
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Characterizing Public Cloud Resource Contention

to Support Virtual Machine Co-residency Prediction
Xinlei Han1, Raymond Schooley2, Delvin Mackenzie3, Olaf David4, Wes J. Lloyd5

Amazon

Seattle, Washington USA
1hxl@uw.edu

University of Washington

Engineering and Technology

Tacoma, Washington USA
2ravschoo, 3delvin,

5wlloyd@uw.edu

Object Modeling Systems Laboratory

Colorado State University

Fort Collins, Colorado USA
4odavid@colostate.edu

Abstract— Hypervisors used to implement virtual machines

(VMs) for infrastructure-as-a-service (IaaS) cloud platforms have

undergone continued improvements for the past decade. VM

components including CPU, memory, network, and storage I/O

have evolved from full software emulation, to paravirtualization,

to hardware virtualization. While these innovations have helped

reduce performance overhead when simulating a computer,

considerable performance loss is still possible in the public cloud

from resource contention of co-located VMs. In this paper, we

investigate the extent of performance degradation from resource

contention by leveraging well-known benchmarks run in parallel

across three generations of virtualization hypervisors. Using a

Python-based test harness we orchestrate execution of CPU, disk,

and network I/O bound benchmarks across up to 48 VMs sharing

the same Amazon Web Services dedicated host server. We found

that executing benchmarks on hosts with many idle Linux VMs

produced unexpected performance degradation. As public cloud

users are interested in avoiding resource contention from co-

located VMs, we next leveraged our dedicated host performance

measurements as independent variables to train models to predict

the number of co-resident VMs. We evaluated multiple linear

regression and random forest models using test data from

independent benchmark runs across 96 vCPU dedicated hosts

running up to 48 x 2 vCPU VMs where we controlled VM

placements. Multiple linear regression over normalized data

achieved R2 =.942, with mean absolute error of VM co-residency

predictions of 1.61 VMs. We then leveraged our models to infer

VM co-residency among a set of 50 VMs on the public cloud, where

co-location data is unavailable. Here models cannot be

independently verified, but results suggest the relative occupancy

level of public cloud hosts enabling users to infer when their VMs

reside on busy hosts. Our results characterize how recent

hypervisor and hardware advancements are addressing resource

contention, while demonstrating the potential to leverage co-

located benchmarks for VM co-residency prediction in a public

cloud.

Keywords—resource contention, multitenancy, resource

management and performance, Infrastructure-as-a-Service,

virtualization

I. INTRODUCTION

Public Infrastructure-as-a-Service (IaaS) clouds abstract the
physical placement of virtual machines (VMs) in the cloud to
provide distribution transparency to end users. When
horizontally scaling VMs to host multi-tier applications, co-
location of too many VMs requiring similar resources on the

same physical host(s) has been shown to create performance
degradation. For service oriented applications, for example, a
performance loss of 25% is demonstrated when too many web
application servers share the same host(s) in [1]. Another study
found that when launching large pools of 80 Amazon EC2
m3.medium 1-vCPU VMs, 21% were inferred to be provisioned
on the same physical host. These results demonstrate the
potential for unwanted performance degradation from VM co-
location for VMs launched in the public cloud.

Recent innovations in virtualization have enabled hardware
virtualization of nearly all VM components including the CPU,
memory, network and storage I/O. These improvements have
drastically reduced virtualization performance overhead as VMs
now directly interface with system hardware, but these
improvements do not mitigate performance losses from resource
contention of co-located VMs. At the same time, cloud servers
have become increasingly core dense, as systems include
multiple CPUs with ~24-32 physical CPU cores each, to offer as
many as 96 to 128 virtual CPU cores. To leverage available CPU
capacities, cloud vendors may co-locate increasingly more VMs
than ever before to amortize the cost of expensive hardware.
Increased densities of VM placements across physical servers
can increase public cloud resource contention.

To address unwanted resource contention from co-located
cloud VMs, cloud providers now provide users access to
dedicated private servers. Amazon Web Services (AWS) (Nov
2015 release), Microsoft Azure (Aug 2019 preview), and IBM
Cloud all offer dedicated hosts, privately provisioned physical
servers where users can place and run fully isolated VMs
[2][3][4]. Google Cloud offers the same feature known as
Google sole-tenant nodes (June 2018 beta) [5]. These dedicated
servers provide users access to isolated hardware shared with no
other users in the public cloud to help mitigate resource
contention, but at a premium price, potentially ~20x more than
the price of commodity VMs.

When horizontally scaling VMs for Apache Spark or Docker
container clusters (e.g. Kubernetes) to run distributed
workloads, spreading VM placements across separate physical
hosts can disperse user workloads to maximize performance.
This is especially important for embarrassingly parallel jobs
deployed across VMs as they require identical resources (CPU,
memory, disk, network I/O) creating contention if VMs are
scaled out horizontally on the same hosts. When VMs are tightly

2

packed onto the fewest number of physical servers as with
greedy VM placement algorithms, embarrassingly parallel
workloads may suffer from significant CPU, disk, and/or
network contention. Recently, AWS introduced spread
placement groups, a feature that guarantees VMs are placed on
“different (server) racks”, but this feature is limited to a
maximum of seven VMs per availability zone limiting its utility
for larger clusters [6].

In this paper, we focus on two problems. First, we are
interested in quantifying performance degradation from co-
location of VMs across modern hypervisors and hardware.
Given trends with increasing CPU core density of cloud host
servers, VM multitenancy is a trend that is likely to increase.
Second, we are interested from a user’s perspective, in
evaluating the quality of VM placements to ensure that low-cost
commodity VMs launched in the public cloud can avoid as
much resource contention as possible. By providing users with
a means to assess the quality of their commodity VM
placements, they can determine whether to retain or replace
them based on workload or application requirements [7].

To support our research aims, we investigate performance
degradation from resource contention when executing common
performance benchmarks concurrently across VMs explicitly
placed across dedicated cloud servers. For each iteration, we
test how resource stress grows by increasing the number of co-
located VMs that run the benchmark. We automate our tests
with a custom test suite to coordinate parallel benchmark
execution, and investigate resource contention across three
generations of Amazon EC2 instances. We test: up to 32 x
c3.large and c4.large (3rd & 4th generation), 48 x z1d.large (5th
generation), and 96 x m5d.large (5th generation) 2 vCPUs VM
instances on Amazon EC2 dedicated hosts. Our benchmarking
suite profiles CPU, disk, and network resource contention using
carefully selected benchmarks including, for CPU contention:
sysbench and y-cruncher [8][9], for CPU+disk contention:
pgbench [10], and for network contention: iPerf [11].

Benchmark performance metrics are then used as
independent variables to train models to predict the number of
VM tenants on shared cloud host servers. We applied multiple
linear regression and random forest regression to train models
to predict VM tenancy on m5d dedicated hosts with up to 48
co-located VMs. We found that multiple linear regression over
normalized data explained variance of R2=.9423 while

providing VM co-location predictions of 1.61 VMs.
Performance metrics from our benchmarks can be collected for
newly launched VMs to determine the quality of VM
placements before committing to long term use in compute
clusters (e.g. Apache Spark, Kubernetes). Combined, our four
benchmarks can be run sequentially to obtain performance
metrics for inferencing with use with our VM tenancy models
in ~96 seconds. This fast characterization enables the state of
resource contention to be sampled and resampled quickly as
needed.

A. Research Questions

This paper investigates the following research questions:

RQ-1: (Resource Contention) What extent of performance
degradation (CPU, disk, network) results from VM co-location
when running identical benchmarks in parallel on a public

cloud? How is public cloud resource contention impacted by
recent advancements in virtualization hypervisors and
hardware?

RQ-2: (VM Multitenancy Prediction) How effective are
performance metrics derived from CPU, disk, and network
benchmarks run in parallel across VMs as independent
variables to predict VM multitenancy on physical hosts? How
accurate are VM multitenancy predictions from multiple linear
regression and random forest models trained using these
variables?

B. Research Contributions

This paper provides the following research contributions:

1. We characterize the performance degradation for
running identical Linux benchmarks in parallel across up
to 48 co-located 3rd, 4th, and 5th generation AWS EC2
VM instances. Our benchmarks characterize CPU, disk,
and network resource contention from VM multitenancy.
Tested VM generations encapsulate multiple successive
enhancements to hypervisors and hardware. 3rd and 4th
generation VMs leverage the XEN hypervisor
customized by AWS [12], while 5th generation VMs
leverage Amazon’s AWS “Nitro” hypervisor derived
from KVM [13][14][15].

2. We provide a combined benchmark suite to orchestrate
fast profiling of VMs that aggregates metrics from four
performance benchmarks (sysbench, y-cruncher,
pgbench, and iPerf). Our suite automates running
benchmarks in parallel across variable sized pools of
VMs to test VMs launched on dedicated hosts or on the
public cloud. Our suite enables characterizing resource
contention using four benchmarks in ~96 seconds, to
provide independent variables to estimate the number of
co-located VMs sharing the same physical hosts.

3. We evaluate multiple linear regression and random forest
regression to construct predictive models to estimate the
number of co-resident VMs sharing the same physical

host server. We demonstrate accuracy within 1.61 VMs
on 5th generation EC2 dedicated hosts (m5d) which can
host up to 48 co-located VMs.

II. BACKGROUND AND RELATED WORK

A. VM Provisioning Variation and Resource Contention

Rehman et al. identified the problem of “provisioning
variation” in public clouds in [16]. Provisioning variation is the
random nature of VM placements in public clouds that
generates varying multitenancy across physical cloud servers
leading to performance variance from resource contention.
Schad et al. further demonstrated the unpredictability of
Amazon EC2 VM performance resulting from provisioning
variation and resource contention from VM multitenancy [17].
Ayodele et al. demonstrated the ability to identify resource
contention from VM co-location using the cpuSteal metric by
running SPEC CPU2006 benchmarks in [18]. Ayodele verified
this relationship on both a private cluster, and with the
m3.medium Amazon EC2 VM type. Lloyd et al. investigated
the use of cpuSteal thresholds to identify co-located VMs from

3

large VM pools that ran concurrent compute bound webservice
workloads [1]. Lloyd found that webservices hosted on co-
located worker VMs performing similar work concurrently
underperformed by as much as 25%. By replacing undesirable
VMs early on, Ou and Farley demonstrated potential to obtain
performance improvements by retaining only VMs with the
best CPUs when the cloud provider mixed up to five CPU types
to implement the VM (m1.large) [7][19]. Liu offered a novel
approach to characterize CPU utilization across public cloud
hosts over long periods by analyzing CPU temperature [20] but
did not consider if temperature can help detect VM tenancy.

Govindan et al. provided a practical method to predict
performance interference due to shared processor caches
requiring minimal software changes known as Cuanta in [21].
Their approach used cache simulation to predict performance
degradation from shared processor caches (e.g. L1, L2, L3) for
servers hosting multiple VMs. Cuanta required a linear number
of measurements per CPU and produced a prediction error of
~4% while supporting identification of potential VM
consolidations to reduce cache interference. Their approach,
however, required a carefully placed probe VM to be co-located
with other VMs of interest to enable profiling. As public clouds
obscure the location of VMs, it would be difficult to know if
probe VMs are deployed on the correct host. Kim, Eom, and
Yeom developed performance models to infer to what degree
application workloads can interfere with each other [22]. These
models characterize last level cache misses and references to
support a new VM placement algorithm called swim.
Performance degradation from VMs placed by swim was found
comparable to optimal VM placement, but as their work
required changing the public cloud VM placement algorithm, it
is not feasible for cloud users to employ as users cannot control
public cloud VM placement.

Mukherjee et al. identified problems when relying on
hardware counters to infer resource contention for
virtualization of kernel resources or memory subsystems in
[23]. They offered a software-based probe deployed across
small co-resident VMs to detect network and memory resource
contention. Their probe detected subtle performance losses
from microbenchmarks after a careful tuning phase established
specific thresholds to detect degradation with minimal resource
utilization tuned on specific hardware. While their approach
avoided the use of hardware counters, tradeoffs included their
probe must be tuned before use on every platform, and the
requirement to use separate probe VMs, consuming resources.
Additionally, in the public cloud, controlled placement of probe
VMs is not feasible.

B. VM Co-location Detection with Side Channels

In computer security, side channels are used to launch
attacks by leveraging information gained from the
implementation of computer systems. Side channels involve
identification of novel exploits that designers never considered
to expose implementation details. In cloud systems, side
channels can be used to infer VM co-location in public clouds
[24][25][26][27][28][29]. In 2009, Ristenpart et al.
demonstrated the potential of VM co-residency detection by
launching probe VMs for exploration to leverage a variety of

side channels, raising attention to the potential to exploit cloud
security [25]. Increasingly sophisticated efforts have followed.

Bates et al. described an approach to infer the location of
VMs in the public cloud by launching a large number of
“flooder” VMs in [26]. Flooder VMs communicate with an
external client to create network traffic across a large set of
physical cloud hosts creating a detectable delay that can be
observed in the victim VM’s network traffic flow. Flooders
imprint a “watermark” signature, a detectable pattern of change
in the victim’s network flow, that can help identify the victim’s
physical host. The authors exploited the lack of network
isolation of co-located VMs to offer a side channel to identify a
VM’s host. Our work confirms this network isolation
vulnerability and quantifies the extent across 3rd, 4th, and 5th
generation instances on AWS, and leverages network
contention to help identify co-located VMs as part of our multi-
benchmark suite. While flooder VMs may be effective to create
detectable patterns to infer a VM’s location, they are expensive,
as users must pay for potentially large numbers of them.

Varadarajan et al. identified the potential to generate
resource freeing attacks in the cloud in [29]. Attacks were
launched by co-resident attacker VMs sharing the same host as
victim VMs. Attacker VMs created resource contention for
CPU, disk, or network resources. By generating contention,
victim VMs were delayed as they bottlenecked on one or more
unavailable resources effectively altering the victim’s workload
to free resources for the attacker. By stealing resources,
Varadarajan demonstrated performance improvements up to
60% for attacker workloads on private clouds, and 13% on the
AWS public cloud. Varadarajan did not explicitly address
identification of the number of co-located VMs, and their
approach of launching large numbers of attack VMs can be
expensive.

Inci et al. proposed three approaches to detect co-located
VMs on commercial IaaS clouds by using an attacker VM that
works without the cooperation of other VMs on the same host
in [27]. Two approaches focused on the malicious use of CPU
last level caches (LLCs), while the third performed memory bus
locking with atomic CPU instructions. The goal was to
introduce interference to cause detectable application
performance degradation across other VMs due to apparent co-
location. LLC attacks were sufficient to identify co-location of
VMs with some confidence, but prone to noise and only
effective when VMs shared the same physical CPU socket.
Memory bus locking schemes, however, were able to identify
co-located VMs that shared different physical CPUs on the
physical host, but detection was problematic when running
applications performing few memory accesses. Inci launched
80 VM pools of 1 vCPU instances on the Amazon, Google, and
Azure cloud and identified 17 of 80, 8 of 80, and 4 of 80 co-
located instances respectively. Their approach focused on
identifying VMs that shared the same physical CPU on
multiprocessor servers. They did not address detection of VMs
on adjacent CPUs that can experience significant network
and/or disk resource contention. An ideally placed VM will
avoid more than CPU contention.

O’Loughlin and Gillam offered a method to detect co-
located VMs specific to the Xen hypervisor in [28]. They

4

installed the xen-utils Debian package on Amazon EC2 VMs
and read the domid. On VM reboot, the Xen hypervisor
increases guest domids until cycling at 65536. By carefully
rebooting VMs in absence of other events, shared physical hosts
can be identified as they use ids in a unique range from 0 to
65536. We recently tested this method and discovered it no
longer works without uninstalling xen-utils before each reboot,
and then reinstalling after each boot. This method requires a
large number of time intensive reboots plus careful accounting
of IDs to identify counter pacing, and only works with XEN-
based VMs. It is not applicable to 5th generation AWS EC2
instances.

In this paper, we offer a new approach that does not require
explicitly placed probe VMs as in [25][26][29], that leverages
common performance benchmarks to train machine learning
models to infer the number of co-located VMs. We select CPU,
disk, and network benchmarks to characterize multiple types of
resource contention that span VMs sharing multi-processor
hosts improving on [27]. We design and evaluate our approach
to predict the number of co-located VMs on CPU-dense
hardware with 96 vCPUs capable of hosting 48 co-located 2
vCPU VMs. We are unaware of prior efforts that evaluate
prediction accuracy on similar, very large servers. Our models
can suggest the health of the environment with respect to CPU,
disk, and network contention, as well as the number of co-
located VMs. Our approach of VM profiling to collect data for
model inferencing requires ~96 seconds and can be repeated to
reassess the health of VMs belonging to shared clusters
providing a hypervisor agnostic faster alternative to [28].
Strategies to test-and-replace underperforming cluster VMs
before committing to run intense distributed workloads can
ultimately serve to improve performance, and lower cloud
computing costs extending the trial-and-better approach of [7].

III. METHODOLOGY

A. Combined Benchmarking Suite

To quantify resource contention from VMs on multi-tenant
hosts, we developed a benchmarking suite that combines
common system benchmarks due to their wide availability and
ease of use. Y-cruncher and sysbench were selected to generate
CPU stress, pgbench to generate CPU+disk I/O disk stress, and
iPerf for network I/O stress. These benchmarks were deployed
and run in parallel across VMs placed on Amazon EC2
dedicated hosts, private cloud hosts available for a premium
price, enabling VM tenancy to be controlled. We scheduled
identical benchmarks to run in parallel across co-located VMs
specifically to stress the same resources. By stressing the same
resources at the same time, our objective was to create and
observe the maximum performance degradation allowed on the
host. The behavior of each benchmark when run in parallel
across all possible combinations of co-located VMs (e.g.
n=1..48) is then harnessed as an independent variable in
predictive models to estimate the number of co-located VMs.
To enable fast assessment of resource contention a complete
execution of our combined benchmark suite to obtain variables
for model inferencing requires ~96 seconds and can run in
parallel across any number of VMs in a user’s account.

Sysbench provides a comprehensive tool suite
encapsulating multiple operating system performance

benchmarks [8]. For our experiments, we leveraged sysbench
as a CPU stress test to perform the deterministic task of
generating the first 2,000,000 prime numbers using 2 threads,
10 times. Sysbench as configured required approximately ~6
seconds of wall clock time on idle c4.large EC2 instances.

Y-cruncher computes Pi and other constants to trillions of
digits and can be employed to generate CPU stress [9]. We
leveraged y-cruncher as a deterministic workload to calculate
Pi to 25 million digits using multiple threads. Y-cruncher
requires ~7.2 seconds on an idle c4.large EC2 instance while
generating primarily CPU stress. Post-processing and
validation against pre-calculated constants extend the runtime
to approximately ~7.9 wall clock seconds while adding a small
amount of disk I/O. We found that to observe a significant
performance variance from running multiple instances of
sysbench in parallel, it was necessary to stop idle Linux VMs.
This involved suspending the VM which effectively deallocates
it from the hypervisor. On AWS when stopping and resuming
instances, VMs retain the same instance-id, but renegotiate their
public and private IP addresses. Presumably this is done
because there is no guarantee the VM will resume on its original
host. For y-cruncher, best-to-worst case performance variance
was 12.9% without stopping idle VMs, but this performance
variance grew to 32.4% when stopping idle VMs. Stopping idle
VMs improved performance up to 19.5% for parallel instances
of y-cruncher, and up to 20.63% for sysbench on dedicated
hosts.

Pgbench is a database benchmark integrated with the
PostgreSQL relational database that measures system
performance for running PostgreSQL database transactions
[10]. It supports running a batch of SQL queries repeatedly in
multiple concurrent database sessions to calculate average
system throughput in transactions per second (TPS). We
disabled database vacuuming when running pgbench to avoid
performance variance from automated vacuuming that could
occur at random intervals. Pgbench initially populates rows
randomly into 4 tables according to a scale factor. It then runs
transactions with 5 simple queries (SELECT, UPDATE, and
INSERT) using 10 concurrent client database connections. We
configured pgbench to provision 10 worker threads, one thread
for each client, to run all sessions in parallel. Pgbench ran
against PostgreSQL version 9.5. In contrast to y-cruncher and
sysbench, pgbench generates CPU, memory, and disk I/O
stress. We measured the total number of transactions pgbench
could complete in 60 seconds.

iPerf provides a standard benchmark for measuring network
bandwidth [11]. We deployed iPerf to test TCP throughput
between clients and servers. We used a TCP socket buffer size
of 416 kilobits for maximum throughput given the network
latency between the client and server VMs. We performed
concurrent duplex data transfer between the client and server,
and calculated total network throughput (upload+download) for
15 second test runs. Running iPerf requires two VMs, one server
and one client. We allocated one dedicated host machine for
client VMs, and another for server VMs.

B. Testing Infrastructure

All tests were completed in the AWS us-east-1 Virginia
region using EC2 instances running Ubuntu 16.04.5 LTS

5

Linux. For each experiment, all instances were provisioned
using a virtual private cloud and configured to share the same
subnetwork and launched in the same availability zone. We
profiled performance degradation of co-located parallel
benchmark runs on EC2 dedicated hosts [2]. We investigated
compute optimized instances from the 3rd, 4th, and 5th EC2
instance generations. Specifically, we investigated instances
backed by AWS specific versions of the XEN (c3, c4) and
KVM “AWS Nitro” (z1d, m5d) hypervisors [13]. Key
performance indicators for these hosts are described in Table I.
Dedicated hosts support controlled placement and tenancy of
VMs across physical servers. To maximize the potential for
resource contention, we leveraged only 2 vCPU instances
(c3.large, c4.large, z1d.large, m5d.large) and provisioned the
maximum number of co-located VMs allowed on each
dedicated host server. We initially investigated larger co-
located VMs: c4.xlarge (4 vCPUs, up to 8 VMs per host), and
c4.2xlarge (8 vCPUs, up to 4 instances per host) but observed
less resource contention when using larger VMs as expected.
While resource contention was not eliminated, we opted to
focus on using 2 vCPU instances to investigate worst-case
provisioning scenarios of VMs on the public cloud.

TABLE I. KEY PERFORMANCE INDICATORS FOR

CLOUD DEDICATED HOSTS – US EAST PRICING

KPI c3 c4 z1d, m5d

Xeon CPU model E5-2680v2 E5-2666v3
Platinum 8191(z1d),

Platinum 8175m(m5d)

family/microns/yr
Ivy Bridge-EP/
22nm/Sep2013

Haswell-EP /
22nm/Nov2014

Skylake-SP /
14nm/Jul2017

vCPUs/host 40 40 48 (z1d), 96 (m5d)

physical CPU
cores/host

20 20 24 (z1d), 48 (m5d)

Base clock MHz 2800 2900 3400 (z1d), 2500 (m5d)

Burst clock MHz
(single / all)

3600/3100 3500/3200 [30]
4000/4000 (z1d),

3100/3500 (m5d) [31]

Hypervisor /
virtualization-type

XEN / full XEN / full AWS Nitro (KVM/full)

Max # of 2 vCPU
instances/host

16 x c3.large 16 x c4.large
24 x z1d.large,
48 x m5d.large

Pg db storage
16 GB local
shared SSD

100GB io1 EBS
volume, 5k iops

75GB local shared
NVMe

Network
capacity/instance

“Moderate”
~550 Mbps

“Moderate“
~550 Mbps

Up to 10 Gbps

Host price/hr $1.848 $1.75
$4.91 (z1d),

$5.97 (m5d)

VM price/hr $.1155 $.109375
$.205 (z1d),

$.124 (m5d)

By default, all of our EC2 instances use default general-
purpose 2 (GP2) elastic block store disks with a supported burst
rate of 3,000 I/O operations/sec. To run pgbench, we opted to
use alternate disks for the PostgreSQL database for all tests.
For c3.large instances we used the locally provided solid-state
disk (SSD) on the dedicated host. We relocated the database to
a local ephemeral volume implemented on a shared physical
SSD on the dedicated host. For c4.large, local disks are not
available. To create disk I/O contention we provisioned a 100
GB “provisioned IOPS SSD” (io1) volume supporting 5000
IOPS. This was used for the root volume, and also to host the
PostgreSQL database. For z1d/m5d instances we moved the
database to a local 75GB volume on a shared NVMe SSD on

the dedicated host. For pgbench, c3.large, z1d.large, and
m5d.large instances allowed measurement of resource
contention for co-located VMs sharing two different
generations of local SSDs: c3.large (standard SSD) and
z1d/m5d (NVMe SSDs). Fourth generation EC2 instances (e.g.
c4/m4/r4 family) do not offer the option for local SSDs in favor
of remotely hosted elastic block store (EBS) volumes [32]. The
hardware configuration of local disk volumes (e.g. individual
SSDs or redundant arrays) is not disclosed by the cloud
provider. To generate resource contention with pgbench on 4th
generation EC2 instances, we provisioned io1 volumes with a
fixed number of 5,000 IOPS for a total of 80,000 IOPS for the
host. For 4th generation instances with default general purpose-
2 (GP2) EBS volumes, the 3,000 IOPS I/O quota effectively
hides I/O resource contention when running pgbench. At the
maximum IOPS rate, the host has more than sufficient
bandwidth to the remote EBS storage medium. Custom
provisioned IOPS EBS volumes on 4th generation instances
with higher throughput rates were able to create I/O contention
to the remote EBS volumes. A drawback of using provisioned
IOPS volumes to generate resource contention for testing, is
that they are expensive, which may help deter malicious
activity.

Our test suite consists of multiple scripts written in Python3
to automate tests and shell to the operating system to execute
Linux commands. Our scripts generated CSV output which was
analyzed with R and Python in Jupyter notebooks. We leveraged
Python packages including: re for parsing, csv for working with
comma separated data, os to access Linux, and datetime for time
calculations. Bash scripts supported creation and configuration
of cloud infrastructure while leveraging ssh, scp, pssh, crontab,
the AWS EC2 api, sed, and ntp. Crontab scheduled tests to run
concurrently across all EC2 instances at synchronized times. OS
clocks were synchronized using the network time protocol (ntp).
All VMs were pre-provisioned in advance of running the
benchmarks.

Fig. 1. Our benchmarks exhibit diverse resource utilization profiles to

create a wide range of different types of resource contention. CPU

time accounting metrics for benchmarks show that sysbench and y-

cruncher are CPU-bound as they’re dominated by cpu user mode

(cpuUsr) time. Pgbench involves a blend of idle (cpuIdle), user mode

(cpuUsr), IO wait (cpuIoWait), and kernel (cpuKrn) time, while iPerf

is dominated by cpu kernel (cpuKrn) and cpu soft interrupt service

(cpuSftIntSrvc) time.

6

IV. EXPERIMENTAL RESULTS

A. Resource Utilization Profiles for Common Benchmarks

We profiled the resource utilization (CPU, memory,
disk/network I/O) of our benchmarks using the
ContainerProfiler tool [33]. This tool supports characterization
of the resource utilization of any computational tasks run in a
Docker container. Resource utilization of each benchmark for
our prescribed configurations was captured, and Linux CPU
time accounting variables is shown in Figure 1. The wall clock
time of any workload can be calculated by adding Linux CPU
time accounting variables (cpuUsr, cpuKrn, cpuIdle,
cpuIOWait, cpuSftIntSrvc) and dividing by the total number of
CPU cores. Figure 1 characterization resource stress generated
by each benchmark.

B. CPU Resource Contention

We initially measured CPU contention on c3.large and
c4.large dedicated hosts with up to 16 co-located 2 vCPU VMs
on the same server. We visualize the performance of running y-
cruncher in parallel on up to 16 co-located c4.large EC2
instances in Figure 2. C4.large instances offer 2 vCPUs, 3.75 GB
RAM, and moderate network performance (~550Mb/s) [34].
Figure 2 depicts the average execution time for running y-
cruncher in parallel across co-located c4.large instances using
box plots, where the set number refers to the number of co-
located VMs. For this initial test, all VMs remained online
during every test while a varying number of VMs ran y-
cruncher. We did not stop or shutdown VMs.

Fig. 2. This figure depicts y-cruncher average execution time when running in

parallel across co-located c4.large instances using box plots. Each set includes
16 co-located VMs, where the set number refers to the number of active VMs

that ran y-cruncher. All other VMs were online and idle. Box plots show the

distribution of runtime for runs with a specific VM tenancy. The average

runtime of y-cruncher grows with increasing tenancy by ~9.8%.

Y-cruncher runtime spanned from a minimum of 7.164

seconds with 2 co-located VMs, to a maximum of 7.896

seconds with 16 co-located VMs. Y-cruncher on c4.large

yielded a performance difference of ~9.8%. Average

performance for all configurations was 7.472 seconds,

calculated using data from 16 sets of 10 identical test runs. Each

test set added an additional co-located c4.large VM to the host.

Y-cruncher and sysbench performance across 3rd (c3.large), 4th

(c4.large), and 5th (z1d.large and m5d.large) generation

instances are contrasted in section E.

Fig. 3. This figure depicts the total number of database transactions completed
in one minute by Pgbench with increasing c3.large VM tenancy. The number

of transactions completed by each VM decreased by up to ~24%, relative to the

number of tenants sharing the dedicated host.

C. Disk Resource Contention

We illustrate pgbench CPU+I/O contention across co-

located c3.large EC2 instances in Figure 3 where postgresql

was hosted on a 16GB ephemeral disk volume created on a

shared SSD attached to the physical host. Box plots show the

performance distribution of the average number of completed

database transactions for 10 x 60-second test runs for each

tenancy configuration from n=1 to 16 co-located VMs. Each

graph square depicts the performance of a specific VM across

the experiment. For square 1 in the upper-left corner (VM #1),

pgbench ran once in parallel with all 16 VMs. For square 16 in

the lower-right corner (VM #16), pgbench ran concurrently 16

times in parallel across up to 16 VMs. On VM #16-run #1, the

left-most datapoint on the x-axis, ran with full isolation (e.g. no

other VMs ran pgbench), whereas VM #16-run #16 ran with

maximum tenancy (e.g. all VMs ran pgbench in parallel).

Average performance was calculated for 10 test runs, and

Figure 3 shows c3.large average performance in transactions

per minute (tpm). Performance ranged from 66946 tpm to

85192 tpm, with an average performance of 76724 tpm.

Pgbench on c3.large produced a best-to-worst case

performance difference of 23.8%. We ran pgbench on

c4.large instances with 100GB provisioned IOPS EBS volumes

at 5000 IOPS. Performance ranged from 41474 (n=16) to

67274 (n=5), with average performance of 61069 tpm. Best-

7

to-worst case pgbench on c4.large-provisioned IOPS

performance varied by 42.25%. We contrast pgbench

performance across 3rd (c3.large), 4th (c4.large), and 5th

(z1d.large and m5d.large) generation instances in section E.

D. Network Resource Contention

Network resource contention was created and measured by
running iPerf in parallel across co-located EC2 instances. We
provisioned two dedicated hosts for iPerf, one for server VMs,
and the other for client VMs. Running iPerf on c3/c4 instances
required a total of 32 VMs across 2 dedicated hosts. On z1d
instances, 48 VMs across 2 dedicated hosts were created, and
for m5d instances, 96 VMs across 2 dedicated hosts were used.
We configured all VMs to share the same availability zone and
subnetwork. Clients bind to the same server for each test.

The iPerf duplex option was used to perform a bidirectional
test to benchmark upload/download throughput in parallel. We
averaged all 20 bandwidth measurements together, 10 from
client to server, and 10 from server to client. For an initial
c4.large test, individual iPerf throughput results varied 88%
from the 1-VM average, spanning from a max of 1262 Mbps
(n=4) to a min of 235 Mbps (n=12), for a range of 1027 Mbps.
We contrast iPerf performance across 3rd (c3.large), 4th
(c4.large), and 5th (z1d.large and m5d.large) generation
instances in section E.

TABLE II. BENCHMARK PERFORMANCE COMPARISON:

MINIMUM VS. MAXIMUM PERFORMANCE FOR TESTS AT ALL

POSSIBLE TENANCY LEVELS ON EC2 DEDICATED HOSTS

y-cruncher

avg runtime

(sec)

pgbench

avg

transactions

iPerf

throughput

MB/sec

sysbench

avg runtime

(sec)

c3 min 15.01 66,973 774 9.40

c3 max 15.57 82,923 958 9.43

c4 min 7.87 66,729 684 8.48

c4 max 8.56 70,684 1,182 8.49

z1d min 4.43 175,882 1,139 6.78

z1d max 4.86 198,012 7,376 6.80

m5d min 5.67, 4.40† 124,247 1,004 9.04, 7.17†

m5d max 6.51 185,525 18,506 9.06

† - indicates test with stopped VMs

E. Cross Generation Resource Contention Comparison

 In this section we contrast performance across 3rd (c3.large),
4th (c4.large), and 5th (z1d.large and m5d.large) generation
instances for all benchmarks in our test suite including: y-
cruncher, pgbench, iPerf, and sysbench. This work addresses
(RQ-1): “How do recent advancements in hardware and
virtualization hypervisors address public cloud resource
contention?“ Considerable effort has been dedicated to reduce
performance overhead through virtualization and hardware
advancements. Recently this overhead is stated to be less than
the degree of statistical noise (e.g. ~1%) [13][15]. Our goal was
to quantify how well recent virtualization advancements in
software (hypervisors) and hardware (all system components)
prevent performance losses from CPU, disk, and network
resource contention. A major goal of IaaS cloud platforms is to

provide resource transparency, thus we argue that cloud
abstractions need to address detectable performance variance
from resource contention to eliminate potential side channels
from being exploited as detailed in section II. We executed our
benchmark suite across c3.large, c4.large, z1d.large, m5d.large
2 vCPU instances created on dedicated hosts. Table II captures
the min/max raw performance values for our benchmarks. In
the majority of cases minimum performance occurs with
maximum tenancy (n=16, 24, or 48 co-located VMs), and
maximum performance with minimum tenancy (n=1 VM).

 We depict the normalized performance degradation for our
benchmark suite from VM co-location for 1 to 16 x co-located
3rd generation c3.large instances in figure 4. Performance
degradation is shown for n=1 to 16 x 4th generation c4.large
instances in figure 5, 1 to 24 x 5th generation z1d.large instances
in figure 6, and 1 to 48 x 5th generation m5d.large instances in
figure 7. In all cases, network contention measured with (iPerf)
exhibited the steepest decline in performance as a result of
increasing VM tenancy, followed by CPU+disk contention
(pgbench), and then CPU contention (y-cruncher). Figure 8
depicts the total combined change in performance for all
benchmarks run across VMs from different EC2 instance
generations.

Fig. 4. 3rd generation (c3.large) Instance - Normalized Performance

Degradation from VM Co-location on c3.large EC2 dedicated hosts

Fig. 5. 4th generation (c4.large) Instance - Normalized Performance

Degradation from VM Co-location on c4.large EC2 dedicated hosts

8

F. Performance Implications of Idle Virtual Machines

 When deploying our y-cruncher test on m5d.large VMs, we
initially measured a performance difference of 14.96% (5.67s to
6.52s) scaling from 1 to 48 VMs. We then refactored our scripts
to stop VMs after each test where previously VMs remained
online. By stopping idle VMs fewer concurrent instances of the
Linux OS kernel shared the physical host. Using this approach,
the performance delta increased to 47.97% (4.4s to 6.51s).
Running y-cruncher by shutting down idle VMs improved
performance by 32.42%, providing a min/max delta 1.49x larger
to help better characterize the environment. We observed a
similar performance change running sysbench on m5d.large
VMs in the presence of idle VMs. Running sysbench in the
presence of idle VMs resulted in an indiscernible performance
delta of ~0.18% from n=1 to 48 VMs. Running sysbench by
shutting down idle VMs improved performance by 20.81%,
providing a delta 116x larger to help better characterize the
environment. We replicated our y-cruncher result on z1d.large
instances improving performance by 4.47% by shutting down
idle VMs, but could not obtain an improvement on XEN-based
c3.large or c4.large instances, or with sysbench on z1d.large.

Fig. 6. 5th generation (z1d.large) Instance - Normalized Performance

Degradation from VM Co-location on EC2 z1d.large dedicated hosts

Fig. 7. 5th generation (m5d.large) Instance - Normalized Performance

Degradation from VM Co-location on EC2 m5d.large dedicated hosts

 We hypothesize that the larger performance delta measured
by shutting down idle VMs results for Linux CPU scheduler

stress. Our Linux benchmarking VM when idle runs around
~130 processes. When 48 Linux VMs share the same m5d
dedicated host, this equates to 6,240 processes. The host OS
runs a Linux scheduler that context switches VMs as KVM
processes, and each VM runs its own Linux scheduler to context
switch local processes. Y-cruncher appears more susceptible to
CPU scheduler stress than sysbench on m5d.large as stopping
idle VMs improved performance by a wider margin. With 24
Linux VMs on a z1d.large dedicated host, only y-cruncher
showed improved performance when stopping idle VMs.
Redundant operating system instances on high density cloud
hosts demonstrate the need to replace traditional VMs with
containers or microVMs to reduce this overhead.

 In Figure 8 we show the percentage performance difference
using averages for each benchmark at each VM tenancy level to
calculate a total percentage difference. Figure 8 depicts a
disturbing trend: with each successive VM generation, the
total observable performance degradation from resource
contention has grown. We observe a total performance
difference from resource contention of 41.3% for c3.large, 56%
for c4.large, 104.9% for z1d.large, and 196.4% for m5d.large.
As newer instance generations support greater VM-density, the
percentage performance difference for our co-located stress
benchmarks running at 100% capacity of a given system
resource (e.g. CPU, disk, network) has increased 4.75x. This
trend can be explained by the increasing host capacity of new
hardware. We observed a performance change of 84.6% running
iPerf with 24 co-located z1d instances obtaining ~1.1 Gbps
network throughput down from 7.4 Gbps when only one VM
shared the host. The performance change increased to 94.6%
for 48 co-located m5d.large instances, though these instances
still sustained ~1 Gbps throughput. Loose network quotas
provide an exploitable side channel to infer VM co-location.
Network performance degradation is likely to be prominent
across 5th generation instances: m5, m5a, m5ad, c5, c5n, and c5d
instances that divide network capacity across many VMs. At
present, 52 AWS instance types advertise a loosely constrained
network capacity of “up to 10 Gbps”, and 8 others “up to 25
Gbps”. Cloud providers could alleviate performance variance
by enacting stricter resource quotas.

Fig. 8. Total observed performance difference from resource

contention for co-located VMs running performance benchmarks

across three generations of VMs on Amazon EC2.

9

As a result of increasing CPU-core density, new instance
families (e.g. m5, m5d, r5, r5d, and i3en) support up to 48 co-
located 2 vCPU instances. These families appear to provide a
wide breadth of performance scores on coordinated benchmark
runs. Our results expose notable performance differences
for benchmarks based on the number of VM tenants
demonstrating potential to leverage benchmarks to predict
the number of co-located VMs (RQ-2).

V. VIRTUAL MACHINE MULTITENANCY PREDICTION

A. VM tenancy Model Evaluation on Dedicated Hosts

We next investigated the use of multiple linear regression
(MLR) and random forest regression to predict the number of
co-located VMs leveraging performance metrics from our
benchmarks. We focused on predicting the number of co-
located m5d instances, the most difficult of our case studies
with high tenancy up to 48 guests. Fortunately, from a user’s
perspective, it is sufficient to learn an approximate number of
co-located guest VMs to detect resource contention to learn
when to abandon the host in search of better environment to
run. We used each benchmark as an independent variable, and
merged predictors into a single dataset where each row
characterizes performance for a VM with a given host tenancy.
Running each benchmark across 48 VMs produced 1,176
individual performance values. We ran each benchmark
typically 8 to 11 times, removing the first run, and then
averaging performance results for the model to produce a
training set of 4 x 1,176 independent variables. We built
models to predict VM tenancy using Jupyter Notebooks with an
R kernel. We normalized data for MLR using the R scale()
function. We obtained our training datasets and test datasets
completely independent of each other by performing
independent runs weeks apart on different EC2 dedicated hosts
in the Virginia Region. We evaluated our independent variables
using Random Forest by checking the increase in both node
purity and root mean squared error by adding each variable to
the model. Pgbench was the strongest predictor, followed by, y-
cruncher, sysbench, and finally iPerf. Removing iPerf, reduced
R2 of random forest regression from .9755 to .9739, whereas
removing pgbench dropped R2 to .9459.

TABLE III. INDEPENDENT VARIABLES EVALUATION W/ RANDOM FOREST

Independent Variable
% Increase in
Node Purity

% Increase in
RMSE

iPerf (throughput in MB/sec) 70725 9.268

Sysbench (seconds) 106714 31.064

Y-cruncher (seconds) 135112 49.908

Pgbench (transactions) 146221 56.220

TABLE IV. VM TENANCY MODEL EVALUATION

Evaluation Metric
Random Forest
with raw data

MLR with
normalized data

R^2 .9755 .9423

Root Mean Squared Error (RMSE) 2.479 2.175

Mean Absolure Error (MAE) 1.950 1.608

Min Prediction 4.537 -0.480

Max Prediction 47.479 49.543

The utility of our predictors is further explained by the
coefficient of variance (CV), which is the average divided by
the standard deviation to produce a normalized percentage
expression of the statistical variance of the benchmark. CV is

quite high for our weakest predictor iPerf (noisy signal), and
quite low for sysbench (low information) our weakest
predictors.

 Random forest is not sensitive to numerical precision (i.e.

difference in numerical scales) allowing variables to be used

directly without transformation. We applied random forest to

train a model obtaining an R2 of .9755. We then applied our

random forest model to our test dataset and obtained a root

mean squared error of 2.479. Our mean absolute error was 

1.95 VMs, for a mean absolute percentage error of about 4%.

Figure 10 visualizes our observed vs. predicted values using the

random forest model. We then normalized training data and

trained an MLR model obtaining an R2 of .9423. We then

applied our MLR model to predict VM tenancy for our test

dataset and obtained a root mean squared error of 2.175. Our

mean absolute error was  1.61 VMs, for a mean absolute

percentage error of about 3.4%. Figure 11 visualizes our

observed vs. predicted values using the MLR model.

Fig. 9. This log scale graph depicts the coeffieicnet of variance (CV)

providing a normalized percentage comparison of statistical variance.

Fig. 10. Observed vs. predicted co-located VMs - random forest model

Fig. 11. Observed vs. predicted co-located VMs - random forest model

10

B. VM tenancy Model Application on the Public Cloud

We next applied our random forest regression model to

predict VM tenancy for 50 x m5d.large spot instances using

AWS. We executed ~11 runs of sysbench, y-cruncher, and

pgbench across these VMs to obtain our dataset while

discarding the first run of each benchmark. We then launched

an additional 50 x m5d.large spot instances to serve as iPerf

clients. These VMs served only as clients for the iPerf test to

match our procedure used to obtain training data. We then

aggregated our benchmark metrics by calculating performance

averages. We used the averages and applied our random forest

model to generate VM tenancy predictions. VM tenancy

predictions ranged from 10 to 33, with an average of 22.66,

mean of 24, and mode of 32 (15 predictions). We visualize VM

tenancy predictions for our pool of 50 x m5d.large spot

instances in figure 12. We note that to evaluate model accuracy

knowledge of the actual public cloud VM placements is

required. We expect there are false positives in our

predictionts, and these will cause some VMs to be predicted

multiple times. A key observation is where groupings of

predictions tend to cluster around 11, 17, 24, and 32 co-located

VMs.

Fig. 12. Predicted number of co-located VMs for pools of 50 x ec2

m5d.large spot instances

VI. CONCLUSIONS

Despite continued improvements to virtualization
hypervisors and hardware, we were able to generate
considerable CPU, disk, and network performance degradation
running system benchmarks in parallel on co-located VMs (RQ-
1). Hardware with high CPU core density produced worst case
performance degradation with co-located VMs, for the
m5d.large, y-cruncher: (48%), pgbench: (33%), sysbench
(20.8%), and iPerf (94.6%). Total performance variance
increased across instance generations from c3 (42%), to c4
(56%), to z1d (104.9%) and m5d (196.4%) trending with VM
density. We discovered that shutting down idle VMs increased
y-cruncher performance by 32.4% on m5d hosts and 4.5% on
z1d hosts. Sysbench performance increased 20.8% on m5d hosts
when shutting down idle VMs. Network performance suffered
the most from resource contention averaging 60% across all VM
generations. Multiple linear regression models trained with
benchmark performance data predicted the number of co-

located VMs on m5d dedicated hosts with up to 48 co-located

VMs to within ~1.61 VMs (RQ-2).

Having access to cloud-based dedicated hosts (e.g. bare
metal servers) enables employing performance benchmarks as
side channels to infer VM co-location. Benchmarking
performance of VMs in isolation while controlling the degree of
VM tenancy helps establish expected levels of performance that
can then be leveraged to determine when user VMs are co-
located. By adopting Farley et al.’s trial-and-better approach
[7], tenancy prediction can be used to test and replace VMs to
foster better performing multi-node MapReduce, Apache Spark,
and Kubernetes clusters. For running parallel workloads that
scale out horizontally, perfect accuracy of VM tenancy
predictions is not required to detect resource contention.
Obtaining better placement of nodes in clusters is of importance
to improve cloud computing performance. These advancements
can be leveraged by users to better distribute workloads across
cloud infrastructure, ultimately lowering costs to process big
data workloads in the cloud. Scripts and resources supporting
this research are available online at: [35].

VII. ACKNOWLEDGEMENTS

This research is supported by the US National Science
Foundation’s Advanced Cyberinfrastructure Research Program
(OAC-1849970), the NIH grant R01GM126019, and by the
AWS Cloud Credits for Research program.

REFERENCES

[1] W. Lloyd, S. Pallickara, O. David, M. Arabi, and K. Rojas,

“Mitigating resource contention and heterogeneity in public clouds

for scientific modeling services,” in Proceedings - 2017 IEEE

International Conference on Cloud Engineering, IC2E 2017,

2017.

[2] “Amazon EC2 Dedicated Hosts Pricing.” [Online]. Available:

https://aws.amazon.com/ec2/dedicated-hosts/pricing/.

[3] “Introducing Azure Dedicated Host.” [Online]. Available:

https://azure.microsoft.com/en-us/blog/introducing-azure-

dedicated-host/.

[4] “Dedicated hosts and dedicated instances.” [Online]. Available:

https://cloud.ibm.com/docs/vsi?topic=virtual-servers-dedicated-

hosts-and-dedicated-instances.

[5] “Introducing sole-tenant nodes for Google Compute Engine —

when sharing isn’t an option.” [Online]. Available:

https://cloud.google.com/blog/products/gcp/introducing-sole-

tenant-nodes-for-google-compute-engine.

[6] “Placement Groups - Amazon Elastic Compute Cloud.” [Online].

Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placem

ent-groups.html#placement-groups-spread.

[7] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,

and M. M. Swift, “More for your money: Exploiting Performance

Heterogeneity in Public Clouds,” in Proceedings of the Third ACM

Symposium on Cloud Computing - SoCC ’12, 2012, pp. 1–14.

[8] “Akopytov/sysbench: Scriptable database and system

performance benchmark.” [Online]. Available:

https://github.com/akopytov/sysbench.

[9] “y-cruncher, A Multi-Threaded Pi Program.” [Online]. Available:

http://www.numberworld.org/y-cruncher/.

[10] “PostgreSQL: Documentation: 10: pgbench.”

[11] “iPerf - The TCP, UDP, and SCTP network bandwidth

measurement tool.”

[12] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS

11

Operating Systems Review, vol. 37. p. 164, 2003.

[13] B. Gregg, “AWS EC2 Virtualization 2017: Introducing Nitro,”

Brenden Gregg’s Blog, 2017. [Online]. Available:

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-

virtualization-2017.html.

[14] A. Kivity, U. Lublin, A. Liguori, Y. Kamay, and D. Laor, “kvm:

the Linux virtual machine monitor,” Proc. Linux Symp., vol. 1, pp.

225–230, 2007.

[15] “AWS Nitro System.”

[16] M. S. Rehman and M. F. Sakr, “Initial findings for provisioning

variation in cloud computing,” in Proceedings - 2nd IEEE

International Conference on Cloud Computing Technology and

Science, CloudCom 2010, 2010.

[17] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime

measurements in the cloud: observing, analyzing, and reducing

variance,” Proc. VLDB Endow., vol. 3, pp. 460–471, 2010.

[18] A. O. Ayodele, J. Rao, and T. E. Boult, “Performance

Measurement and Interference Profiling in Multi-tenant Clouds,”

in Proceedings - 2015 IEEE 8th International Conference on

Cloud Computing, CLOUD 2015, 2015.

[19] Z. Ou et al., “Is the Same Instance Type Created Equal? Exploiting

Heterogeneity of Public Clouds,” IEEE Trans. Cloud Comput.,

2013.

[20] H. Liu, “A measurement study of server utilization in public

clouds,” in Proceedings - IEEE 9th International Conference on

Dependable, Autonomic and Secure Computing, DASC 2011,

2011, pp. 435–442.

[21] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam,

“Cuanta : Quantifying Effects of Shared On-chip Resource

Interference for Consolidated Virtual Machines,” Proc. 2nd ACM

Symp. Cloud Comput., pp. 22:1--22:14, 2011.

[22] S. G. Kim, H. Eom, and H. Y. Yeom, “Virtual machine

consolidation based on interference modeling,” J. Supercomput.,

2013.

[23] J. Mukherjee, D. Krishnamurthy, J. Rolia, and C. Hyser,

“Resource contention detection and management for consolidated

workloads,” in Proceedings of the 2013 IFIP/IEEE International

Symposium on Integrated Network Management, IM 2013, 2013.

[24] Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. H. Huang,

“Understanding the effects of hypervisor I/O scheduling for virtual

machine performance interference,” in 4th IEEE International

Conference on Cloud Computing Technology and Science

Proceedings, 2012, pp. 34–41.

[25] T. Ristenpart and E. Tromer, “Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds,” …

Conf. Comput. …, pp. 199–212, 2009.

[26] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K.

Butler, “On detecting co-resident cloud instances using network

flow watermarking techniques,” Int. J. Inf. Secur., 2014.

[27] M. S. İnci, B. Gulmezoglu, T. Eisenbarth, and B. Sunar, “Co-

location detection on the cloud,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2016.

[28] J. O’Loughlin and L. Gillam, “Sibling virtual machine co-location

confirmation and avoidance tactics for Public Infrastructure

Clouds,” J. Supercomput., 2016.

[29] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M.

Swift, “Resource-freeing attacks: Improve your cloud

performance (at your neighbor’s expense),” in Proceedings of the

ACM Conference on Computer and Communications Security,

2012.

[30] “CPU-World: BSP/CPU/Microprocessor/Co-

processor/FPU/Micro-controller families.”

[31] “Amazon EC2 z1d instances.”

[32] “Amazon EBS Volume Types – Amazon Elastic Compute Cloud.”

[33] “wlloyduw/ContainerProfiler: Tools to profile the resource

utilization (CPU, disk I/O, network I/O) of Docker containers.”

[Online]. Available:

https://github.com/wlloyduw/ContainerProfiler.

[34] “Testing Amazon EC2 network speed.” [Online]. Available:

http://epamcloud.blogspot.com/ 2013/03/testing-amazon-ec2-

network-speed.html.

[35] “IaaSCloudResourceContention: Parallel resource contention

experiment scripts, data, processing pipeline.” [Online].

Available: https://github.com/wlloyduw/IaaS

CloudResourceContention.

