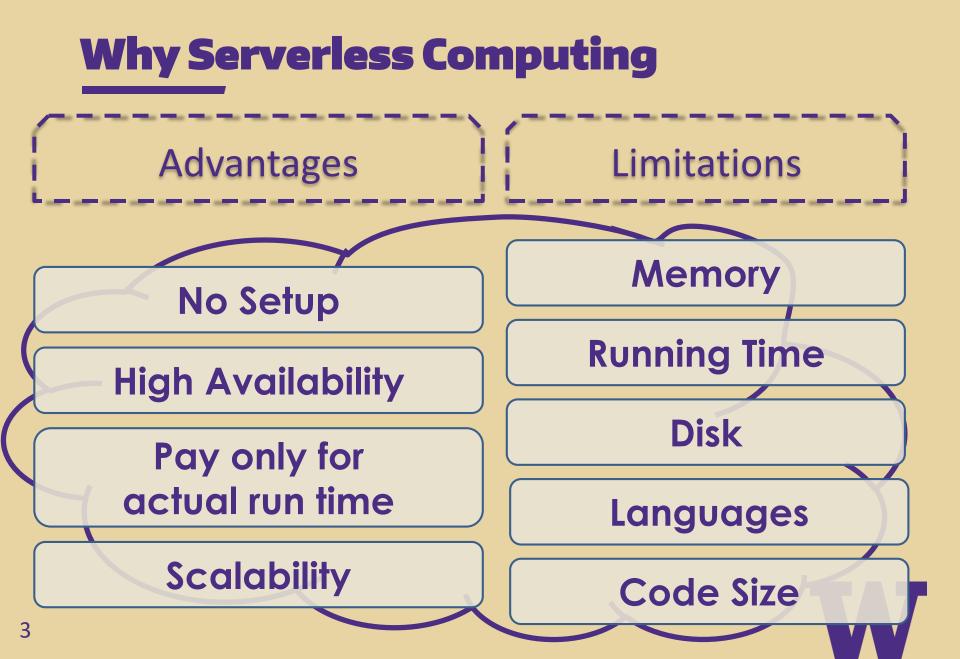
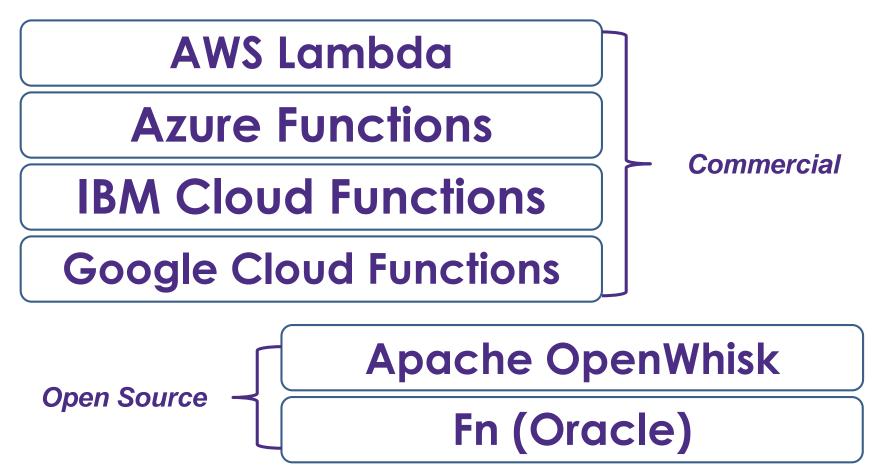
Leveraging Serverless Computing to Improve Performance for Sequence Comparison


Xingzhi Niu, Dimitar Kumanov, Ling-Hong Hung, Wes Lloyd, Ka Yee Yeung School of Engineering and Technology, University of Washington Tacoma Sept 7, 2019


UNIVERSITY of WASHINGTON

Outline

- > Introduction on serverless computing
- > Protein sequence alignment as an example
- > Serverless pipeline architecture
- > **Experiment and results**
- > Cloud provider comparison: AWS vs. Google
- > Summary

Smith-Waterman (Dynamic Programming)

- > gap penalty W_k = uk + v with u=10, v=1
- > u gap extension penalty
- > v gap opening penalty
- > scoring matrix (BLOSUM50) by default

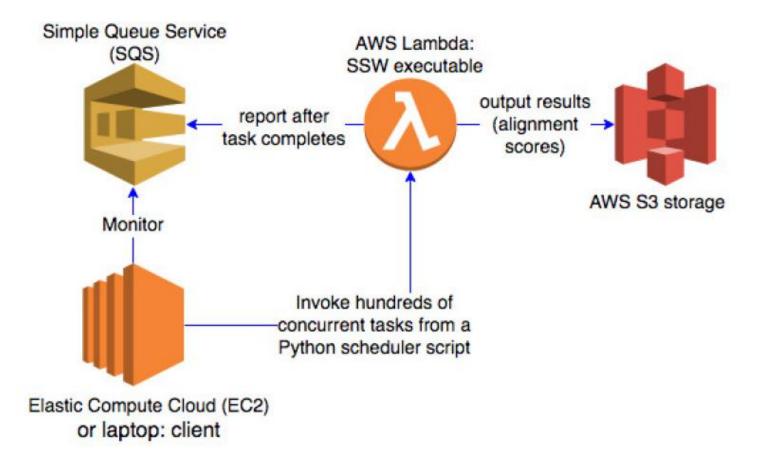
O(n³)

From: https://en.wikipedia.org/wiki/Smit h%E2%80%93Waterman_algorithm Identification of Common Molecular Subsequences, Smith and Waterman, 1981

Protein Sequence Alignment

> Smith-Waterman Algorithm

– 2007 Farrar Striped Algorithm (SSW library):


https://github.com/mengyao/complete-striped-smithwaterman-library

Striped Smith-Waterman speeds database searches six times over other SIMD implementations, Farrar, 2007

- > Partition 20,336 unique human protein sequences into 41 subsets
- > 861 pairwise comparison tasks (41 * 40 / 2 + 41)

Our Serverless Architecture

Serverless Pipeline Components

> Corresponding components across cloud providers

Experiment: Benchmarking Different Clients

Client	OS	Memory
Local Laptop	Ubuntu 16.04	4GB
AWS m5.2xlarge	Ubuntu 18.04	32GB
Google n1-standard-8	Ubuntu 18.04	30GB
FaaS Platform	Memory	Timeout
AWS Lambda	2GB	540s
Google Cloud Functions	2GB	540s

Configurations Tested (one client thread)

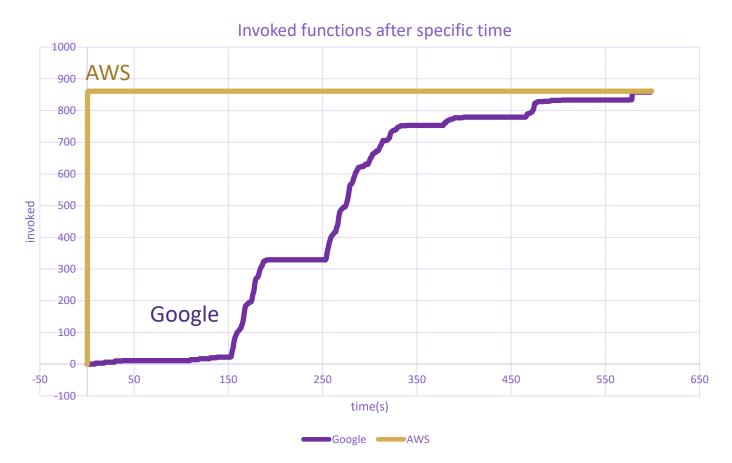
- > Local Laptop client w/&w/o both FaaS providers
- > AWS VM client w/&w/o AWS Lambda
- > Google VM client w/&w/o Google Cloud Functions

Execution Time (Speedup)

Client Type	AWS	Google
Laptop w/o serverless	8h:42m:0s (1x)	
Cloud VM w/o serverless	4h:17m:16s (2.0x)	5h:2m:25s (1.7x)
Laptop + serverless	0h:2m:32s (206.1x)	0h:11m:49s (44.2x)
Cloud VM + serverless	0h:1m:17s (406.8x)	0h:11m:6s (47.0x)

Price Comparison

Client Type	AWS	Google
Laptop w/o serverless	N/A	
Cloud VM w/o serverless	\$1.65	\$1.82
Laptop + serverless	\$0.85	\$0.76
Cloud VM + serverless	\$0.89	\$0.79



AWS vs. Google Comparison

Benchmarking metrics	AWS	Google
Average Function Run Time	76s	67s
Total Invocation Time	1.4s	599s
Maximum Deployment size	50MB	500MB, <100MB each file
Deployment time	<2s	~2min

Details on Invocation Rate

Summary

- > Leveraging serverless computing to improve sequence comparison workflows
- > Experiments on Smith-Waterman algorithm with AWS and Google platform
- > The advantage on both speed and price of serverless computing
- > Comparison between two serverless providers: AWS and Google

Thank you

Supported by NIH R01GM126019.

UNIVERSITY of WASHINGTON