to detect when the phone is being
squeezed, which could be used to quickly silence a phone
while in a pocket.

GripSense uses multiple sources of information to detect
a user’s hand posture and the amount of pressure exerted in
a variety of these postures. Among these sources is the data
from device’s built-in gyroscope. In case of hand posture
detection, the gyroscope is used to measure the direction and
amount of rotation of the device in all three axes. For the
detection of exerted pressure, the gyroscope is used to
measure specific damping characteristics of touch- and
motor-induced vibrations. Another source of information is
touchscreen interaction data. Table 1 is a summary of
inferences made by GripSense and when and which features
were used for each of them.

TABLE 1

Inference Features Used Sensor Event Latency
Table vs. Gyroscope (Low frequency in all Touch Down 1
Hand axes)
Thumb vs.  Gyroscope (Low frequency in x- Touch Down 3
Index and y-axis
Finger Swipe Shape Touch Up

Touch Size Touch Down
Left Thumb  Gyroscope (Low frequency in y- Touch Down 5
vs. Right axis
Thumb Swipe Shape Touch Up

Touch Size Touch Down
Pressure in  Gyroscope (Low Frequency) Touch Down 1
hand Gyroscope (High Frequency) +

Motor
Pressure Gyroscope (High frequency + Touch Down 1
on table Motor
Squeeze Gyroscope (High frequency + Held in Hand 0

Motor

2.1 Inferring Hand Posture

GripSense uses touchscreen interaction and device rota-
tion information to infer whether the phone is (a) in a user’s
left hand and operated with left thumb, (b) in a user’s right
hand and operated with right thumb, (c) in either hand and
operated with the index finger of the other hand, (d) on a flat
surface, or (e) being only grasped by the user and not
operated, referred to as hand postures. GripSense uses a
combination of three features: (1) relative variance in rota-
tion, (2) change in touch size, and (3) direction of arc for
finger swipes. FIG. 2 illustrates the rotation, touch size, and
swipe features. These features were extracted on a Samsung
Nexus S smartphone running Android OS 2.3.



US 10,540,083 B2

5

2.1.1 Rotation of the Device

The first feature is the rotational movement of the device
as the user touches the screen. In a one-handed interaction,
the phone rotates in response to touches at the top of the
screen more than it does to touches at the bottom of the
screen (FIG. 2, right). There is significant rotation in x- and
y-axis and larger touch size when the far quadrant of the
screen is touched (FIG. 2, center). This is to compensate for
the limited range of the thumb; fingers move the device as
the thumb extends to reach the top of the screen. In contrast,
touches at the bottom of the screen result in less angular
motion because that area is usually within the thumb’s
range. There is minimal device rotation in X- and y-axis, and
smaller touch size when the user touches nearby with the
thumb (FIG. 2, left). The rotation and the shape of a swipe
with the right and left thumb are mirror images. When the
user interacts using their index finger, there is no difference
in the angular motion from touches at the top or the bottom
of the screen. If the device is on a table then there is no
change in any of these parameters before the touch event is
registered.

GripSense stores the angular velocities around the x-axis
sampled at 1 kHz from the gyroscope in a quarter-second
buffer. The data in the buffer is passed through a low-pass
filter to isolate the low frequency angular velocities.
GripSense records the last two angular velocities observed
for touches in the top third of the screen and the bottom third
of the screen. If the difference in variance of angular
velocities for touches in the top is five times greater than for
touches in the bottom of the screen, GripSense assumes that
it was thumb-based interaction. If the difference in the
variances does not exceed the threshold for three consecu-
tive touches, then GripSense biases the final decision
towards selecting “index finger.”

Similarly, when a user holds the phone in theft left hand
and interacts with their thumb, touches on the right of the
screen cause more angular motion than touches nearer to the
palm, again because of the compensation for the limited
motion range of the thumb. In the case of the right hand,
more motion is seen from touches on the left of the screen.
If a thumb-based interaction is inferred, GripSense uses a
similar approach as before, except for logging the variance
in the y-axis of the gyroscope for touches on the left third of
the screen and the right third of the screen. If the variance
in angular velocity of the last two touches on the left side is
greater than that on the right side, then GripSense assumes
the phone is in the right hand (left hand if the variance on the
right is greater). Moreover, if the difference in angular
velocities is more than ten times greater in consecutive
touches, GripSense sets a “high confidence flag” which is
used to bias the final decision towards using this feature.

2.1.2 Touch Size

The second feature is based on the change of size of touch
in different regions of the touch screen. In one-handed
interaction when the user interacts with the left and right
sides of the screen, the size of the touch changes because of
the shape of the thumb and rotation of the device in the
user’s hand. The touch size on the same side as the thumb
will be smaller than the touch size on the far side away from
the thumb.

For this feature, GripSense divides the screen into six
(2x3) parts and keep track of last two touch sizes. The
Android platform provides a method to get the touch size on
the screen. This method is supported by most Android
smartphones available in the market. GripSense compares
touch sizes in the left third and right third of the screen for
the same third of the screen height. If the difference in the
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mean of the touch sizes is more than 25%, GripSense biases
the system towards a thumb-based interaction. If the larger
tap size is on the left side, then the system believes it is right
thumb, and vice versa. Moreover, if the difference in touch
sizes is more than 40% for consecutive touches, the heuristic
sets a “high confidence flag.” If the difference is less than
25%, it biases toward index finger-based interaction.

2.1.3 Shape of the Swipe Arc

This feature is only applicable when the user swipes on
the screen. Because of the shape and position of the thumb,
users often draw an exaggerated arc instead of a relatively
straight line. GripSense uses this arc as our “signal” to detect
the user’s hand posture. While using the phone with the
index finger there is no consistent arc. However, with the
thumb there is a consistent, exaggerated arc to the right or
left depending on which thumb is being used.

If the difference in coordinates of the start and end
position of a vertical swipe are more than 5% of the screen
resolution, GripSense biases itself towards one of the two
thumb postures. Even so, sometimes a thumb-based swipe
does not result in an arc. Instead, the phone experiences
angular motion in the hand. For example, a right-handed
swipe from bottom to top results in a counterclockwise
rotation. These two phenomena combine to form a robust
heuristic for handling posture detection in the case of
swipes. As with the other two heuristics, the final intra-
heuristic decision is made when the system biases toward
the same posture twice in a row.

2.1.4 Making the Final Decision

If swipes are present, GripSense uses a majority voting on
the output of each heuristic to decide the posture. If all three
votes disagree, the posture is marked as “unknown.” In the
absence of swipe, a final decision is made only if both touch
size and rotation heuristics agree or if the “high confidence
flag” in one of the heuristics is set. If both heuristics come
up with different decisions, then the system chooses the
heuristic with a “high confidence flag.” If both confidence
flags are set or no confidence flags are set with disagreement,
the posture is set to “unknown.”

2.2 Detecting Pressure Applied to the Touchscreen

GripSense uses the gyroscope and vibration motor to
classify the user’s touchscreen touches into three pressure
categories: light, medium and heavy. If the built-in vibration
motor is triggered when a user touches the screen (similar to
what is already done in a number of smartphones to provide
haptic feedback), the user’s hand absorbs a portion of these
vibrations. This vibration absorption is proportional to the
amount of pressure being applied to the screen. This damp-
ing effect is measured using the on-device gyroscope.
GripSense primarily looks for the damping of vibrations
induced by the vibration motor. As the amount of force
exerted by the user on the touchscreen increases, there is a
subtle oscillating motion between the user’s thumb and the
four fingers that rest on the back of the device (see the low
pass signal in FIG. 3). This oscillation occurs because the
user’s thumb and fingers try to compensate continually for
pressure exerted and this oscillation has much lower fre-
quency compared to that induced by the vibration motor.
This subtle motion is not dependent on the vibration motor.
In order to make a robust classification of a user’s touch
intensity, GripSense uses both of these features. The top
gyroscope signal is when user presses light, then hard, then
waits for a second and presses hard and soft again.

GripSense leverages the subtle shaking of the phone as a
user’s thumb or finger (depending on the posture) and hand
in which the phone is held try to compensate for pressure
exerted by each other. An effective combination of these
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touch-induced vibrations with damped motor-induced vibra-
tions give a much more authentic fine-grained and continu-
ous proxy of pressure exerted on the screen.

GripSense employs a custom application on an Android
Nexus-S smartphone, wherein any touch triggered the
phone’s built-in vibration motor. GripSense then gathered
angular velocities around the three axes through the built-in
gyroscope with a 1 kHz sampling rate. FIG. 3 illustrates the
gyroscope signal versus angular velocity. The top plot shows
the gyroscope signal when the user presses light, the hard,
then waits for a second and presses hard and soft again.
Touch-induced vibrations were obtained by passing the
signal through a low pass filter The middle plot shows the
lower frequencies generated from touch-induced vibrations
increase with increase in pressure. The motor-induced vibra-
tions were obtained by passing the original signal through a
high pass filter. The bottom plots shows that motor-induced
vibrations are diminished as the amount of pressure exerted
increases. The bottom plot makes it clear that in the case of
a hard press, there is an exaggerated damping effect due to
vibrations absorbed by the user’s hand. GripSense quantifies
this damping using the 90th percentile of the high-frequency
component of the observed signal. For the low frequency
signal, GripSense quantifies the movement of the phone
using the signal variance.

The amount of motor-induced vibrations absorbed by the
hand and thumb or finger is also dependent on the location
of'touch on the screen. Hence, GripSense divides screen into
a 4x6 matrix in portrait mode and added “touch zone” as
another feature for pressure level classification. GripSense
buffers the gyroscope data at 1 kHz in a 500 ms buffer and
analyze it every 250 ms. The data then passes through low
pass and high pass filters and appropriate variances and
90th-percentiles are calculated. These features, along with
touchscreen features (zone and size), were used to classify
to pressure level using the Weka machine learning toolkit.
Weka was used to generate J48 Decision Trees with pruning
confidence set to Weka’s default (0.25)

FIG. 4 is a block diagram of the major components of
GripSense’s pressure detection module. Low frequency
variance, 90th percentile of higher frequencies, touch size
and location are the features used for classification.

2.3 Squeeze and Grasp Gestures

Using similar techniques as for quantifying pressure
exerted on a touch screen, GripSense uses a method to detect
squeeze or grasp gestures. For example, quickly GripSense
can be used to silence a phone while it is still in a pocket or
in a purse by squeezing it and without the need for fully
retrieving the phone. Although grasping provides a signifi-
cant amount of damping to the motor-induced vibrations,
there was no significant variance in low frequency compo-
nent of the gyroscope data; therefore, 90th percentiles of
only higher frequencies were used as features for Weka’s
J48 decision trees.

2.4 Conclusions

There are circumstances where it is difficult to use mul-
tiple fingers on a mobile device. Users often do not have
both hands available for interaction. GripSense can be used
with a map application in which user could zoom in by
pressing harder on the screen, and could lightly press to
zoom out. Pressure input information may also be used to
change letter case on a touchscreen keyboard. Users can
press harder to enter uppercase letters and press lighter to
enter lowercase letters.

The GripSense algorithms have been implemented on a
Samsung Nexus S running the Android OS. Although the
basic premise would remain the same, the pressure detection
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algorithms might need to be adjusted somewhat for different
phones because of different physical characteristics. The
variability of the sampling rate and resolution of different
devices may also require algorithmic adjustments on some
phones. Current inertial sensors present on commodity
mobile devices are not high resolution and the algorithms
may benefit from improved resolution.

The use of the built-in motor to produce vibration means
that almost half of the features are coming from a relatively
high-frequency source. Hence, GripSense’s pressure detec-
tion does not suffer from the usual limitations of inertial
sensor-based techniques like the presence of external
sources of vibration, etc.

The combination of touch-induced and motor-induced
vibrations means that these techniques can be reliably imple-
mented when the device is on a flat surface. Hence these
algorithms can be ported to tablets as well, which are used
relatively more on a desk when compared to a smart phone.
Modern game controller manufacturers can also leverage
these techniques with a simple software upgrade to add
pressure sensitivity to their devices, as game controllers
already have vibration motors and inertial sensors.
GripSense may also be used to infer more than three levels
of pressure. A more continuous regression to pressure is
possible that have more than just quantized levels of pres-
sure.

3. WalkType

The lack of tactile feedback on touch screens makes
typing difficult, a challenge exacerbated when situational
impairments like walking vibration and divided attention
arise in mobile settings. WalkType is an adaptive text entry
system that leverages the mobile device’s built-in tri-axis
accelerometer to compensate for extraneous movement
while walking. WalkType’s classification model uses the
displacement and acceleration of the device, and inference
about the user’s footsteps. Additionally, WalkType models
finger-touch location and finger distance traveled on the
screen, features that increase overall accuracy regardless of
movement.

WalkType is a system that uses a touch screen device’s
built-in accelerometer to increase text entry accuracy while
the user is walking. WalkType compensates for imprecise
input by incorporating multiple features computed from the
accelerometer data: displacement, acceleration, and infer-
ence about the user’s movement. Additionally, WalkType
uses tap location and the finger travel distance during taps to
improve the user’s text entry accuracy, features that increase
overall accuracy regardless of movement.

3.1 Model-Building

Along with accelerometer data, WalkType uses tap loca-
tions and tap travel distance to better predict the intended
key. The Weka machine learning toolkit (http://www.cs.wai-
kato.ac.nz/ml/weka) was used to generate two J4.8 Decision
Tree models with pruning confidence set to Weka’s default
(0.25). For classification, the first model used time-domain
accelerometer data between taps and the second model used
the pattern of accelerometer data generated from the three
axes due to the phone’s motion while walking. The final
WalkType system combined output from both of these
models along with a simple FEuclidian model. The composite
model performed better than individual models. For clarity,
the term Euclidian model refers to a simple key-press
classification model that takes as input the (X, y) coordinate
of a finger-touch and returns the letter whose corresponding
key’s visual bounds contain those coordinates.

WalkType Collect is a custom data collection application
built for the iPhone 3GS that records the device’s movement
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using the on-device low-noise tri-axis accelerometer. To
elicit natural typing patterns and to not want user to be
overly concerned with the accuracy of their input, the
approaches of Gunawardana (Gunawardana, A., Peek, T. and
Meek, C., “Usability Guided Key-Target Resizing for Soft
Keyboards,” Proc. IUI’10. New York: ACM Press, 111-118)
and Findlater (Findlater, L., Wobbrock, J. O. and Wigdor, D.,
“Typing on Flat Glass: Examining Ten-finger Expert Typing
Patterns on Touch Surfaces,” Proc. CHI’11, New York:
ACM Press, 2453-2462) were followed and Collect’s key-
board was created in such a way that it only gave the user
feedback that a tap had occurred, but not where it occurred
or what key had been hit. To convey this feedback, a small
cursor moved under the phrase as the user typed. If the user
realized that they were off by a character or two while
typing, they could swipe from right to left anywhere on the
screen to delete one tap at a time. Users were instructed to
try to delete their tap when they knew they had made an
obvious mistake or when they felt they were off by a
character or two. The users were requested not to go back
through the whole phrase in order to correct a supposed
error. Users were asked to enter 50 phrases in 2 postures,
sitting and walking, while holding the device with both
hands and typing with both thumbs. The order of postures
was counterbalanced and users were randomly assigned to
orders. Short phrases of English text from MacKenzie and
Soukoreff’s phrase set were used. (MacKenzie, 1. S. and
Soukoreff, R. W., “Phrase sets for evaluating text entry
techniques,” Extended Abstracts, CHI’03, New York: ACM
Press, 754-755.) Apart from these, every fifth phrase was a
randomly selected pangram from a list of 35 pangrams to
ensure sufficient data for all letters of the alphabet.

The lack of tap-location feedback meant that users made
mistakes while entering text, which added noise to the data.
Thus, outliers were removed during post-processing by
eliminating all taps that landed outside the Euclidean bounds
of the intended key or its immediate neighbors. About 2.5%
taps were filtered out in this process.

The logs from Collect contained tap-start and tap-end
locations, amount of travel while tapping, the time interval
between taps, the intended key, and temporal accelerometer
data. The touch-screen-based features (tap location, tap
travel and time elapsed between taps) form the base set of
classification features used in the models. Tap travel and
time elapsed was included in this set based on observations
made while developing Collect. For tap travel, at times, the
tap-start and tap-end locations were not the same, yielding
a potential feature to increase classification accuracy. For
time elapsed, typing speed appeared to impact the users
input accuracy: the tendency to type the wrong key was
relatively low when typing slowly compared to more
quickly.

3.2 Displacement and Acceleration Model

One of the major reasons for inaccuracy in typing while
walking is the general movement of the phone and its
displacement from a relatively stable location with respect to
the user. The Displacement and Acceleration Model
improves tap accuracy by incorporating acceleration fea-
tures in all three axes, and magnitude and direction of
displacement in the z-axis. To calculate these features, the
data from the smartphone’s on-device accelerometer was
first passed through a low-pass filter to remove noise. This
model also includes the base set of features.

To calculate the acceleration features, the filtered accel-
erometer data was resampled to 10 samples between two
consecutive taps. This sampling rate was selected as it gave
reasonable resolution and did not overly increase the number
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of attributes for the classifier. These 10 samples of (%, y, 7)
values constitute 30 features for the model. When dealing
with accelerometer data, it is often necessary to compensate
for gravitational pull on the three axes. However, this
compensation was unnecessary because phone orientation
stays relatively constant while typing.

For the displacement magnitude and direction features in
the z-axis, the mean acceleration was subtracted from the
filtered data and then double-integrated using the cumulative
sum. The direction in which the phone moved in the z-axis
was also calculated. To do so, the device’s instantaneous
acceleration was compared with the moving mean accelera-
tion of the device. If the instantaneous acceleration was less
than the mean, the device was moving forward. Otherwise,
it was moving backward.

3.3 Walking Pattern Model

The Collect data indicated that the phone oscillated in a
largely repeatable pattern while a user was walking and
typing. FIG. 5 shows motion of the device along the z-axis
as the user walks. The Walktype Pattern Model leverages the
on-device accelerometer to obtain this pattern in all three
axes. In addition to the base set of classification features, it
incorporates four new features per axis.

To make the model adaptive to different walking speeds,
the dominant frequency (e.g., wave 501) of the user’s
motion and its mean amplitude from all three axes was
calculated. This gives a proxy for detecting changes in the
user’s speed and intensity of movement. To calculate the
instantaneous dominant frequency, the Fast Fourier Trans-
form (FFT) of the accelerometer signal was taken and the
frequency with the maximum amplitude was found. This
frequency and amplitude constitute the first two features.
For the third feature, the direction of the last mean crossing
before the current tap gives a measure of the direction in
which the device is moving. Finally, to pinpoint where in the
pattern a tap event occurs, the elapsed time since the
accelerometer signal crossed the mean value of the signal
was used. T1 and T2 are two instances of taps; p1 and p2 are
the elapsed times since the signal crossed the mean.

These features in the x-axis are particularly useful in
detecting the user’s footstep pattern. When users’ feet hit the
ground, their taps tended to shift slightly towards the center
of the keyboard. A shift to the left was more common when
the left foot hit the ground, and a shift to the right was more
common when the right foot hit. FIG. 6 illustrates that a tap
shifts to the left or right as a user’s left or right foot strikes
the ground. Analysis as shown in FIG. 5 on the x-axis data
can be used to detect which foot strikes the ground. If the
current x-axis data is less than the mean, then the user’s left
foot has landed, and vice-versa for the right foot. Because
the effect of the foot-strike on the user’s accuracy would
attenuate over time, the time since the last foot hit the ground
was calculated. This calculation was performed in the same
way as for the z-axis.

The classifier was provided with the tap location on the
screen, the direction in which the phone is going in y- and
z-axes, and the last foot that struck the ground. The classifier
was also provided three temporal components denoting time
since the last change in direction in the three axes.

3.4 Combined WalkType Model

The Combined WalkType Model is a composite of the
three sub-models: the Displacement and Acceleration
Model, the Walking Pattern Model, and the Euclidean
Model. A majority voting approach is used, whereby for
each finger-touch, the key selected by at least two of the
three internal models is output to the text stream. When all
three models disagree, the Walking Pattern Model prevails,
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since it model performed the best in isolation on the Walk-
Type Collect data. FIG. 7 shows a block diagram of Walk-
Type’s Model Building phase. The Euclidian Model is
included because, although classification accuracy was high
for both of the accelerometer-based models, some keys
become major sources of errors as they got masked by
adjacent keys. FIG. 8 illustrates a confusion matrix for
adjacent keys. More frequently occurring key dominates
adjacent keys, for example, is dominated by “a”, “r”” and
“w” are dominated by “e.” To counter this problem, the two
models were combined with the Euclidean model. The
Euclidean model selects the key containing tap location.
Although simple and non-adaptive, this model increases the
probability of less-frequently occurring keys like “w” being
correctly classified.

The Combined WalkType model also incorporates key-
target anchoring. (See, Gunawardana.) After incorporating
the three models, there were still taps that, although clearly
landing in a key’s center, did not get classified correctly.
Gunawardana addressed this issue in the context of adjusting
key-press probabilities based on a language model. Their
work demonstrated that anchoring some part of the key
increases overall typing accuracy. The Combined WalkType
defines an anchor area in the middle of each visual key; a tap
within that anchor area bypasses the classification models
and instead returns the visual key. The central 20% along the
x-axis and 50% along the y-axis of each key was reserved as
the anchor area.

3.5 WalkType Online

All simulations in the previous section were run offline
with Weka. The final step in the process of creating Walk-
Type was to port the model to an iPhone 3G for online use
and evaluation. To do so, the classification models generated
by Weka into the Phone were ported and then their opera-
tions were optimized and synchronized to work in real-time.
The online version of WalkType first filters the accelerom-
eter data, and then sends it to the Combined WalkType
Model for classification.

3.6 Conclusions

The text entry improvements obtained by leveraging the
accelerometer suggest a similar approach may be useful for
mobile interaction more broadly. Stabilizing input with
techniques similar to WalkType’s, and making the device
aware of users’ movement patterns and gait may, for
example, be useful in accounting for vibrations when users
are trying to press a button or move a slider control.

Additional sensors may also be useful in further improv-
ing WalkType’s classification model. Only data from the
accelerometer was used to infer device position and rotation.
An extension may be to use the built-in gyroscope as it may
be better suited for inferring rotation.

Personalization might also be used for WalkType. The
WalkType training data indicates that personalized models,
where the system is trained only on one user’s data, may
increase classification accuracy over models generated from
data from all users.

The model-building data indicates users were regularly
off by a character when they tried to tap the keys on the
borders of the screen, like “A”, “Q”, SPACE, etc. At times,
users’ taps landed on the bezel of the device instead of on its
keys. The signal processing filtered out the vibrations caused
by tapping of the screen while walking. If vibrations were
separated from walking and tapping, then there is potential
to leverage the tapping vibrations to detect taps on the bezel
and change the system’s behavior accordingly, e.g., by
entering the most likely intended letter.
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Although the subject matter has been described in lan-
guage specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as example forms of imple-
menting the claims. Accordingly, the invention is not limited
except as by the appended claims.
We claim:
1. A method performed by a device with a touch screen for
classifying a user keypress at a keypress location as an
intended key, the user keypress being input by a user, the
method comprising:
for each of plurality of hand postures, providing a touch
pattern model for the user, the touch pattern model
providing an underlying keyboard layout that is differ-
ent from a virtual keyboard layout of a virtual keyboard
that is displayed to the user, the underlying keyboard
layout being based on a probabilistic distribution for
each key derived from typing data collected from one
or more users wherein the underlying keyboard layout
for each hand posture is based on a predicted keypress
location for keys of the virtual keyboard;
displaying the virtual keyboard on the touch screen, the
virtual keyboard being independent of hand posture of
the user and the underlying keyboard layout;

identifying the hand posture of the user based on charac-
teristics of touches as the user interacts with the virtual
keyboard;

receiving an indication of the keypress location on the

virtual keyboard; and

determining the intended key based on the keypress

location and a touch pattern model for the identified
hand posture wherein the intended key is derived from
the predicted keypress locations as represented by the
underlying keyboard layout of that touch pattern
model.

2. The method of claim 1 wherein a hand posture is
selected from the group consisting of typing with two
thumbs, typing with just the left thumb, typing with just the
right thumb, and typing with a finger.

3. The method of claim 1 including providing a language
model wherein the determining of the intended key is further
based on the provided language model.

4. The method of claim 3 wherein the determining of the
intended key is based on a product of a probability given by
the touch pattern model for the identified hand posture and
a probability given by the language model.

5. The method of claim 1 wherein the touch pattern
models are personalized to the user.

6. The method of claim 1 wherein the identifying of the
hand posture is further based on device motion data.

7. The method of claim 6 wherein the device includes a
gyroscope and the device motion data is collected from the
gyroscope.

8. The method of claim 6 wherein the user touch data
includes swipe shape, touch size, and elapsed time between
touches.

9. One or more computer systems for classifying as an
intended key a user keypress at a keypress location on a
touch screen of a device, the user keypress being input by a
user, the one or more computer systems comprising:

one or more non-transitory computer-readable storage

mediums for storing computer-executable instructions
for controlling the one or more computer systems to:
access, for each of plurality of hand postures, a touch

pattern model for the user, the touch pattern model
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providing an underlying keyboard layout that is
different from a virtual keyboard layout of a virtual
keyboard that is displayed to the user, the underlying
keyboard layout being based on a probabilistic dis-
tribution for each key derived from typing data
collected from one or more users wherein the under-
lying keyboard layout for each hand posture is based
on a predicted keypress location for keys of the
virtual keyboard; and

display the virtual keyboard on the touch screen, the
virtual keyboard being independent of hand posture
of the user and the underlying keyboard layout;

identify the hand posture of the user based on charac-
teristics of touches as the user interacts with the
virtual keyboard;

receive an indication of the keypress location on the
virtual keyboard; and

determine the intended key based on the keypress
location and a touch pattern model for the identified
hand posture wherein the intended key is derived
from the predicted keypress locations as represented
by the underlying keyboard layout of that touch
pattern model; and

one or more processors for executing the computer-
executable instructions stored in the one or more non-
transitory computer-readable storage mediums.
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10. The one or more computer systems of claim 9 wherein
a hand posture is selected from the group consisting of
typing with two thumbs, typing with just the left thumb,
typing with just the right thumb, and typing with a finger.

11. The one or more computer systems of claim 9 wherein
the instructions further control the one or more computer
systems to provide a language model wherein the determi-
nation of the intended key is further based on the provided
language model.

12. The one or more computer systems of claim 1 wherein
the determination of the intended key is based on a product
of a probability given by the touch pattern model for the
identified hand posture and a probability given by the
language model.

13. The one or more computer systems of claim 9 wherein
the touch pattern models are personalized to the user.

14. The one or more computer systems of claim 9 wherein
the identification of the hand posture is further based on
device motion data.

15. The one or more computer systems of claim 14
wherein the device includes a gyroscope and the device
motion data is collected from the gyroscope.

16. The one or more computer systems of claim 14
wherein the user touch data includes swipe shape, touch
size, and elapsed time between touches.
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