Tutorial: Enhancing Observability of
Serverless Computing with the
Serverless Application Analytics Framework (SAAF)

Robert Cordingly, Navid Heydari, Hanfei Yu,
Varik Hoang, Zohreh Sadeghi, Wes Lloyd

School of Engineering and Technology
University of Washington Tacoma
12th ACM/SPEC International Conference on Performance Engineering (ICPE 2021)

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
A o Programming language comparison, performance modeling

o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 2

\d V\'\‘J

Wiy % fa nov
By, 1 et A 02 1
9, Y o gD Rar 3, e
%7, el ha dq (’O,, 2/) s
S, 7 seN m\se : of,, Cre S
) YO n as, How much remaining
%% m Y Se,. o€ . ,
9,'//. cO @q,er capacity do my servers have?
N?) How 2
Confj y
L4 1_»_‘_0 ©Ment dyndrn, Sexve‘
: 0N m
When should | decide to What size servers are Y servers '\\\\\ﬁeep\\ed'?
scale up my servers? right for my budget? oW \NOS W
How can | control
access from my servers?
ages shoud o7
wrich PR server 295
into
pe baked ! i new code D@ .
! How W\\c\l ?o my servers’
(AAHHHHHHHHH!) d/eg\B!3~

How will the application

. e
handle server hardware failure? ers Cr€2
y S
w 3™ S
09> g uch 10291
! O
\@ have 02 st\ no® =
(2
nich v serer® o w“«\‘{ o®®
acC 0OV (2® When should | decide to
o) of scale out my servers?

Serverless Computing

Pay only for
CPU/memory utilization

| High Availability |

| Fault Tolerance |

[Infrastructure Elasticity] | No Setup |

Function-as-a-Service
(FAAS)

Serverless Computing

Why Serverless Computing?

Many features of distributed
systems, that are challenging to
deliver, are provided automatically

...they are built into the platform

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 6

Serverless Computing Delivery Models

(Function-as-a-Service (Faas)

(Container-as-a-Service (Caas) |

(Da’rabase-as-a-Service (DBaaS)\

Commercial FaaS Platforms

{

AWS Lambda

Azure Functions
IBM Cloud Functions

: Google Cloud Functions

Open Source FaaS Platforms

«_7//"

Apache OpenWhisk
OpenFaa$

Fn Project

Kubeless

Google Search Trends: Open Source Faas Platform
2020

[OpenFaas: 31] :Apac:he OpenWhisk: 10:

Fn Project: 9

FaaS Platform Example: AWS Lambda

Bring your own code Simple Resource Model

« Languages: Java, Python, Node.js, Go, » Function memory 128 MB to 10 GB

C#, Ruby, PowerShell, Bash « CPU timeshare and network

« Bring you own libraries bandwidth scaled proportional to
memory

Flexible use

Flexible Authorization

« Synchronous or asynchronous
y y » Grant access to resources and VPCs

" IniCEglrRidion v @ier AL seriees « Fine-grained control for invoking

functions
11

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 12

Function-as-a-Service

Advantages Challenges

« No management of servers « Limited observability of servers
« Multi-dimensional pricing policies

« Pay only for actual compute time
«Vendor lock-In

« High availability (24/7)

« Heterogeneous infrastructure
« Scalability (elastic resources) « Performance variation

« Memory reservation size

o Infrastructure freeze/thaw

« Function composition
« Supports vendor workload consolidation « Pricing obfuscation

 Fault tolerance

+ Rapid deployment/updates

Vendor Architectural Lock-In

Cloud native (FaaS) software architecture requires external
services/components

Example: Weather Application

Increased dependencies — increased hosting costs

Pricing Obfuscation

VM pricing: hourly pricing policy, billed to the nearest
second is intuitive to understand...

FaaS pricing:

AWS Lambda Pricing

FREE TIER: first 1,000,000 function calls/month (1 FREE
first 400,000 GB-sec/month [FREE

Afterwards: $0.0000002 per request
$0.000000208 torent128MB /100-ms -or-
$0.00001667 torent 1GB / 1-sec

15

laaS Cloud Pricing Policies

Virtual machines as-a-service at € per hour
No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

lllusion of infinite scalability to cloud user
As many computers as you can afford

Pricing policies are becoming
increasingly granular

= By the minute, second
Preemptive/Spot reduced price instances [

Price Comparison: laaS vs. FaaS

Assume 1 month = 30.41667 days (365d /12)

Workload
Continuous 1-sec service calls: 100% of 2 CPU-cores

100% of 4GB of memory
Workload: 2 continuous client threads
Duration: 1 month (30.41667 days)
ON AWS EC2: Amazon EC2 c5.large 2-vCPU VM x 4GB
cS.large: 8.5C/hour, 24 hrs/day x 30.41667 days
Hosting cost: $62.05/month

17

Price Comparison: laaS vs. FaaS - |l

Assume 1 month =30.41667 days (365d /12)

Workload

Continuous 1-sec service calls: 100% of 2 CPU-cores
100% of 4GB of memory

Workload: 2 continuous client threads

Duration: 1 month (30.41667 days)

ON AWS Lambda: 2,628,000 function calls, 1-sec @ 4GB

function calls: 2.628 million x 20¢/million

runtime: 2,628,000sec x4 GB

Hosting cost: 277

18

Price Comparison: laaS vs FaasS - llI

Workload: (4GB) 10,512,000 GB-sec

FREE: - 400,000 GB-sec

Runtime/Memory: 10,112,000 GB-sec

Charge: x.00001667 GB-sec $168.57
Invocations: 2,628,000 calls

FREE: 1,000,000 calls

Charge: 1,628,000 calls $.33

Total: $168.90 (272.2%)
BREAK-EVEN POINT = $62.05 (VM) - $0.33 (calls) = $61.72

$61.72/.00001667 GB-sec = ~3,702,459 GB-sec-month / 4GB/call = ~925,614 sec
~10.71 days

Point at which using FaaS costs the same as laaS

Price Comparison: laaS vs FaasS - llI

Workload: (4GB) 10,512,000 GB-sec
- 400,000 GB-sec

Point at which using FaaS costs the same as laaS

Memory Reservation

Lambda memory reserved for functions v Basic settings

Memory (MB) Info

Ul provides textbox to set function’s
memory (previously a slidebar)

Memory (MB) Info
Your function is allocated CPU proportional to the memory configured

Resource capacity (CPU, disk, network) (mE <]m
Scaled relative tO memory Set memory to between 128 MB and 10240 MB

“every doubling of memory, doubles CPU...”

But how much memory do functions require? .

Service Composition

How should applications be decomposed into serverless functions for

deployment? Client flow control, Server-side flow control,

Monolithic Deployment 4 functions 3 functions

E9-9-0-

Recommended practice:

Decompose into many microservices
Platform limits: code + libraries ~250MB (uncompressed)

How does composition impact the number of function invocations, and
memory utilization? 22

Infrastructure Freeze/Thaw Cycle

Unused infrastructure is deprecated

* But after how long?

FaaS Infrastructure known as “function instances”
Implemented using VMs/microVMs, containers, or software-based isolates

STATES:

Physical Host-COLD
* Function code not yet transferred to any server

Container-COLD
* Function code transferred to server, but infrastructure not created

Container-WARM

+ Active container running yX]

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges

e | Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script

e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse

e Conclusions

e SAAF Demo 24

SAAF for FAAS

To address these challenges better FaaS profiling &
measurement tools are required:

® Limited observability of servers

Multi-dimensional pricing policies
Vendor lock-In

Heterogeneous infrastructure
Performance variation

Memory reservation size
Infrastructure freeze/thaw
Function composition

Pricing obfuscation

SAAF: The Serverless Application Analytics Framework

Example Output JSON:

The attributes collect can be customized by changing which functio Att”butes CO"e

more detailed descriptions of each variable and the functions that ¢ s
unt of

see the framework documentation for each language. functions mao data collectey is de

F u nction: methogs, | Ot Ne€d to be ey,

Cted by Each Function

temined py
Y Which .
ed. if you " functions are
Would like to o, o ed. If some attribyte,
'S

Using SAAFIna

. is as simple iMPO
e AAF will be appended

tevery attr are
but i ot neeg

© the inspectayy) Methog 87; en some
Will run g

rting the fran "version": 0.2,
"lang": "python",
"cpuType": "Intel(R) Xeon(R) Processor @ 2.50G “ersion

cti

) Fina fun!
Using SAA ollected by S

i C into ! The versio, Descriptio,
of code. Attributes i this data could be stored “cpuModel”: 63, g = "OfrheSAAFF,amewwk. 4
S nchronousfuncnons. - e ined. "vmuptime": 1551727835, e 219G of the funcioy,
a y. daﬂermefuncﬁon is finis "uuid": "d241c618-78d8-48e2-9736-997dc1a931d4 — T"“efver»sidem,,ﬁ .
retrieve “vmID": "tiUCnA", StartTime | The Uniy g e 1Om When the function 5. -
: Poch that th, 1S initializeq i
ion: "platform": "AWS Lambda" N @ Inspector yas i iv: - Ntil Inspectop gy
unction: P ! ins| . 3s initializeq | inish() is cayy
Example F R containeriiin PeCtContaingyy) ed in ms, alled,
oy "cpuUsrDelta": "904", Fiel
impor " ; w. ugn
$rom Tnspector 1 P! cpuNiceDelta": "o", wig o
) "cpuKrnDelta": "585", A unique idengifi, “scription
" : " e om " y T assigneq
(request cpuIdleDelta": "82428", Newcontaingr 9ned to a congy;
myFunction ’ Whethe, N ner if one g,
def my collect da “cpulowaitDelta": "226", —— "8 container js e, (10 25e; 1985 10t already ey
he Inspector and s Time when the Sianed i) o it i ,
. ialize the cpulrgDelta": e host bo, as been
itialize) oted in Used bef,
- e nspector() "cpuSoftIrgDelta": "7", inspectcpy) S€00nds since Janyary 4 1970 (Unj =
1lnspe tor inspectAlll) “vmcpustealDelta": "1594", - " epoch),
inspec "frameworkRuntime": 35.72, Field
. e. ;
1d!" messagd wHell "message": "Hello Fred Smith!", CPuType X
uHello Wor . " Hello : Th Descriptj
Add ior addAttl’ibUte(‘message “runtime": 38.94 o emOGEInameormecpu_ =
inspector: The
insp! } puUsr model number of e cpu,

cted. -
. es colle me spent
« meturn attribut RN "t normaly exec

CPuNica

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 27

IBM Cloud

Example Function:

S a a F M t - l D - from Inspector import *
e r I cs a n es I g n def myFunction(request):
Initialize the Inspector and collect data.

inspector = Inspector()
inspector.inspectAll()

Add a "Hello World!" message.
inspector.addAttribute("message", "Hello " + request['name']

. PrOﬁles 48 distinct metrics (CPU, memory, # Return attributes collected.
return inspector.finish()
I |/O utilization), monitors infrastructure
state, and observes platform scalability

Example Output JSON:

The attributes collect can be customized by changing which functions are
called. For more detailed descriptions of each variable and the functions

. D ata CO l lectio n is d i re Cted by Ca “i n g It::;::gl;:ct them, please see the framework documentation for each
profiling functions .

"version": 0.2,
"lang": "python",

e CPU and Memory metrics are collected from o R I R
the Linux procfs vmuptime": 1551727835,

e Cold/Warm infrastructure state is observed
by stamping function instances

"cpuSoftIrgDelta": "7",

e Tenancy is determined by introspecting “uncpusteatoetia®; *

"frameworkRuntime": 35.72,

"message": "Hello Fred Smith!",

the environment

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 30

Workload Profiling with SAAF and FaaS Runner

Profiling Task
Description

FaaS Workload
Profile(s)

Google Cloud IBM Cloud
Functions Functions Functions

SAAF Tools: FaaS Runner

e Client for running experiments

e Executes reproducible tests defined by files or command line arguments
o Automatically change memory settings or redeploy functions

Run functions sequentially or concurrently with many threads

Run functions synchronously or asynchronously

Define payload distribution and creation with inheritance

Execute complex pipelines with multiple functions

Run multiple iterations of an experiment

O O O O O

e Automatically compile results into a report 2

SAAF + FaaS Runner

e Observations made by FaaS Runner:

Network latency

Round trip time

Runtime concurrency

Run/thread IDs to trace pipelines

Sum/average/lists of attributes returned by functions

O O O O O

e Combining SAAF and FaaS Runner collects a total of 48 metrics

33

SAAF Tools: Publish Script

IBM Cloud

SAAF Outline

Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics

o Tools: FaaS Runner, Publish Script
Analysis Examples with SAAF
> [Programming language comparison] performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
Conclusions
SAAF Demo

SAAF: FaaS Programming Languages Comparison

ETL: Data Processing Pipeline

Client

X
588
o5 5

Query Aurora Bucket

FaaS Programming Languages Comparison - |l

Low High-Tenancy Impact

Best Performance: Transform

Best Performance: Load

Low Cold Latency

Low High-Tenancy Impact Best Performance: Query

Good Memory Scaling

Low Cold Latency

Low High-Tenancy Impact S
@ 37

Good Memory Scaling

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
o Programming language comparison|performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 38

Runtime Prediction Scenarios

Runtime Prediction - Mean Absolute Percentage Error

Mean Absolute Percent Error

cpuUsr (ms) - 2 GBs E5-2680v2 @ 2.8GHz

® = -0.939 x+39 R?>=0.974

1700
1525 . b
[gF ke e
1350 o | otF
X5
sl
jn
1175 BIERER
.D
1000 ' |
1000 1175 1350 1525

1700

cpuUsr (ms) - 2 GBs E5-2686v4 @ 2.3 GHz

CPU:

256 MBs a1~ a2
256 MBs a1 > a3
256 MBs a2 - a3
512 MBs a1~ a2
512 MBs a1 > a3
512 MBs a2 — a3
1024 MBs a1 — a2
1024 MBs a1 > a3
1024 MBs a2 — a3
2048 MBs al - a2
2048 MBs a1 — a3

2048 MBs a2 - a3

Memory:
al 256MBs — 512MBs
al 256MBs — 1024MBs
al 256MBs — 2048MBs
a2 256MBs — 512MBs
a2 256MBs — 1024MBs
a2 256MBs —» 2048MBs
a3 256MBs — 512MBs
a3 256MBs —+ 1024MBs
a3 256MBs — 2048MBs

Platform:

256MBs a1~ i1
256MBs a1 - i2
256MBs al = i3
256MBs a1 — 14
512MBs a1 — il

512MBs a1l - i2
512MBs a1 = i3

512MBs a1 > i4

1024MBs a1 = i1

1024MBs a1 — i2
1024MBs a1 = i3
1024MBs a1 — i4
2048MBs a1 > il
2048MBs a1 i2
2048MBs a1 i3
2048MBs a1 = i4

Prediction Scenarios

Runtime = (cpuUsr + cpuKrn + cpuldle + cpulOWait + cpulntSrve + cpusSftintSrve)

(# of cores)

m 256 MBs = 512 MBs = 1024 MBs = 2048 MBs
20%
| _SCNMT2 SCMT2 SCSMT2 SCNMT2
AWS=IBM
15%
10%
5%
OUA,‘II li - - - -l__Il_ _II__|_|_II_I_
3V) e % %) S Vv e}) N O .0 M
Lo L3 > Lo g > 2 L3 > ~ ™ N ™
/ 7 / WV Vi / a 2 / 7 7/ 7 7
0\ ‘b'\ ';l’ ‘b\ ’b\ ';' ‘b\ » '5" ’b\ 'b'\ 'z;\ ’5\

CPU to CPU Prediction Model

39

SAAF: Predicting Hosting Costs

® NO VPC a1 CPU m a2 CPU a3 CPU ® Combined (VPC)

CPU heterogeneity

N

$100

$90

0
c
=}
(14
S

AWS S 80

CPUs S
%5 1568193) s $70 157,0%48)
L $71.94 966:31;
g $69.56 $70:41 $69. 75
£
w
b
(=]

\ ° $70. 65
N
= $50 — i R 48 $58. ss $58.95
CPUs $so.97
© 256MBs 512MBs 1024 MBs 2048 MBs 3008 MBs

AWS Lambda Function Memory Size 41

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges

e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script

e Analysis Examples with SAAF

A o Programming language comparison, performance modeling

o |Scalability testing,|Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 42

AWS Lambda - Scalable Performance Test

Sca la blllty from: - Cores - Speedup - Theoretical Speedup
0to 10 GB °

sysbench: prime number
generation w/ 12 threads 4

Doubling memory

Cores
\

doubles performance 2
until adding the -
4thvCPU:
0" 2000 4000 6000 8000
Memory

10000

43

SAAF Outline

Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics

o Tools: FaaS Runner, Publish Script
Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing,|Resource utilization profiling
o Tracking infrastructure reuse
Conclusions

SAAF Demo

AWS Lambda - Linux CPU time Accounting Metrics

sysbench: prime

= User = Idle ~ Steal = Runtime = Kernel

number generation

with 12 threads

from0to 10 GB i3505

log scale g 1000
- \\'\,,\ | -\'\\ =2\,
100 N Y
10 o SIS NNAS
o 2000 4000 6000 8000 10000
Memory 45
SAAF Outline

Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics

o Tools: FaaS Runner, Publish Script
Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
Conclusions
SAAF Demo

AWS Lambda - Infrastructure Reuse Testing

COLD infrastructure - 5 Minute Interval = 10 Minute Interval
iscommon with the 100

serverless freeze-thaw
life cycle

Experiment:
50 concurrent calls

5-min vs 10-min delay

Evaluate %
function instances

Percent New Function Instances

250 500 750 1000 1250 1500 1750
Time (Minutes)

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics

o Tools: FaaS Runner, Publish Script

e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling

o Tracking infrastructure reuse
e Conclusions

e SAAF Demo

Conclusions

SAAF’s goal is to enable developers and researchers to make educated
observations into the factors that impact performance on FaaS platforms

e Design goals:

Easy to implement and deploy

Low overhead and minimal dependencies

Cross platform/language support

A complete development workflow with SAAF + FaaS Runner:
m Development -> Deployment -> Testing -> Data Analysis
o Available for anyone

O O O O

49

SAAF Outline

e Introduction to Serverless Computing
o Motivation
o Delivery models and platforms
o Advantages and challenges
e Serverless Application Analytics Framework (SAAF)
o Design of SAAF, Supported Languages, Metrics
o Tools: FaaS Runner, Publish Script
e Analysis Examples with SAAF
o Programming language comparison, performance modeling
o Scalability testing, Resource utilization profiling
o Tracking infrastructure reuse
e Conclusions
e SAAF Demo 50

SAAF Demonstration

« SAAF Overview

« Writing a Function with SAAF

» Deploying Functions to all Platforms

« Running Experiments with FaaS Runner
« Generating Reports

« Working with Resultsin R

« Interactive FaaS with Jupyter

51

Thank You!

Questions or comments?
Please email: rcording@uw.edu or wlloyd@uw.edu

Download the Serverless Application Analytics Framework:
github.com/wlloyduw/saaf

SAAF Online Tutorial:
https://github.com/wlloyduw/SAAF/blob/master/tutorial

Paper Link:
http://faculty.washington.edu/wlloyd/papers/ICPE SAAF proof.pdf

This research is supported by NSF Advanced Cyberinfrastructure Research Program
(OAC-1849970), NIH grant R01GM126019, and the AWS Cloud Credits for Research program. 52

