
Tutorial: Enhancing Observability of
 Serverless Computing with the

Serverless Application Analytics Framework (SAAF)

School of Engineering and Technology
University of Washington Tacoma

12th ACM/SPEC International Conference on Performance Engineering (ICPE 2021)

Robert Cordingly, Navid Heydari, Hanfei Yu,
Varik Hoang, Zohreh Sadeghi, Wes Lloyd

SAAF Outline

2

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
2

33

Serverless Computing

4

High Availability

Pay only for
CPU/memory utilization

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

4

Serverless Computing

5

Why Serverless Computing?
Many features of distributed
systems, that are challenging to
deliver, are provided automatically

…they are built into the platform

5

SAAF Outline

6

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
6

Serverless Computing Delivery Models

7

Function-as-a-Service (FaaS)

Container-as-a-Service (CaaS)

Database-as-a-Service (DBaaS)

7

Commercial FaaS Platforms

8

AWS Lambda
Azure Functions

IBM Cloud Functions
Google Cloud Functions

8

Open Source FaaS Platforms

9

Apache OpenWhisk
OpenFaaS
Fn Project
Kubeless

9

Google Search Trends: Open Source Faas Platform
2020

10

Apache OpenWhisk: 10OpenFaaS: 31
Fn Project: 9Kubeless: 10

10

FaaS Platform Example: AWS Lambda

Bring your own code

• Languages: Java, Python, Node.js, Go,
C#, Ruby, PowerShell, Bash

• Bring you own libraries

Flexible use

• Synchronous or asynchronous

• Integration w/ other AWS services

11

Simple Resource Model
• Function memory 128 MB to 10 GB

• CPU timeshare and network
bandwidth scaled proportional to
memory

Flexible Authorization
• Grant access to resources and VPCs

• Fine-grained control for invoking
functions

SAAF Outline

12

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
12

Function-as-a-Service

Advantages
• No management of servers

• Pay only for actual compute time

• High availability (24/7)

• Scalability (elastic resources)

• Fault tolerance

• Rapid deployment/updates

• Supports vendor workload consolidation

13

Challenges
• Limited observability of servers
• Multi-dimensional pricing policies
• Vendor lock-In
• Heterogeneous infrastructure
• Performance variation
• Memory reservation size
• Infrastructure freeze/thaw
• Function composition
• Pricing obfuscation

Vendor Architectural Lock-In

Cloud native (FaaS) software architecture requires external
services/components

14
Increased dependencies → increased hosting costs

Pricing Obfuscation

VM pricing: hourly pricing policy, billed to the nearest
second is intuitive to understand…

FaaS pricing:
AWS Lambda Pricing

FREE TIER: first 1,000,000 function calls/month 🡪 FREE
 first 400,000 GB-sec/month 🡪 FREE

Afterwards: $0.0000002 per request
 $0.000000208 to rent 128MB / 100-ms -or-

$0.00001667 to rent 1GB / 1-sec
15

Virtual machines as-a-service at ¢ per hour
No premium to scale:

 1000 computers @ 1 hour
= 1 computer @ 1000 hours

Illusion of infinite scalability to cloud user
As many computers as you can afford
Pricing policies are becoming
increasingly granular

▪By the minute, second
Preemptive/Spot reduced price instances 🡪

IaaS Cloud Pricing Policies

16

Price Comparison: IaaS vs. FaaS

Assume 1 month = 30.41667 days (365d / 12)

Workload
Continuous 1-sec service calls: 100% of 2 CPU-cores

100% of 4GB of memory
Workload: 2 continuous client threads
Duration: 1 month (30.41667 days)

ON AWS EC2: Amazon EC2 c5.large 2-vCPU VM x 4GB
c5.large: 8.5¢/hour, 24 hrs/day x 30.41667 days
Hosting cost: $62.05/month

17

Price Comparison: IaaS vs. FaaS - II

Assume 1 month = 30.41667 days (365d / 12)

Workload
Continuous 1-sec service calls: 100% of 2 CPU-cores

100% of 4GB of memory
Workload: 2 continuous client threads
Duration: 1 month (30.41667 days)

ON AWS Lambda: 2,628,000 function calls, 1-sec @ 4GB
function calls: 2.628 million x 20¢/million
runtime: 2,628,000 sec x 4 GB
Hosting cost: ???

18

Price Comparison: IaaS vs FaaS - III
Workload: (4GB) 10,512,000 GB-sec
FREE: - 400,000 GB-sec
Runtime/Memory: 10,112,000 GB-sec
Charge: x .00001667 GB-sec $168.57
Invocations: 2,628,000 calls
FREE: - 1,000,000 calls
Charge: 1,628,000 calls $.33
Total: $168.90 (272.2%)
BREAK-EVEN POINT = $62.05 (VM) - $0.33 (calls) = $61.72
$61.72 / .00001667 GB-sec = ~3,702,459 GB-sec-month / 4GB/call = ~925,614 sec

~10.71 days
Point at which using FaaS costs the same as IaaS

19

Price Comparison: IaaS vs FaaS - III
Workload: (4GB) 10,512,000 GB-sec
FREE: - 400,000 GB-sec
Runtime/Memory: 10,112,000 GB-sec
Charge: x .00001667 GB-sec $168.57
Invocations: 2,628,000 calls
FREE: - 1,000,000 calls
Charge: 1,628,000 calls $.33
Total: $168.90 (272.2%)
BREAK-EVEN POINT = $62.05 (VM) - $0.33 (calls) = $61.72
$61.72 / .00001667 GB-sec = ~3,702,459 GB-sec-month / 4GB/call = ~925,614 sec

~10.71 days
Point at which using FaaS costs the same as IaaS

20

Worst-case scenario= ~2.72x !

AWS EC2: $62.05

AWS Lambda: $168.90

Memory Reservation

Lambda memory reserved for functions

UI provides textbox to set function’s
memory (previously a slidebar)

Resource capacity (CPU, disk, network)
scaled relative to memory

“every doubling of memory, doubles CPU…”

But how much memory do functions require?
21

Service Composition

How should applications be decomposed into serverless functions for
deployment?

22

Monolithic Deployment
Client flow control,

4 functions
Server-side flow control,

3 functions

Recommended practice:
Decompose into many microservices
Platform limits: code + libraries ~250MB (uncompressed)
How does composition impact the number of function invocations, and
memory utilization?

Infrastructure Freeze/Thaw Cycle
Unused infrastructure is deprecated
• But after how long?

FaaS Infrastructure known as “function instances”
Implemented using VMs/microVMs, containers, or software-based isolates

STATES:
Physical Host-COLD
• Function code not yet transferred to any server

Container-COLD
• Function code transferred to server, but infrastructure not created

Container-WARM
• Active container running 23

SAAF Outline

24

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
24

SAAF for FAAS

25

To address these challenges better FaaS profiling &
measurement tools are required:
● Limited observability of servers
● Multi-dimensional pricing policies
● Vendor lock-In
● Heterogeneous infrastructure
● Performance variation
● Memory reservation size
● Infrastructure freeze/thaw
● Function composition
● Pricing obfuscation

λ

SAAF: The Serverless Application Analytics Framework

26

SAAF Outline

27

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
27

Supported Platforms and Languages

28

SAAF Metrics and Design

29

● Profiles 48 distinct metrics (CPU, memory,
I/O utilization), monitors infrastructure
state, and observes platform scalability

● Data collection is directed by calling
profiling functions

● CPU and Memory metrics are collected from
the Linux procfs

● Cold/Warm infrastructure state is observed
by stamping function instances

● Tenancy is determined by introspecting
the environment

SAAF Outline

30

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
30

Workload Profiling with SAAF and FaaS Runner

31

SAAF Tools: FaaS Runner

32

● Client for running experiments

● Executes reproducible tests defined by files or command line arguments
○ Automatically change memory settings or redeploy functions
○ Run functions sequentially or concurrently with many threads
○ Run functions synchronously or asynchronously
○ Define payload distribution and creation with inheritance
○ Execute complex pipelines with multiple functions
○ Run multiple iterations of an experiment

● Automatically compile results into a report

SAAF + FaaS Runner

33

● Observations made by FaaS Runner:
○ Network latency
○ Round trip time
○ Runtime concurrency
○ Run/thread IDs to trace pipelines
○ Sum/average/lists of attributes returned by functions

● Combining SAAF and FaaS Runner collects a total of 48 metrics

SAAF Tools: Publish Script

34

./publish.sh

SAAF Outline

35

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
35

SAAF: FaaS Programming Languages Comparison

36

ETL: Data Processing Pipeline

FaaS Programming Languages Comparison - II

37

Best Performance: Load Best Performance: Transform

Best Performance: Query

Low Cold Latency

Low High-Tenancy Impact

Low High-Tenancy Impact

Low High-Tenancy Impact

Low Cold Latency

Good Memory Scaling
Good Memory Scaling

SAAF Outline

38

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
38

Runtime Prediction Scenarios

39

Prediction Scenarios

Runtime =

Runtime Prediction - Mean Absolute Percentage Error

40

SAAF: Predicting Hosting Costs

41

CPU heterogeneity

SAAF Outline

42

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
42

AWS Lambda - Scalable Performance Test

Scalability from:
0 to 10 GB
sysbench: prime number
generation w/ 12 threads

Doubling memory
doubles performance
until adding the
4th vCPU:

4343

SAAF Outline

44

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
44

AWS Lambda - Linux CPU time Accounting Metrics
sysbench: prime
number generation
with 12 threads

from 0 to 10 GB

log scale

4545

SAAF Outline

46

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
46

AWS Lambda - Infrastructure Reuse Testing

COLD infrastructure
is common with the
serverless freeze-thaw
life cycle

Experiment:
50 concurrent calls

5-min vs 10-min delay

Evaluate %
function instances

4747

SAAF Outline

48

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
48

Conclusions

49

SAAF’s goal is to enable developers and researchers to make educated
observations into the factors that impact performance on FaaS platforms

● Design goals:
○ Easy to implement and deploy
○ Low overhead and minimal dependencies
○ Cross platform/language support
○ A complete development workflow with SAAF + FaaS Runner:

■ Development -> Deployment -> Testing -> Data Analysis
○ Available for anyone

SAAF Outline

50

● Introduction to Serverless Computing
○ Motivation
○ Delivery models and platforms
○ Advantages and challenges

● Serverless Application Analytics Framework (SAAF)
○ Design of SAAF, Supported Languages, Metrics
○ Tools: FaaS Runner, Publish Script

● Analysis Examples with SAAF
○ Programming language comparison, performance modeling
○ Scalability testing, Resource utilization profiling
○ Tracking infrastructure reuse

● Conclusions
● SAAF Demo

λ
50

• SAAF Overview

• Writing a Function with SAAF

• Deploying Functions to all Platforms

• Running Experiments with FaaS Runner

• Generating Reports

• Working with Results in R

• Interactive FaaS with Jupyter

SAAF Demonstration

51

Thank You!

Questions or comments?
Please email: rcording@uw.edu or wlloyd@uw.edu

Download the Serverless Application Analytics Framework:
github.com/wlloyduw/saaf

SAAF Online Tutorial:
https://github.com/wlloyduw/SAAF/blob/master/tutorial

Paper Link:
http://faculty.washington.edu/wlloyd/papers/ICPE_SAAF_proof.pdf

This research is supported by NSF Advanced Cyberinfrastructure Research Program
(OAC-1849970), NIH grant R01GM126019, and the AWS Cloud Credits for Research program. 52

text

53

