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Abstract— Hypervisors used to implement virtual machines 

(VMs) for infrastructure-as-a-service (IaaS) cloud platforms have 

undergone continued improvements for the past decade.  VM 

components including CPU, memory, network, and storage I/O 

have evolved from full software emulation, to paravirtualization, 

to hardware virtualization.  While these innovations have helped 

reduce performance overhead when simulating a computer, 

considerable performance loss is still possible in the public cloud 

from resource contention of co-located VMs.  In this paper, we 

investigate the extent of performance degradation from resource 

contention by leveraging well-known benchmarks run in parallel 

across three generations of virtualization hypervisors.  Using a 

Python-based test harness we orchestrate execution of CPU, disk, 

and network I/O bound benchmarks across up to 48 VMs sharing 

the same Amazon Web Services dedicated host server.  We found 

that executing benchmarks on hosts with many idle Linux VMs 

produced unexpected performance degradation.   As public cloud 

users are interested in avoiding resource contention from co-

located VMs, we next leveraged our dedicated host performance 

measurements as independent variables to train models to predict 

the number of co-resident VMs.  We evaluated multiple linear 

regression and random forest models using test data from 

independent benchmark runs across 96 vCPU dedicated hosts 

running up to 48 x 2 vCPU VMs where we controlled VM 

placements.  Multiple linear regression over normalized data 

achieved R2 =.942, with mean absolute error of VM co-residency 

predictions of 1.61 VMs. We then leveraged our models to infer 

VM co-residency among a set of 50 VMs on the public cloud, where 

co-location data is unavailable. Here models cannot be 

independently verified, but results suggest the relative occupancy 

level of public cloud hosts enabling users to infer when their VMs 

reside on busy hosts. Our results characterize how recent 

hypervisor and hardware advancements are addressing resource 

contention, while demonstrating the potential to leverage co-

located benchmarks for VM co-residency prediction in a public 

cloud.  

Keywords—resource contention, multitenancy, resource 

management and performance, Infrastructure-as-a-Service, 

virtualization 

I. INTRODUCTION 

Public Infrastructure-as-a-Service (IaaS) clouds abstract the 
physical placement of virtual machines (VMs) in the cloud to 
provide distribution transparency to end users. When 
horizontally scaling VMs to host multi-tier applications, co-
location of too many VMs requiring similar resources on the 

same physical host(s) has been shown to create performance 
degradation.  For service oriented applications, for example, a 
performance loss of 25% is demonstrated when too many web 
application servers share the same host(s) in [1].  Another study 
found that when launching large pools of 80 Amazon EC2 
m3.medium 1-vCPU VMs, 21% were inferred to be provisioned 
on the same physical host. These results demonstrate the 
potential for unwanted performance degradation from VM co-
location for VMs launched in the public cloud.   

Recent innovations in virtualization have enabled hardware 
virtualization of nearly all VM components including the CPU, 
memory, network and storage I/O. These improvements have 
drastically reduced virtualization performance overhead as VMs 
now directly interface with system hardware, but these 
improvements do not mitigate performance losses from resource 
contention of co-located VMs.  At the same time, cloud servers 
have become increasingly core dense, as systems include 
multiple CPUs with ~24-32 physical CPU cores each, to offer as 
many as 96 to 128 virtual CPU cores. To leverage available CPU 
capacities, cloud vendors may co-locate increasingly more VMs 
than ever before to amortize the cost of expensive hardware.  
Increased densities of VM placements across physical servers 
can increase public cloud resource contention.  

To address unwanted resource contention from co-located 
cloud VMs, cloud providers now provide users access to 
dedicated private servers. Amazon Web Services (AWS) (Nov 
2015 release), Microsoft Azure (Aug 2019 preview), and IBM 
Cloud all offer dedicated hosts, privately provisioned physical 
servers where users can place and run fully isolated VMs 
[2][3][4].  Google Cloud offers the same feature known as 
Google sole-tenant nodes (June 2018 beta) [5]. These dedicated 
servers provide users access to isolated hardware shared with no 
other users in the public cloud to help mitigate resource 
contention, but at a premium price, potentially ~20x more than 
the price of commodity VMs.  

When horizontally scaling VMs for Apache Spark or Docker 
container clusters (e.g. Kubernetes) to run distributed 
workloads, spreading VM placements across separate physical 
hosts can disperse user workloads to maximize performance. 
This is especially important for embarrassingly parallel jobs 
deployed across VMs as they require identical resources (CPU, 
memory, disk, network I/O) creating contention if VMs are 
scaled out horizontally on the same hosts. When VMs are tightly 
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packed onto the fewest number of physical servers as with 
greedy VM placement algorithms, embarrassingly parallel 
workloads may suffer from significant CPU, disk, and/or 
network contention. Recently, AWS introduced spread 
placement groups, a feature that guarantees VMs are placed on 
“different (server) racks”, but this feature is limited to a 
maximum of seven VMs per availability zone limiting its utility 
for larger clusters [6].   

In this paper, we focus on two problems.  First, we are 
interested in quantifying performance degradation from co-
location of VMs across modern hypervisors and hardware.  
Given trends with increasing CPU core density of cloud host 
servers, VM multitenancy is a trend that is likely to increase.  
Second, we are interested from a user’s perspective, in 
evaluating the quality of VM placements to ensure that low-cost 
commodity VMs launched in the public cloud can avoid as 
much resource contention as possible.  By providing users with 
a means to assess the quality of their commodity VM 
placements, they can determine whether to retain or replace 
them based on workload or application requirements [7].  

To support our research aims, we investigate performance 
degradation from resource contention when executing common 
performance benchmarks concurrently across VMs explicitly 
placed across dedicated cloud servers.  For each iteration, we 
test how resource stress grows by increasing the number of co-
located VMs that run the benchmark.  We automate our tests 
with a custom test suite to coordinate parallel benchmark 
execution, and investigate resource contention across three 
generations of Amazon EC2 instances. We test: up to 32 x 
c3.large and c4.large (3rd & 4th generation), 48 x z1d.large (5th 
generation), and 96 x m5d.large (5th generation) 2 vCPUs VM 
instances on Amazon EC2 dedicated hosts. Our benchmarking 
suite profiles CPU, disk, and network resource contention using 
carefully selected benchmarks including, for CPU contention: 
sysbench and y-cruncher [8][9], for CPU+disk contention: 
pgbench [10], and for network contention: iPerf [11].  

Benchmark performance metrics are then used as 
independent variables to train models to predict the number of 
VM tenants on shared cloud host servers.  We applied multiple 
linear regression and random forest regression to train models 
to predict VM tenancy on m5d dedicated hosts with up to 48 
co-located VMs. We found that multiple linear regression over 
normalized data explained variance of R2=.9423 while 

providing VM co-location predictions of 1.61 VMs.  
Performance metrics from our benchmarks can be collected for 
newly launched VMs to determine the quality of VM 
placements before committing to long term use in compute 
clusters (e.g. Apache Spark, Kubernetes). Combined, our four 
benchmarks can be run sequentially to obtain performance 
metrics for inferencing with use with our VM tenancy models 
in ~96 seconds. This fast characterization enables the state of 
resource contention to be sampled and resampled quickly as 
needed. 

A. Research Questions 

This paper investigates the following research questions: 

RQ-1: (Resource Contention) What extent of performance 
degradation (CPU, disk, network) results from VM co-location 
when running identical benchmarks in parallel on a public 

cloud? How is public cloud resource contention impacted by 
recent advancements in virtualization hypervisors and 
hardware?  

RQ-2: (VM Multitenancy Prediction) How effective are 
performance metrics derived from CPU, disk, and network 
benchmarks run in parallel across VMs as independent 
variables to predict VM multitenancy on physical hosts?  How 
accurate are VM multitenancy predictions from multiple linear 
regression and random forest models trained using these 
variables? 

B. Research Contributions 

This paper provides the following research contributions: 

1. We characterize the performance degradation for 
running identical Linux benchmarks in parallel across up 
to 48 co-located 3rd, 4th, and 5th generation AWS EC2 
VM instances. Our benchmarks characterize CPU, disk, 
and network resource contention from VM multitenancy. 
Tested VM generations encapsulate multiple successive 
enhancements to hypervisors and hardware. 3rd and 4th 
generation VMs leverage the XEN hypervisor 
customized by AWS [12], while 5th generation VMs 
leverage Amazon’s AWS “Nitro” hypervisor derived 
from KVM [13][14][15].  

2. We provide a combined benchmark suite to orchestrate 
fast profiling of VMs that aggregates metrics from four 
performance benchmarks (sysbench, y-cruncher, 
pgbench, and iPerf).  Our suite automates running 
benchmarks in parallel across variable sized pools of 
VMs to test VMs launched on dedicated hosts or on the 
public cloud. Our suite enables characterizing resource 
contention using four benchmarks in ~96 seconds, to 
provide independent variables to estimate the number of 
co-located VMs sharing the same physical hosts.  

3. We evaluate multiple linear regression and random forest 
regression to construct predictive models to estimate the 
number of co-resident VMs sharing the same physical 

host server.  We demonstrate accuracy within 1.61 VMs 
on 5th generation EC2 dedicated hosts (m5d) which can 
host up to 48 co-located VMs. 

II. BACKGROUND AND RELATED WORK 

A. VM Provisioning Variation and Resource Contention 

Rehman et al. identified the problem of “provisioning 
variation” in public clouds in [16].  Provisioning variation is the 
random nature of VM placements in public clouds that 
generates varying multitenancy across physical cloud servers 
leading to performance variance from resource contention. 
Schad et al. further demonstrated the unpredictability of 
Amazon EC2 VM performance resulting from provisioning 
variation and resource contention from VM multitenancy [17].  
Ayodele et al. demonstrated the ability to identify resource 
contention from VM co-location using the cpuSteal metric by 
running SPEC CPU2006 benchmarks in [18].  Ayodele verified 
this relationship on both a private cluster, and with the 
m3.medium Amazon EC2 VM type. Lloyd et al. investigated 
the use of cpuSteal thresholds to identify co-located VMs from 
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large VM pools that ran concurrent compute bound webservice 
workloads [1]. Lloyd found that webservices hosted on co-
located worker VMs performing similar work concurrently 
underperformed by as much as 25%. By replacing undesirable 
VMs early on, Ou and Farley demonstrated potential to obtain 
performance improvements by retaining only VMs with the 
best CPUs when the cloud provider mixed up to five CPU types 
to implement the VM (m1.large) [7][19].  Liu offered a novel 
approach to characterize CPU utilization across public cloud 
hosts over long periods by analyzing CPU temperature [20] but 
did not consider if temperature can help detect VM tenancy.   

Govindan et al. provided a practical method to predict 
performance interference due to shared processor caches 
requiring minimal software changes known as Cuanta  in [21].  
Their approach used cache simulation to predict performance 
degradation from shared processor caches (e.g. L1, L2, L3) for 
servers hosting multiple VMs.  Cuanta required a linear number 
of measurements per CPU and produced a prediction error of 
~4% while supporting identification of potential VM 
consolidations to reduce cache interference. Their approach, 
however, required a carefully placed probe VM to be co-located 
with other VMs of interest to enable profiling.  As public clouds 
obscure the location of VMs, it would be difficult to know if 
probe VMs are deployed on the correct host. Kim, Eom, and 
Yeom developed performance models to infer to what degree 
application workloads can interfere with each other [22].  These 
models characterize last level cache misses and references to 
support a new VM placement algorithm called swim.  
Performance degradation from VMs placed by swim was found 
comparable to optimal VM placement, but as their work 
required changing the public cloud VM placement algorithm, it 
is not feasible for cloud users to employ as users cannot control 
public cloud VM placement. 

Mukherjee et al. identified problems when relying on 
hardware counters to infer resource contention for 
virtualization of kernel resources or memory subsystems in 
[23].  They offered a software-based probe deployed across 
small co-resident VMs to detect network and memory resource 
contention.  Their probe detected subtle performance losses 
from microbenchmarks after a careful tuning phase established 
specific thresholds to detect degradation with minimal resource 
utilization tuned on specific hardware.  While their approach 
avoided the use of hardware counters, tradeoffs included their 
probe must be tuned before use on every platform, and the 
requirement to use separate probe VMs, consuming resources. 
Additionally, in the public cloud, controlled placement of probe 
VMs is not feasible. 

B. VM Co-location Detection with Side Channels 

In computer security, side channels are used to launch 
attacks by leveraging information gained from the 
implementation of computer systems.  Side channels involve 
identification of novel exploits that designers never considered 
to expose implementation details.  In cloud systems, side 
channels can be used to infer VM co-location in public clouds 
[24][25][26][27][28][29]. In 2009, Ristenpart et al. 
demonstrated the potential of VM co-residency detection by 
launching probe VMs for exploration to leverage a variety of 

side channels, raising attention to the potential to exploit cloud 
security [25].  Increasingly sophisticated efforts have followed. 

Bates et al. described an approach to infer the location of 
VMs in the public cloud by launching a large number of 
“flooder” VMs in [26]. Flooder VMs communicate with an 
external client to create network traffic across a large set of 
physical cloud hosts creating a detectable delay that can be 
observed in the victim VM’s network traffic flow.  Flooders 
imprint a “watermark” signature, a detectable pattern of change 
in the victim’s network flow, that can help identify the victim’s 
physical host. The authors exploited the lack of network 
isolation of co-located VMs to offer a side channel to identify a 
VM’s host. Our work confirms this network isolation 
vulnerability and quantifies the extent across 3rd, 4th, and 5th 
generation instances on AWS, and leverages network 
contention to help identify co-located VMs as part of our multi-
benchmark suite. While flooder VMs may be effective to create 
detectable patterns to infer a VM’s location, they are expensive, 
as users must pay for potentially large numbers of them. 

Varadarajan et al. identified the potential to generate 
resource freeing attacks in the cloud in [29].  Attacks were 
launched by co-resident attacker VMs sharing the same host as 
victim VMs. Attacker VMs created resource contention for 
CPU, disk, or network resources.  By generating contention, 
victim VMs were delayed as they bottlenecked on one or more 
unavailable resources effectively altering the victim’s workload 
to free resources for the attacker. By stealing resources, 
Varadarajan demonstrated performance improvements up to 
60% for attacker workloads on private clouds, and 13% on the 
AWS public cloud. Varadarajan did not explicitly address 
identification of the number of co-located VMs, and their 
approach of launching large numbers of attack VMs can be 
expensive. 

Inci et al. proposed three approaches to detect co-located 
VMs on commercial IaaS clouds by using an attacker VM that 
works without the cooperation of other VMs on the same host 
in [27].  Two approaches focused on the malicious use of CPU 
last level caches (LLCs), while the third performed memory bus 
locking with atomic CPU instructions. The goal was to 
introduce interference to cause detectable application 
performance degradation across other VMs due to apparent co-
location.  LLC attacks were sufficient to identify co-location of 
VMs with some confidence, but prone to noise and only 
effective when VMs shared the same physical CPU socket.  
Memory bus locking schemes, however, were able to identify 
co-located VMs that shared different physical CPUs on the 
physical host, but detection was problematic when running 
applications performing few memory accesses. Inci launched 
80 VM pools of 1 vCPU instances on the Amazon, Google, and 
Azure cloud and identified 17 of 80, 8 of 80, and 4 of 80 co-
located instances respectively.  Their approach focused on 
identifying VMs that shared the same physical CPU on 
multiprocessor servers. They did not address detection of  VMs 
on adjacent CPUs that can experience significant network 
and/or disk resource contention.  An ideally placed VM will 
avoid more than CPU contention. 

O’Loughlin and Gillam offered a method to detect co-
located VMs specific to the Xen hypervisor in [28].  They 
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installed the xen-utils Debian package on Amazon EC2 VMs 
and read the domid.  On VM reboot, the Xen hypervisor 
increases guest domids until cycling at 65536.  By carefully 
rebooting VMs in absence of other events, shared physical hosts 
can be identified as they use ids in a unique range from 0 to 
65536.  We recently tested this method and discovered it no 
longer works without uninstalling xen-utils before each reboot, 
and then reinstalling after each boot.  This method requires a 
large number of time intensive reboots plus careful accounting 
of IDs to identify counter pacing, and only works with XEN-
based VMs. It is not applicable to 5th generation AWS EC2 
instances.  

In this paper, we offer a new approach that does not require 
explicitly placed probe VMs as in [25][26][29], that leverages 
common performance benchmarks to train machine learning 
models to infer the number of co-located VMs.  We select CPU, 
disk, and network benchmarks to characterize multiple types of 
resource contention that span VMs sharing multi-processor 
hosts improving on [27]. We design and evaluate our approach 
to predict the number of co-located VMs on CPU-dense 
hardware with 96 vCPUs capable of hosting 48 co-located 2 
vCPU VMs. We are unaware of prior efforts that evaluate 
prediction accuracy on similar, very large servers. Our models 
can suggest the health of the environment with respect to CPU, 
disk, and network contention, as well as the number of co-
located VMs. Our approach of VM profiling to collect data for 
model inferencing requires ~96 seconds and can be repeated to 
reassess the health of VMs belonging to shared clusters 
providing a hypervisor agnostic faster alternative to [28]. 
Strategies to test-and-replace underperforming cluster VMs 
before committing to run intense distributed workloads can 
ultimately serve to improve performance, and lower cloud 
computing costs extending the trial-and-better approach of [7].   

III. METHODOLOGY 

A. Combined Benchmarking Suite  

To quantify resource contention from VMs on multi-tenant 
hosts, we developed a benchmarking suite that combines 
common system benchmarks due to their wide availability and 
ease of use. Y-cruncher and sysbench were selected to generate 
CPU stress, pgbench to generate CPU+disk I/O disk stress, and 
iPerf for network I/O stress.  These benchmarks were deployed 
and run in parallel across VMs placed on Amazon EC2 
dedicated hosts, private cloud hosts available for a premium 
price, enabling VM tenancy to be controlled. We scheduled 
identical benchmarks to run in parallel across co-located VMs 
specifically to stress the same resources.  By stressing the same 
resources at the same time, our objective was to create and 
observe the maximum performance degradation allowed on the 
host.  The behavior of each benchmark when run in parallel 
across all possible combinations of co-located VMs (e.g. 
n=1..48) is then harnessed as an independent variable in 
predictive models to estimate the number of co-located VMs. 
To enable fast assessment of resource contention a complete 
execution of our combined benchmark suite to obtain variables 
for model inferencing requires ~96 seconds and can run in 
parallel across any number of VMs in a user’s account.   

Sysbench provides a comprehensive tool suite 
encapsulating multiple operating system performance 

benchmarks [8]. For our experiments, we leveraged sysbench 
as a CPU stress test to perform the deterministic task of 
generating the first 2,000,000 prime numbers using 2 threads, 
10 times. Sysbench as configured required approximately ~6 
seconds of wall clock time on idle c4.large EC2 instances. 

Y-cruncher computes Pi and other constants to trillions of 
digits and can be employed to generate CPU stress [9].  We 
leveraged y-cruncher as a deterministic workload to calculate 
Pi to 25 million digits using multiple threads. Y-cruncher 
requires ~7.2 seconds on an idle c4.large EC2 instance while 
generating primarily CPU stress. Post-processing and 
validation against pre-calculated constants extend the runtime 
to approximately ~7.9 wall clock seconds while adding a small 
amount of disk I/O. We found that to observe a significant 
performance variance from running multiple instances of 
sysbench in parallel, it was necessary to stop idle Linux VMs. 
This involved suspending the VM which effectively deallocates 
it from the hypervisor. On AWS when stopping and resuming 
instances, VMs retain the same instance-id, but renegotiate their 
public and private IP addresses.  Presumably this is done 
because there is no guarantee the VM will resume on its original 
host. For y-cruncher, best-to-worst case performance variance 
was 12.9% without stopping idle VMs, but this performance 
variance grew to 32.4% when stopping idle VMs.  Stopping idle 
VMs improved performance up to 19.5% for parallel instances 
of y-cruncher, and up to 20.63% for sysbench on dedicated 
hosts. 

Pgbench is a database benchmark integrated with the 
PostgreSQL relational database that measures system 
performance for running PostgreSQL database transactions 
[10]. It supports running a batch of SQL queries repeatedly in 
multiple concurrent database sessions to calculate average 
system throughput in transactions per second (TPS). We 
disabled database vacuuming when running pgbench to avoid 
performance variance from automated vacuuming that could 
occur at random intervals.  Pgbench initially populates rows 
randomly into 4 tables according to a scale factor. It then runs 
transactions with 5 simple queries (SELECT, UPDATE, and 
INSERT) using 10 concurrent client database connections. We 
configured pgbench to provision 10 worker threads, one thread 
for each client, to run all sessions in parallel. Pgbench ran 
against PostgreSQL version 9.5. In contrast to y-cruncher and 
sysbench, pgbench generates CPU, memory, and disk I/O 
stress.  We measured the total number of transactions pgbench 
could complete in 60 seconds. 

iPerf provides a standard benchmark for measuring network 
bandwidth [11]. We deployed iPerf to test TCP throughput 
between clients and servers. We used a TCP socket buffer size 
of 416 kilobits for maximum throughput given the network 
latency between the client and server VMs.  We performed 
concurrent duplex data transfer between the client and server, 
and calculated total network throughput (upload+download) for 
15 second test runs.  Running iPerf requires two VMs, one server 
and one client. We allocated one dedicated host machine for 
client VMs, and another for server VMs. 

B. Testing Infrastructure 

All tests were completed in the AWS us-east-1 Virginia 
region using EC2 instances running Ubuntu 16.04.5 LTS 
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Linux.  For each experiment, all instances were provisioned 
using a virtual private cloud and configured to share the same 
subnetwork and launched in the same availability zone.  We 
profiled performance degradation of co-located parallel 
benchmark runs on EC2 dedicated hosts [2].  We investigated 
compute optimized instances from the 3rd, 4th, and 5th EC2 
instance generations.  Specifically, we investigated instances 
backed by AWS specific versions of the XEN (c3, c4) and 
KVM “AWS Nitro” (z1d, m5d) hypervisors [13]. Key 
performance indicators for these hosts are described in Table I. 
Dedicated hosts support controlled placement and tenancy of 
VMs across physical servers.  To maximize the potential for 
resource contention, we leveraged only 2 vCPU instances 
(c3.large, c4.large, z1d.large, m5d.large) and provisioned the 
maximum number of co-located VMs allowed on each 
dedicated host server.  We initially investigated larger co-
located VMs: c4.xlarge (4 vCPUs, up to 8 VMs per host), and 
c4.2xlarge (8 vCPUs, up to 4 instances per host) but observed 
less resource contention when using larger VMs as expected.  
While resource contention was not eliminated, we opted to 
focus on using 2 vCPU instances to investigate worst-case 
provisioning scenarios of VMs on the public cloud. 

TABLE I.  KEY PERFORMANCE INDICATORS FOR  

CLOUD DEDICATED HOSTS – US EAST PRICING  

KPI c3 c4 z1d, m5d 

Xeon CPU model  E5-2680v2 E5-2666v3 
Platinum 8191(z1d), 

Platinum 8175m(m5d) 

family/microns/yr 
Ivy Bridge-EP/ 
22nm/Sep2013 

Haswell-EP / 
22nm/Nov2014 

Skylake-SP / 
14nm/Jul2017 

vCPUs/host 40 40 48 (z1d), 96 (m5d) 

physical CPU 
cores/host 

20 20 24 (z1d), 48 (m5d) 

Base clock MHz 2800 2900 3400 (z1d), 2500 (m5d) 

Burst clock MHz  
(single / all) 

3600/3100 3500/3200 [30] 
4000/4000 (z1d), 

3100/3500 (m5d) [31] 

Hypervisor / 
virtualization-type 

XEN / full XEN / full AWS Nitro (KVM/full) 

Max # of 2 vCPU 
instances/host 

16 x c3.large 16 x c4.large 
24 x z1d.large, 
48 x m5d.large 

Pg db storage 
16 GB local 
shared SSD 

100GB io1 EBS 
volume, 5k iops 

75GB local shared 
NVMe 

Network 
capacity/instance 

“Moderate” 
~550 Mbps 

“Moderate“ 
~550 Mbps 

Up to 10 Gbps 

Host price/hr $1.848 $1.75 
$4.91 (z1d),  

$5.97 (m5d) 

VM price/hr $.1155 $.109375 
$.205 (z1d),  

$.124 (m5d) 

By default, all of our EC2 instances use default general-
purpose 2 (GP2) elastic block store disks with a supported burst 
rate of 3,000 I/O operations/sec.  To run pgbench, we opted to 
use alternate disks for the PostgreSQL database for all tests.  
For c3.large instances we used the locally provided solid-state 
disk (SSD) on the dedicated host.  We relocated the database to 
a local ephemeral volume implemented on a shared physical 
SSD on the dedicated host. For c4.large, local disks are not 
available. To create disk I/O contention we provisioned a 100 
GB “provisioned IOPS SSD” (io1) volume supporting 5000 
IOPS.  This was used for the root volume, and also to host the 
PostgreSQL database.  For z1d/m5d instances we moved the 
database to a local 75GB volume on a shared NVMe SSD on 

the dedicated host. For pgbench, c3.large, z1d.large, and 
m5d.large instances allowed measurement of resource 
contention for co-located VMs sharing two different 
generations of local SSDs: c3.large (standard SSD) and 
z1d/m5d (NVMe SSDs).  Fourth generation EC2 instances (e.g. 
c4/m4/r4 family) do not offer the option for local SSDs in favor 
of remotely hosted elastic block store (EBS) volumes [32]. The 
hardware configuration of local disk volumes (e.g. individual 
SSDs or redundant arrays) is not disclosed by the cloud 
provider. To generate resource contention with pgbench on 4th 
generation EC2 instances, we provisioned io1 volumes with a 
fixed number of 5,000 IOPS for a total of 80,000 IOPS for the 
host.  For 4th generation instances with default general purpose-
2 (GP2) EBS volumes, the 3,000 IOPS I/O quota effectively 
hides I/O resource contention when running pgbench. At the 
maximum IOPS rate, the host has more than sufficient 
bandwidth to the remote EBS storage medium.  Custom 
provisioned IOPS EBS volumes on 4th generation instances 
with higher throughput rates were able to create I/O contention 
to the remote EBS volumes.  A drawback of using provisioned 
IOPS volumes to generate resource contention for testing, is 
that they are expensive, which may help deter malicious 
activity.  

Our test suite consists of multiple scripts written in Python3 
to automate tests and shell to the operating system to execute 
Linux commands.  Our scripts generated CSV output which was 
analyzed with R and Python in Jupyter notebooks. We leveraged 
Python packages including: re for parsing, csv for working with 
comma separated data, os to access Linux, and datetime for time 
calculations.  Bash scripts supported creation and configuration 
of cloud infrastructure while leveraging ssh, scp, pssh, crontab, 
the AWS EC2 api, sed, and ntp. Crontab scheduled tests to run 
concurrently across all EC2 instances at synchronized times.  OS 
clocks were synchronized using the network time protocol (ntp).  
All VMs were pre-provisioned in advance of running the 
benchmarks. 

Fig. 1. Our benchmarks exhibit diverse resource utilization profiles to 

create a wide range of different types of resource contention.  CPU 

time accounting metrics for benchmarks show that sysbench and y-

cruncher are CPU-bound as they’re dominated by cpu user mode 

(cpuUsr) time.  Pgbench involves a blend of idle (cpuIdle), user mode 

(cpuUsr), IO wait (cpuIoWait), and kernel (cpuKrn) time, while iPerf 

is dominated by cpu kernel (cpuKrn) and cpu soft interrupt service 

(cpuSftIntSrvc) time. 
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IV. EXPERIMENTAL RESULTS 

A. Resource Utilization Profiles for Common Benchmarks 

We profiled the resource utilization (CPU, memory, 
disk/network I/O) of our benchmarks using the 
ContainerProfiler tool [33]. This tool supports characterization 
of the resource utilization of any computational tasks run in a 
Docker container. Resource utilization of each benchmark for 
our prescribed configurations was captured, and Linux CPU 
time accounting variables is shown in Figure 1. The wall clock 
time of any workload can be calculated by adding Linux CPU 
time accounting variables (cpuUsr, cpuKrn, cpuIdle, 
cpuIOWait, cpuSftIntSrvc) and dividing by the total number of 
CPU cores. Figure 1 characterization resource stress generated 
by each benchmark.  

B.  CPU Resource Contention 

We initially measured CPU contention on c3.large and 
c4.large dedicated hosts with up to 16 co-located 2 vCPU VMs 
on the same server. We visualize the performance of running y-
cruncher in parallel on up to 16 co-located c4.large EC2 
instances in Figure 2. C4.large instances offer 2 vCPUs, 3.75 GB 
RAM, and moderate network performance (~550Mb/s) [34]. 
Figure 2 depicts the average execution time for running y-
cruncher in parallel across co-located c4.large instances using 
box plots, where the set number refers to the number of co-
located VMs. For this initial test, all VMs remained online 
during every test while a varying number of VMs ran y-
cruncher. We did not stop or shutdown VMs. 

Fig. 2. This figure depicts y-cruncher average execution time when running in 

parallel across co-located c4.large instances using box plots. Each set includes 
16 co-located VMs, where the set number refers to the number of active VMs 

that ran y-cruncher.  All other VMs were online and idle. Box plots show the 

distribution of runtime for runs with a specific VM tenancy. The average 

runtime of y-cruncher grows with increasing tenancy by ~9.8%. 

Y-cruncher runtime spanned from a minimum of 7.164 

seconds with 2 co-located VMs, to a maximum of 7.896 

seconds with 16 co-located VMs. Y-cruncher on c4.large 

yielded a performance difference of ~9.8%. Average 

performance for all configurations was 7.472 seconds, 

calculated using data from 16 sets of 10 identical test runs. Each 

test set added an additional co-located c4.large VM to the host. 

Y-cruncher and sysbench performance across 3rd (c3.large), 4th 

(c4.large), and 5th (z1d.large and m5d.large) generation 

instances are contrasted in section E. 

Fig. 3. This figure depicts the total number of database transactions completed 
in one minute by Pgbench with increasing c3.large VM tenancy.  The number 

of transactions completed by each VM decreased by up to ~24%, relative to the 

number of tenants sharing the dedicated host.  

C. Disk Resource Contention 

We illustrate pgbench CPU+I/O contention across co-

located c3.large EC2 instances in Figure 3 where postgresql 

was hosted on a 16GB ephemeral disk volume created on a 

shared SSD attached to the physical host.  Box plots show the 

performance distribution of the average number of completed 

database transactions for 10 x 60-second test runs for each 

tenancy configuration from n=1 to 16 co-located VMs.  Each 

graph square depicts the performance of a specific VM across 

the experiment.  For square 1 in the upper-left corner (VM #1), 

pgbench ran once in parallel with all 16 VMs. For square 16 in 

the lower-right corner (VM #16), pgbench ran concurrently 16 

times in parallel across up to 16 VMs.  On VM #16-run #1, the 

left-most datapoint on the x-axis, ran with full isolation (e.g. no 

other VMs ran pgbench), whereas VM #16-run #16 ran with 

maximum tenancy (e.g. all VMs ran pgbench in parallel).  

Average performance was calculated for 10 test runs, and 

Figure 3 shows c3.large average performance in transactions 

per minute (tpm).  Performance ranged from 66946 tpm to 

85192 tpm, with an average performance of 76724 tpm. 

Pgbench on c3.large produced a best-to-worst case 

performance difference of 23.8%.  We ran pgbench on 

c4.large instances with 100GB provisioned IOPS EBS volumes 

at 5000 IOPS.  Performance ranged from 41474 (n=16) to 

67274 (n=5), with average performance of 61069 tpm.  Best-
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to-worst case pgbench on c4.large-provisioned IOPS 

performance varied by 42.25%. We contrast pgbench 

performance across 3rd (c3.large), 4th (c4.large), and 5th 

(z1d.large and m5d.large) generation instances in section E. 

D. Network Resource Contention 

Network resource contention was created and measured by 
running iPerf in parallel across co-located EC2 instances.  We 
provisioned two dedicated hosts for iPerf, one for server VMs, 
and the other for client VMs.  Running iPerf on c3/c4 instances 
required a total of 32 VMs across 2 dedicated hosts.  On z1d 
instances, 48 VMs across 2 dedicated hosts were created, and 
for m5d instances, 96 VMs across 2 dedicated hosts were used.  
We configured all VMs to share the same availability zone and 
subnetwork.  Clients bind to the same server for each test.  

The iPerf duplex option was used to perform a bidirectional 
test to benchmark upload/download throughput in parallel.    We 
averaged all 20 bandwidth measurements together, 10 from 
client to server, and 10 from server to client.  For an initial 
c4.large test, individual iPerf throughput results varied 88% 
from the 1-VM average, spanning from a max of 1262 Mbps 
(n=4) to a min of 235 Mbps (n=12), for a range of 1027 Mbps.  
We contrast iPerf performance across 3rd (c3.large), 4th 
(c4.large), and 5th (z1d.large and m5d.large) generation 
instances in section E. 

TABLE II.  BENCHMARK PERFORMANCE COMPARISON:  

MINIMUM VS. MAXIMUM PERFORMANCE  FOR TESTS AT ALL 

POSSIBLE TENANCY LEVELS ON EC2 DEDICATED HOSTS 

 
y-cruncher                        

avg runtime 

(sec) 

pgbench                                

avg 

transactions 

iPerf                                           

throughput  

MB/sec 

sysbench 

avg runtime 

(sec) 

c3 min 15.01 66,973 774 9.40 

c3 max 15.57 82,923 958 9.43 

c4 min 7.87 66,729 684 8.48 

c4 max 8.56 70,684 1,182 8.49 

z1d min 4.43 175,882 1,139 6.78 

z1d max 4.86 198,012 7,376 6.80 

m5d min 5.67, 4.40† 124,247 1,004 9.04, 7.17† 

m5d max 6.51 185,525 18,506 9.06 

† - indicates test with stopped VMs 

E. Cross Generation Resource Contention Comparison 

 In this section we contrast performance across 3rd (c3.large), 
4th (c4.large), and 5th (z1d.large and m5d.large) generation 
instances for all benchmarks in our test suite including: y-
cruncher, pgbench, iPerf, and sysbench. This work addresses 
(RQ-1): “How do recent advancements in hardware and 
virtualization hypervisors address public cloud resource 
contention?“ Considerable effort has been dedicated to reduce 
performance overhead through virtualization and hardware 
advancements. Recently this overhead is stated to be less than 
the degree of statistical noise (e.g. ~1%) [13][15]. Our goal was 
to quantify how well recent virtualization advancements in 
software (hypervisors) and hardware (all system components) 
prevent performance losses from CPU, disk, and network 
resource contention.  A major goal of IaaS cloud platforms is to 

provide resource transparency, thus we argue that cloud 
abstractions need to address detectable performance variance 
from resource contention to eliminate potential side channels 
from being exploited as detailed in section II.  We executed our 
benchmark suite across c3.large, c4.large, z1d.large, m5d.large 
2 vCPU instances created on dedicated hosts.  Table II captures 
the min/max raw performance values for our benchmarks.  In 
the majority of cases minimum performance occurs with 
maximum tenancy (n=16, 24, or 48 co-located VMs), and 
maximum performance with minimum tenancy (n=1 VM). 

 We depict the normalized performance degradation for our 
benchmark suite from VM co-location for 1 to 16 x co-located 
3rd generation c3.large instances in figure 4.  Performance 
degradation is shown for n=1 to 16 x 4th generation c4.large 
instances in figure 5, 1 to 24 x 5th generation z1d.large instances 
in figure 6, and 1 to 48 x 5th generation m5d.large instances in 
figure 7.  In all cases, network contention measured with (iPerf) 
exhibited the steepest decline in performance as a result of 
increasing VM tenancy, followed by CPU+disk contention 
(pgbench), and then CPU contention (y-cruncher). Figure 8 
depicts the total combined change in performance for all 
benchmarks run across VMs from different EC2 instance 
generations. 

 
Fig. 4. 3rd generation (c3.large) Instance - Normalized Performance 

Degradation from VM Co-location on c3.large EC2 dedicated hosts  

Fig. 5. 4th generation (c4.large) Instance - Normalized Performance 

Degradation from VM Co-location on c4.large EC2 dedicated hosts 
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F. Performance Implications of Idle Virtual Machines 

 When deploying our y-cruncher test on m5d.large VMs, we 
initially measured a performance difference of 14.96% (5.67s to 
6.52s) scaling from 1 to 48 VMs. We then refactored our scripts 
to stop VMs after each test where previously VMs remained 
online. By stopping idle VMs fewer concurrent instances of the 
Linux OS kernel shared the physical host. Using this approach, 
the performance delta increased to 47.97% (4.4s to 6.51s).  
Running y-cruncher by shutting down idle VMs improved 
performance by 32.42%, providing a min/max delta 1.49x larger 
to help better characterize the environment. We observed a 
similar performance change running sysbench on m5d.large 
VMs in the presence of idle VMs.  Running sysbench in the 
presence of idle VMs resulted in an indiscernible performance 
delta of ~0.18% from n=1 to 48 VMs. Running sysbench by 
shutting down idle VMs improved performance by 20.81%, 
providing a delta 116x larger to help better characterize the 
environment. We replicated our y-cruncher result on z1d.large 
instances improving performance by 4.47% by shutting down 
idle VMs, but could not obtain an improvement on XEN-based 
c3.large or c4.large instances, or with sysbench on z1d.large.   

Fig. 6. 5th generation  (z1d.large) Instance - Normalized Performance 

Degradation from VM Co-location on EC2 z1d.large dedicated hosts 

Fig. 7. 5th generation (m5d.large) Instance - Normalized Performance 

Degradation from VM Co-location on EC2 m5d.large dedicated hosts 

 We hypothesize that the larger performance delta measured 
by shutting down idle VMs results for Linux CPU scheduler 

stress.  Our Linux benchmarking VM when idle runs around 
~130 processes.  When 48 Linux VMs share the same m5d 
dedicated host, this equates to 6,240 processes.  The host OS 
runs a Linux scheduler that context switches VMs as KVM 
processes, and each VM runs its own Linux scheduler to context 
switch local processes. Y-cruncher appears more susceptible to 
CPU scheduler stress than sysbench on m5d.large as stopping 
idle VMs improved performance by a wider margin.  With 24 
Linux VMs on a z1d.large dedicated host, only y-cruncher 
showed improved performance when stopping idle VMs. 
Redundant operating system instances on high density cloud 
hosts demonstrate the need to replace traditional VMs with 
containers or microVMs to reduce this overhead. 

 In Figure 8 we show the percentage performance difference 
using averages for each benchmark at each VM tenancy level to 
calculate a total percentage difference. Figure 8 depicts a 
disturbing trend: with each successive VM generation, the 
total observable performance degradation from resource 
contention has grown. We observe a total performance 
difference from resource contention of 41.3% for c3.large, 56% 
for c4.large, 104.9% for z1d.large, and 196.4% for m5d.large. 
As newer instance generations support greater VM-density, the 
percentage performance difference for our co-located stress 
benchmarks running at 100% capacity of a given system 
resource (e.g. CPU, disk, network) has increased 4.75x.  This 
trend can be explained by the increasing host capacity of new 
hardware. We observed a performance change of 84.6% running 
iPerf with 24 co-located z1d instances obtaining ~1.1 Gbps 
network throughput down from 7.4 Gbps when only one VM 
shared the host.  The performance change increased to 94.6% 
for 48 co-located m5d.large instances, though these instances 
still sustained ~1 Gbps throughput. Loose network quotas 
provide an exploitable side channel to infer VM co-location.  
Network performance degradation is likely to be prominent 
across 5th generation instances: m5, m5a, m5ad, c5, c5n, and c5d 
instances that divide network capacity across many VMs. At 
present, 52 AWS instance types advertise a loosely constrained 
network capacity of “up to 10 Gbps”, and 8 others “up to 25 
Gbps”.  Cloud providers could alleviate performance variance 
by enacting stricter resource quotas.  

Fig. 8. Total observed performance difference from resource 

contention for co-located VMs running performance benchmarks 

across three generations of VMs on Amazon EC2.  
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As a result of increasing CPU-core density, new instance 
families (e.g. m5, m5d, r5, r5d, and i3en) support up to 48 co-
located 2 vCPU instances.  These families appear to provide a 
wide breadth of performance scores on coordinated benchmark 
runs. Our results expose notable performance differences 
for benchmarks based on the number of VM tenants 
demonstrating potential to leverage benchmarks to predict 
the number of co-located VMs (RQ-2). 

V. VIRTUAL MACHINE MULTITENANCY PREDICTION 

A. VM tenancy Model Evaluation on Dedicated Hosts 

We next investigated the use of multiple linear regression 
(MLR) and random forest regression to predict the number of 
co-located VMs leveraging performance metrics from our 
benchmarks. We focused on predicting the number of co-
located m5d instances, the most difficult of our case studies 
with high tenancy up to 48 guests. Fortunately, from a user’s 
perspective, it is sufficient to learn an approximate number of 
co-located guest VMs to detect resource contention to learn 
when to abandon the host in search of better environment to 
run. We used each benchmark as an independent variable, and 
merged predictors into a single dataset where each row 
characterizes performance for a VM with a given host tenancy.  
Running each benchmark across 48 VMs produced 1,176 
individual performance values. We ran each benchmark 
typically 8 to 11 times, removing the first run, and then 
averaging performance results for the model to produce a 
training set of 4 x 1,176 independent variables.  We built 
models to predict VM tenancy using Jupyter Notebooks with an 
R kernel. We normalized data for MLR using the R scale() 
function. We obtained our training datasets and test datasets 
completely independent of each other by performing 
independent runs weeks apart on different EC2 dedicated hosts 
in the Virginia Region. We evaluated our independent variables 
using Random Forest by checking the increase in both node 
purity and root mean squared error by adding each variable to 
the model. Pgbench was the strongest predictor, followed by, y-
cruncher, sysbench, and finally iPerf.  Removing iPerf, reduced 
R2 of random forest regression from .9755 to .9739, whereas 
removing pgbench dropped R2 to .9459. 

TABLE III.  INDEPENDENT VARIABLES EVALUATION W/ RANDOM FOREST  

Independent Variable 
% Increase in 
Node Purity 

% Increase in 
RMSE 

iPerf (throughput in MB/sec) 70725 9.268 

Sysbench (seconds) 106714 31.064 

Y-cruncher (seconds) 135112 49.908 

Pgbench (transactions) 146221 56.220 

TABLE IV.  VM TENANCY MODEL EVALUATION  

Evaluation Metric 
Random Forest 
with raw data 

MLR with 
normalized data 

R^2 .9755 .9423 

Root Mean Squared Error (RMSE) 2.479 2.175 

Mean Absolure Error (MAE) 1.950 1.608 

Min Prediction 4.537 -0.480 

Max Prediction 47.479 49.543 

The utility of our predictors is further explained by the 
coefficient of variance (CV), which is the average divided by 
the standard deviation to produce a normalized percentage 
expression of the statistical variance of the benchmark.  CV is 

quite high for our weakest predictor iPerf (noisy signal), and 
quite low for sysbench (low information) our weakest 
predictors. 

    Random forest is not sensitive to numerical precision (i.e. 

difference in numerical scales) allowing variables to be used 

directly without transformation. We applied random forest to 

train a model obtaining an R2 of .9755. We then applied our 

random forest model to our test dataset and obtained a root 

mean squared error of 2.479. Our mean absolute error was  

1.95 VMs, for a mean absolute percentage error of  about 4%. 

Figure 10 visualizes our observed vs. predicted values using the 

random forest model.  We then normalized training data and 

trained an MLR model obtaining an R2 of .9423.  We then 

applied our MLR model to predict VM tenancy for our test 

dataset and obtained a root mean squared error of 2.175. Our 

mean absolute error was  1.61 VMs, for a mean absolute 

percentage error of about 3.4%. Figure 11 visualizes our 

observed vs. predicted values using the MLR model.   

Fig. 9. This log scale graph depicts the coeffieicnet of variance (CV) 

providing a normalized percentage comparison of statistical variance. 

Fig. 10. Observed vs. predicted co-located VMs - random forest model 

Fig. 11. Observed vs. predicted co-located VMs - random forest model 
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B. VM tenancy Model Application on the Public Cloud  

We next applied our random forest regression model to 

predict VM tenancy for 50 x m5d.large spot instances using 

AWS. We executed ~11 runs of sysbench, y-cruncher, and 

pgbench across these VMs to obtain our dataset while 

discarding the first run of each benchmark. We then launched 

an additional 50 x m5d.large spot instances to serve as iPerf 

clients. These VMs served only as clients for the iPerf test to 

match our procedure used to obtain training data. We then 

aggregated our benchmark metrics by calculating performance 

averages. We used the averages and applied our random forest 

model to generate VM tenancy predictions. VM tenancy 

predictions ranged from 10 to 33, with an average of 22.66, 

mean of 24, and mode of 32 (15 predictions). We visualize VM 

tenancy predictions for our pool of 50 x m5d.large spot 

instances in figure 12.  We note that to evaluate model accuracy 

knowledge of the actual public cloud VM placements is 

required.  We expect there are false positives in our 

predictionts, and these will cause some VMs to be predicted 

multiple times.  A key observation is where groupings of 

predictions tend to cluster around 11, 17, 24, and 32 co-located 

VMs. 

Fig. 12. Predicted number of co-located VMs for pools of 50 x ec2 

m5d.large spot instances 

VI.  CONCLUSIONS 

Despite continued improvements to virtualization 
hypervisors and hardware, we were able to generate 
considerable CPU, disk, and network performance degradation 
running system benchmarks in parallel on co-located VMs (RQ-
1).  Hardware with high CPU core density produced worst case 
performance degradation with co-located VMs, for the 
m5d.large, y-cruncher: (48%), pgbench: (33%), sysbench 
(20.8%), and iPerf (94.6%). Total performance variance 
increased across instance generations from c3 (42%), to c4 
(56%), to z1d (104.9%) and m5d (196.4%) trending with VM 
density.  We discovered that shutting down idle VMs increased 
y-cruncher performance by 32.4% on m5d hosts and 4.5% on 
z1d hosts. Sysbench performance increased 20.8% on m5d hosts 
when shutting down idle VMs. Network performance suffered 
the most from resource contention averaging 60% across all VM 
generations. Multiple linear regression models trained with 
benchmark performance data predicted the number of co-

located VMs on m5d dedicated hosts with up to 48 co-located 

VMs to within ~1.61 VMs (RQ-2). 

Having access to cloud-based dedicated hosts (e.g. bare 
metal servers) enables employing performance benchmarks as 
side channels to infer VM co-location. Benchmarking 
performance of VMs in isolation while controlling the degree of 
VM tenancy helps establish expected levels of performance that 
can then be leveraged to determine when user VMs are co-
located.  By adopting Farley et al.’s trial-and-better approach 
[7], tenancy prediction can be used to test and replace VMs to 
foster better performing multi-node MapReduce, Apache Spark, 
and Kubernetes clusters. For running parallel workloads that 
scale out horizontally, perfect accuracy of VM tenancy 
predictions is not required to detect resource contention.  
Obtaining better placement of nodes in clusters is of importance 
to improve cloud computing performance. These advancements 
can be leveraged by users to better distribute workloads across 
cloud infrastructure, ultimately lowering costs to process big 
data workloads in the cloud.  Scripts and resources supporting 
this research are available online at: [35]. 
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