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ABSTRACT  
Serverless computing platforms provide Function-as-a-Service 
(FaaS) to end users for hosting individual functions known as 
microservices.  In this paper, we describe the deployment of a 
Natural Language Processing (NLP) application using AWS 
Lambda. We investigate and study the performance and memory 
implications of two alternate service compositions. First, we 
evaluate a switchboard architecture, where a single Lambda 
deployment package aggregates all of the NLP application 
functions together into a single package. Second, we consider a 
service isolation architecture where each NLP function is 
deployed as a separate FaaS function decomposing the application 
to run across separate runtime containers. We compared the 
average runtime and processing throughput of these compositions 
using different pre-trained network weights to initialize our neural 
networks to perform inference. Additionally, we varied the 
workload dataset sizes to evaluate implications of inferencing 
throughput for our NLP application deployed to a FaaS platform.  
We found our switchboard composition, that shares FaaS runtime 
containers for all application tasks, produced a 14.75% runtime 
performance improvement, and also a 17.3% improvement in 
NLP processing throughput (samples/second).  These results 
demonstrate the potential for careful application service 
compositions to provide notable performance improvements and 
ultimately cost savings for application deployments to serverless 
FaaS platforms.  

CCS CONCEPTS 

• Computer systems organizations → Cloud computing;        
• Software and its engineering → Software design tradeoffs; 

KEYWORDS 
Serverless, Cloud Computing, FaaS, Software architecture, 
Natural Language Processing  

ACM Reference format: 

Mohammadbagher Fotouhi, Derek Chen and Wes Lloyd. 2019. Function-
as-a-Service Application Service Composition: Implications for a Natural 
Language Processing Application. In Proceedings of ACM WoSC’2019 
conference (WoSC’19). ACM, Davis, CA, USA, 6 pages.  
 

1 Introduction 
Function-as-a-Service (FaaS) platforms have recently emerged as 
a new cloud computing delivery model that provides a compelling 
approach for hosting applications bringing us closer to the idea of 
instantaneous scalability [2][3][4].  As a leading provider of FaaS, 
AWS Lambda has grown in popularity based on its ability to 
automatically and seamlessly execute code based on user events 
while managing related resources [1][7]. Similarly, deep learning 
models have risen to the forefront of computer science by 
achieving state-of-the-art performance for many machine-learning 
problems, while experiencing exponential growth in the field of 
natural language processing (NLP).  Recently, serverless 
platforms have been studied for their potential to host machine 
learning inferencing services [12] [17], and even to train neural 
networks [13]. 

 In this paper, we investigate microservice composition for hosting 
an NLP application on the AWS Lambda FaaS platforms.  We 
describe our application implementation in Python, and 
subsequent deployment to AWS Lambda. We leverage our project 
as a case study to investigate service composition where the goal 
is to contrast the performance and memory implications of 
alternate microservice compositions for our specific application 
and datasets.  Our NLP application has six separate services that 
perform a series of operations on chat dialogues.   

Traditional software engineering best practices encourage 
developers to minimize coupling while maximizing cohesion 
among classes or modules of a system.  As we enter the era of 
serverless software, where code composition directly impacts 
creation and maintenance of ephemeral server infrastructure 
impacting underlying performance and hosting costs, traditional 
best practices require reevaluation.  The evaluation problem is 
compounded by the complexity of determining optimal software 
compositions.  Bell's number represents the number of partitions 
of a set (k) consisting of (n) members [14]. If considering a 
serverless application given a set of (n) microservices, then the 
total number of possible microservice compositions is Bell's 
number (k).  Bell’s number grows rapidly for (n) microservices 
(n=3, 4, 5, 6, 7, 8) to produce k compositions (k=5, 15, 52, 203, 
877, 4140).  This complexity leads developers to frequently make 
ad hoc deployment decisions due to the difficultly in inferring 



WoSC5 19, Dec, 2019, UC Davis, CA USA M.Fotouhi, D.Chen, W.Lloyd 
 

2 
 

performance implications given an explosive number of potential 
service compositions requiring profiling.  In these scenarios, brute 
force testing rapidly becomes intractable from both a time and 
cost perspective. 

1.1 Background 
 Natural language processing (NLP) is an area of research that 

explores how computers can be used to understand and 
manipulate natural language text or speech to perform useful 
tasks. One particular task within NLP is dialogue modeling, which 
is usually divided into three components.  Consider a scenario 
where a user is talking to an agent. The agent involved in 
conversation takes in the raw text as input, and then executes the 
following three workflow phases: 

● Intent Tracking: determines what the user wants. For example, 
if the user has a question about a subject, or a request to 
perform a task. 

● Policy Management: takes in the user intent, and based on the 
policy, determines what the chosen agent action will be. For 
example, given a user intent of a question, the action chosen 
may be to give an answer, or to ask for clarification about the 
question. 

● Text Generation: Generate the actual text, or retrieve a 
template to return to the user. For example, if the chosen agent 
action is to “answer” a question about phone numbers, the text 
returned is “The number is 571-599-8447.” 

 All three phases include an initialization step where the raw inputs 
are vectorized into a format recognizable by the network, and an 
inference step where the network processes the inputs to produce 
a prediction.  In total for dialogue modeling there are 3 network 
phases with 2 steps (initialization and inferencing) which we map 
into 6 FaaS microservices. 

1.2 Contributions  

Leveraging our NLP use case, we investigate the impact of factors 
surrounding the performance of dialogue modeling implemented 
using microservices deployed on the AWS Lambda FaaS 
platform.  

We research the effects of FaaS function memory reservation size 
on application performance. We explore the implications of the 
performance to memory size coupling on AWS Lambda.  Current 
best practices for FaaS service composition suggest composing 
applications as fine-grained sets of fully decomposed lightweight 
microservices. 

We investigate the impact of service composition on application 
performance derived from Function-as-a-Service platforms.  We 
explore trade-offs between a fully aggregated, and fully 
disaggregated service composition for our NLP use case. 

We investigate how the adjustment of neural network weights 
affects performance of our NLP application deployed on AWS 
Lambda. Our investigation leverages experiments designed to 
measure the trade-offs between different configurations. 

To save server capacity, cloud providers automatically deprecate 
serverless infrastructure after periods of inactivity [15]. The 
recycling of ephemeral server infrastructure on serverless 
platforms occurs during the freeze/thaw lifecycle [16]. On AWS 
Lambda, after approximately 45-minutes of inactivity, original 
function containers and their host VMs are disassociated from the 
functions causing FaaS endpoints to go cold (freeze). 
Consequently, future function calls force initialization (thaw) of 
new server infrastructure, adding latency to service response 
times. In this paper, we investigate how the service composition 
of our NLP application creates or mitigates performance overhead 
from the freeze/thaw lifecycle of serverless infrastructure. 

2 Related Work 
With the advent of FaaS platforms, developers and scientists alike 
have been drawn to leverage their simplicity and elasticity to 
enable rapid scaling of compute resources to improve application 
performance.  In [9], Lloyd et al. investigated the memory vs. 
performance tradeoff for migrating a Java-based water supply 
forecasting modeling application to AWS Lambda.  They found 
hosting costs could be cut in half at 512 MB vs 3008 MB by 
sacrificing runtime. In [10], Kijak et al. adapted the Deadline-
Budget Workflow Scheduling (DBWS) algorithm to support 
scheduling of scientific workflows on FaaS platforms.  They 
evaluated DBWS for FaaS by scheduling a small-scale 0.25-
degree Montage workflow with 43 tasks while experimenting with 
memory reservation sizes and noted challenges scheduling with 
heterogeneous resources.    

Yan et al. describe the FaaS architecture for an NLP use case, a 
chatbot deployed to the OpenWhisk FaaS platform in [11]. They 
described how the serverless model helped improve the 
extensibility of their chatbot while describing their approach to 
instrument their microservice workflow with six abilities: 
location-based weather reports, jokes, date, reminders, and a 
simple music tutor.  Ishakian et al. in [12] evaluated the 
performance of network inferencing with large pre-trained MxNet 
neural network models deployed on AWS Lambda. They 
measured acceptable performance for inferencing with warm 
serverless infrastructure, but noted significant overhead for 
inferencing with cold function calls.  Bhattacharjee et al. present a 
distributed and scalable system that forecasts demand and 
formulates an optimization problem to minimize the total cost of 
hosting deep learning inferencing services [17].  Their approach 
provides serverless inferencing by automatically managing 
container infrastructure across cloud VMs in response to demand.  
Feng et al. explored the use of FaaS platforms for training large 
and small neural networks studying challenges involving the use 
of ephemeral stateless FaaS infrastructure with cold start latency 
in [13].  They found that FaaS platforms could support 
hyperparameter tuning for small neural networks as these 
workloads fit within constraints and could leverage the elasticity 
provided. Feng also proposed changes to the runtime design of 
FaaS platforms to better enable future support of deep learning.  
In this paper, we investigate the utility of FaaS platforms for 
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dialogue modeling as an NLP use case, while studying the 
performance implications of service composition. 

3 Comparison Studies 
Each of the three processing stages of our NLP application (intent 
tracking, policy management, and text generation) include an 
initialization step, and an inference step that requires significant 
processing time.  Overall our application consists of six total steps 
decomposed into six functions as described in table 1. 
 

 Function 
ID 

Title Description 

F1 Initialize Intent 
Tracker 

Text preprocessing and 
create sentence 
embedding 

F2 Run Intent Tracker Load the weights and 
predict user intent 

F3 Initialize Policy 
Manager  

Create action embedding 

F4 Run Policy 
Manager 

Load the weights and 
predict agent action 

F5 Initialize Text 
Generator 

Create the generated 
output embeddings 

F6 Run Text 
Generator 

Load the weights and 
create final text output 

Table 1. AWS Lambda Inference Functions 
 

We implement these six inference steps as separate AWS Lambda 
functions.  We then performed two experiments: 

1. We varied the type of service composition used to 
initialize and run the network. 

2. We varied the size of the workload being placed on the 
network.  

3.1 Experimental Approach 

A neural network can be viewed as a series of non-linear 
transformations governed by the weights of the network where 
each layer performs an affine transformation as shown in equation 
(1). 

                            Y = XTW + b                                  (1) 

We anticipate a large time associated with the loading of the 
weights. Concurrently, there will also be a variable component 
depending on the size of the inputs, namely the X0 matrix 
containing the number of chats to process. 

Since there are three processes, there will be exactly three 
networks to initialize. We are not training a model here, but 
loading the network weights of a pre-trained model at each 

initialization step to then run the inferences for each stage of the 
dialogue pipeline. We note that the weights of the Text Generator 
(F5/F6) are noticeably smaller by design. The size and complexity 
of the networks differ dramatically, and we believe initializing the 
Intent Tracker (F1/F2) will require noticeably more time than 
initializing the Text Generator.  

3.2 Dataset 

As input data we leveraged the Multi-Domain Wizard-of-Oz 2.0 
dataset (MultiWOZ_2.0), a fully labeled collection of human-
human written conversations spanning over multiple domains and 
topics [6].  MultiWOZ 2.0 provided an existing dataset to provide 
a set of sample workloads. Client requests were passed in as a 
JSON file that the inference service parsed.   

The MultiWOZ 2.0 dataset describes the communication between 
a user trying to find a restaurant, and an agent recommending a 
place to eat. Each sample of this dataset will be a sentence 
regarding the user asking an agent about restaurants.  For 
example: “I would like to eat some Chinese food on the north 
side.” We can easily partition the data to fit the size we want, 
which is where the variable workload comes from. Note the 
explicit goal of a neural network based dialogue agent is to 
support arbitrary natural language requests within the given 
domain (i.e. restaurant reservations), so if there is any need, an 
exponentially large number of new inputs can be easily generated. 

3.3  Design Tradeoffs 

We investigate and study the performance and memory 
implications of two different types of service compositions: a 
switchboard architecture, and full service isolation. 

 

              

Figure 1:  Switchboard Architecture -  
 Asynchronous Flow Control 

In the switchboard composition, the client initiates the pipeline 
by calling our fully composed NLP Lambda function that 
aggregates together our six microservices using a single 
deployment package.  A “switchboard” routine intercepts the call, 
and routes the client request internally.  The advantage here is that 
when warming cloud infrastructure to run F1, infrastructure for 
F2, F3, F4, F5, and F6 are also warmed subverting the freeze/thaw 
lifecycle for the remaining 5-steps of our pipeline. Additionally, 
this composition provides benefits for hosting requests from 
concurrent users, as rather than requiring separate runtime 
containers for each function (F1-F6), all pre-warmed runtime 
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containers can perform any function (F1-F6).  This increases the 
likelihood of FaaS runtime container reuse while minimizing 
iterations of the freeze-thaw lifecycle.  Figure 1 depicts our 
pipeline, where first the intent tracker weights are initialized to 
run the intent tracker, and then the result is passed on. The 
weights for the policy manager are then loaded, and the policy 
manager is run to find a suitable policy.  After policy 
identification, the text generator weights are loaded, and the text 
generator is run to generate the final results for retrieval by the 
client.  

In contrast, our service isolation composition fully decomposes 
the six inference steps as independent microservices which are 
then deployed independently.  The cloud provider must then 
provision separate runtime containers to host each microservice.  
Infrastructure for each service experiences the freeze/thaw 
serverless lifecycle [8][9]. Ultimately, for both compositions, we 
are interested in measuring the average runtime and throughput 
for processing varying dataset sizes. 

  

 

 

 

 

 

 

 

 

 

Figure 2: Full-Service Isolation Architecture - 
Synchronous Client-side Flow Control 

In the service isolation architecture, each phase is decomposed as 
two services: one initialization service, and one inference service, 
enabling the initialization phases to run in parallel. This 
composition has the effect of distributing infrastructure used to 
host the functions across six separate FaaS function runtime 
environments providing better resource isolation and load 
balancing when initialization phases run in parallel for concurrent 
workloads. However, as the number of concurrent queries 
increases, our switchboard architecture gains the upper hand as 
the added cost of initializing significantly more runtime containers 
for service isolation becomes a bottleneck.  Here, the switchboard 
architecture recycles more serverless infrastructure minimizing 
the cold start initialization time. With the switchboard 
architecture, every pre-warmed runtime container can perform 
any task in our pipeline increasing the chance for infrastructure 
reuse and retention before infrastructure is automatically 
reclaimed due to inactivity [8][9]. 

3.4 Application Implementation  
Our neural network model is uploaded onto AWS S3. We used the 
AWS CLI to submit service requests to the Lambda functions. 
Our Lambda functions collectively load our NLP model from 
Amazon S3, provision it, and execute the model locally to 
generate results.  Concretely, provisioning the data and weights 
from S3 for each of the three networks can cause a relatively large 
delay. 

All software dependencies such as NumPy and Scikit-Learn were 
identified for inclusion in Lambda FaaS function deployment 
packages.  Dependencies were first identified using AWS EC2’s 
Python Cloud9 IDE, and later downloaded to a local IDE for 
further development.  All dependencies were packaged as a zip 
file and uploaded for final deployment. Composing all 
dependencies into a single zip file that fit within the maximum file 
size constraints of AWS Lambda was critical to deploying our 
NLP inferencing pipeline.  

4 Experimental Results 

We performed a series of experiments to investigate the effects of 
memory reservation size while varying neural network weights to 
evaluate implications on application performance for our two 
different service compositions. Additionally, we also varied the 
size of the input data to test 3, 10, 30, 100, 300, and 1000 samples.  
Each test was performed 10 times, and we report average values 
for metrics (e.g. runtime, memory utilization). 

4.1 Runtime Performance 

We composed all six of our functions together into the 
switchboard architecture for deployment, and then varied the size 
of input data to perform a series of experiments to measure 
runtime.  Here, all six initialization and inference calls are 
performed by the same runtime container on AWS Lambda. 

Figure 3. Switchboard Architecture Runtime Performance of 
FaaS Functions with Increasing Data Sizes 
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As seen in Figure 3, running the inferences (running the neural 
network) is the performance bottleneck, and also increasing the 
data size increases the runtime. Performance ranged from 22.46 
sec to process 3 samples, to 92.31 second to process 1,000 
samples while throughput (samples/sec) increased ~81x.  The 
Coefficient of Variation (CV), defined as the standard deviation 
divided by the mean, provides a normalized comparison of 
performance variance across test configurations.  The coefficient 
of variation (CV) averaged 10.3% when processing 3, 10, and 30 
samples, and just 6.7% for processing 100, 300, and 1,000 
samples.  The Intent tracker initialization time was slower than 
other initialization phases because it includes the Lambda function 
cold start initialization time. The other initialization phases are 
shorted because the application was already in the warm-state 
when they execute. 

Figure 4. Service Isolation Architecture Runtime Performance 
of FaaS Functions with Increasing Data Sizes 

Our service isolation architecture divides the workload across six 
different runtime containers on AWS Lambda. As seen in Figure 
4, as the data is loaded in parallel in the pipeline for the 
initialization phases, all have the same performance.  In all cases, 
the performance bottleneck is running the network, not 
initialization, and the runtime increases with larger input data 
sizes.  Performance ranged from 14.19 seconds to process 3 
samples, to 108.29 seconds to process 1,000 samples while 
throughput (samples/sec) increased ~43x.  The coefficient of 
variation (CV) averaged 12.6% when processing 3, 10, and 30 
samples, and just 5.6% for processing 100, 300, and 1,000 
samples.   

From these observations, one challenge for deploying deep 
learning NLP is the Lambda memory limitations for processing 
large sample datasets.   

4.2 Memory Utilization 

AWS Lambda pricing is based on memory usage. The Free Tier 
includes 1 million free requests per month and 400,000 GB-

seconds of compute time. Pricing above the Free Tier usage is 
based on memory reservation time, and the total number of 
function calls, where time is rounded up to the nearest 100-
millisecond interval.  To evaluate performance, we completed a 
series of experiments to determine the memory required to run our 
application for both service compositions while changing the 
input data size. Figure 5 and Figure 6 depict the memory 
utilization of the switchboard architecture and service isolation 
architectures. For both, increasing the number of input samples 
increased the required memory to run our neural networks.  
Benchmarking actual application memory utilization helps 
identify the minimum required memory reservation size to 
successfully execute the functions on AWS Lambda without error.   

Figure 5. Switchboard Architecture Memory Utilization 

Figure 6. Service Isolation Architecture Memory Utilization 

Given less than 100 samples, our two service compositions 
exhibited different behavior with respect to required memory. 
Beyond 100 samples, the memory requirement of both 
compositions increased steadily with the input data size.   

4.3 Performance Comparison 

We depict the runtime performance comparison of our service 
compositions in Figure 7. The service isolation architecture is 
shown to perform more efficiently than the switchboard when the 
size of the input data is relatively small, but as the input data size 
grows, the switchboard outperforms the service isolation 
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architecture. The service isolation architecture runtime 
performance normalized to switchboard performance was 63.2%, 
73%, 84%, 91.5%, 94.6%, and 117.3% for 3, 10, 30, 100, 300, 
and 1,000 sample tests respectively.   

Figure 7. Runtime Performance of Service Isolation and 
Switchboard Architectures 

5 Conclusion 

In this paper, we have described the runtime performance and 
memory limitations of an NLP (Natural Language Processing) 
application using AWS Lambda using two different service 
compositions: a switchboard architecture, and a service isolation 
architecture. By examining memory utilization of networking 
inferencing, we determined that the main challenge of deploying 
an NLP application over AWS Lambda was not library size, but 
runtime memory limitations. We have shown that memory limits 
increase steadily while increasing the input data size. When 
comparing runtime performance, we observed that the 
switchboard architecture minimized cold starts, and performed 
more efficiently over larger input dataset sizes. With 1,000 
samples, the end to end runtime of our NLP pipeline of our 
switchboard architecture was 14.75% faster than our service 
isolation architecture.  This improvement produced a 17.3% 
increase in throughput.  In contrast, when inferencing just 3 
samples, the service isolation architecture was faster (36.96%), 
while yielding higher throughput (58%). 

We used different pre-trained network weights to initialize and 
run inference in the same fashion as neural networks, and 
observed how varying the network weights increases the runtime 
of both service compositions.  Additionally, we experimented 
with varying the dataset sizes to evaluate our pipeline’s 
throughput in samples/second. Ultimately, we found that the 
switchboard composition helped improve runtime and throughput 
for neural network inferencing, though inferencing remains 
compute intensive regardless of the microservice composition 
used. 
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