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Abstract—The high demand for energy consumption and the
resulting carbon footprint of the cloud pose significant sustain-
ability challenges, as cloud data centers consume vast amounts of
energy. The emergence of serverless cloud computing platforms
has opened up new avenues for more sustainable cloud com-
puting. Serverless Function-as-a-Service (FaaS) cloud computing
platforms facilitate deploying applications as decoupled microser-
vices to leverage automatic rapid scaling, high availability, fault
tolerance, and on-demand pricing. The absence of always-on
hosting costs associated with virtual machines enables serverless
functions to be deployed with many different function configura-
tions and cloud regions to achieve high performance, low network
latency, and reduced costs. In this paper, we investigate the utility
of a global sky computing platform where serverless resources
are aggregated between up to 19 distinct cloud regions. We
prototype a serverless load distribution system to distribute client
requests across serverless aggregations to minimize performance
objectives, including network latency, runtime, hosting costs,
and carbon footprint. To evaluate our serverless distribution
system’s ability to meet performance objectives, we continuously
executed large experiments across 19 regions around the world
from November 2022 through March 2023. Qur serverless load
distribution approach using aggregated resources reduced the
carbon intensity of a globally distributed serverless application
by up to 99.8%, network latency by 65%, or hosting costs by
58% by optimizing function routing to deployments with optimal
hardware configurations.

Index Terms—SKy Computing, Serverless
Function-as-a-Service, Green Computing

Computing,

I. INTRODUCTION

The cloud computing paradigm has enabled anyone to
access nearly unlimited computational resources. While the
cloud has enabled many new technologies and services that
are broadly used worldwide, the underlying infrastructure has
massive environmental impacts. The energy consumption of
a single cloud data center can be up to two-gigawatt hours,
the equivalent electricity of over 50,000 homes [1]. The
energy consumption of cloud data centers around the world
is expected to rise from 200 terawatt hours (TWh) in 2016 to
nearly 3,000 TWh by 2030 [2]. To put that into perspective,
3,000 TWh is over 10% of the global electricity consumption
in 2021 (25,343 TWh) [3].

The emergence of the serverless computing paradigm has
provided developers with many appealing features for deploy-
ing applications to the cloud. Serverless platforms abstract
away the management of underlying infrastructure and add

desirable features such as high availability, fault tolerance, and
automatic application scaling. Even though the cloud provider
manages most aspects of the underlying infrastructure, de-
velopers must still define their application’s configuration
parameters and deployment location(s). Serverless platforms,
such as Function-as-a-Service (FaaS), favor deploying applica-
tions as many decoupled microservices to leverage automatic
scaling and on-demand pricing. In contrast to traditional
Infrastructure-as-a-Service applications, where hosting appli-
cations incurs the always-on costs of virtual machine(s), FaaS
platforms present no upfront or always-on costs for deploying
an application and ensuring high availability because FaaS
platforms only incur costs when serverless functions are run.

Existing serverless platforms, however, limit the deployment
and management of software to a single cloud region or cluster.
Harnessing resources from multiple regions, cloud providers,
or private clusters requires deployments to be managed sep-
arately by the user. Transparent aggregation of serverless
resources from multiple platforms or regions has the potential
to deliver new serverless resource abstractions to users. We
refer to the combination of resources from multiple serverless
regions or platforms to transparently host serverless workloads
as ”Serverless Sky Computing”. Serverless sky computing has
the potential to leverage the best resources at any given time
and place to satisfy a range of goals, such as minimizing
carbon intensity, network latency, and runtime.

In this paper, we prototype the aggregation of serverless
computing resources to investigate their utility. We develop
and test a prototype serverless load distribution system capable
of distributing requests across various serverless aggregations.
We investigate the implications of serverless resource ag-
gregation to enhance multiple performance-level objectives,
including runtime, network latency, and environmental goals.
By leveraging serverless aggregation, the overall carbon inten-
sity of hosting an application can be reduced by distributing
requests to locations with a higher proportion of low-carbon
energy sources.

Our findings indicate that serverless load distribution across
resource aggregations can satisfy a diverse range of objectives
depending on its configuration. For instance, in the case
of a globally deployed application with clients distributed
worldwide, we reduced the overall network latency by 65%.
With carbon-aware load distribution, we could reduce an



application’s fossil fuel usage by up to 99%. Finally, by
utilizing multiple configurations of a function and employing
a model to predict optimal memory settings, we reduced the
overall cost of a serverless deployment by 58%, from $833 to
$349.

A. Research Questions

To evaluate our serverless sky computing prototype and new
load distribution system, this paper investigates the following
research questions:

(RQ-1 Performance Variation): How does function net-
work latency and runtime of a serverless application vary over
time by region?

(RQ-2 Carbon Intensity): How is the carbon intensity of a
serverless application impacted by different cloud aggregations
(e.g. deployment to America/Europe/Asia/Global)? How does
the carbon intensity of cloud regions change over time?

(RQ-3 Sustainability Costs): What are the latency and per-
formance implications of minimizing the carbon footprint of a
serverless application through carbon-aware load distribution?

(RQ-4 Multi-configuration Aggregation): How can server-
less resource aggregation be leveraged to reduce application
hosting costs by utilizing function deployments with many
different configurations?

B. Paper Contributions

This paper makes the following research contributions:

1) We created prototype resource aggregation tools to en-
able serverless sky computing using the FaaSET frame-
work [4].

2) We collect and present carbon intensity and network
latency data for serverless platforms spanning 19 regions
around the world from November 2022 to March 2023.

3) Using a suite of 12 functions, we investigated server-
less load distribution across regional and global cloud
aggregations. We evaluate five different load distribu-
tion techniques and report trade-offs between reducing
carbon intensity and increasing network latency.

4) We demonstrate the ability to leverage serverless sky
computing to combine resources from different function
deployments with distinct configurations to improve the
performance and cost of serverless applications.

II. BACKGROUND AND RELATED WORK

Aggregating computational resources on the cloud has
emerged as a significant area of study for developing high-
performance cloud-based applications. The relatively new con-
cept of sky computing has garnered increased attention in
recent years, with a growing body of research being published
on the subject. In Section II-A, we will examine the potential
for serverless platforms to mitigate the carbon footprint of
cloud applications. In Section II-B, we will delve into the
intricacies of Sky Computing, including new compatibility
layers. Finally, in Section II-C, we will present a broad
overview of serverless resource aggregation.

A. Green Serverless Computing

Cloud providers such as Amazon Web Services (AWS)
and Google Cloud have stated renewable energy goals to
achieve net-zero carbon by 2040 and 2030 through various
renewable energy commitments [S], [6]. Bashir et al. discuss
the growing energy demand and carbon emissions of cloud
platforms and their impact on environmental sustainability.
Their work advocates for a “carbon first” approach to cloud
design that elevates carbon efficiency to a first-class metric
by virtualizing the energy system to expose visibility and
control directly to applications [7]. Farahani et al. discuss
a high-performance, scalable, and sustainable platform for
processing massive graphs. One of the tools described by
the project, Graph-Greenifier, collects, studies, and archives
performance and sustainability data from operational data
centers and national energy suppliers [8].

B. Sky Computing

Chasins, Stoica, and Shenker present the concept of Sky
computing in [9], [10]. Sky computing is the idea of ab-
stracting resources from multiple clouds through a common
interface to leverage resources as an aggregation. The authors
suggest that the barriers to achieving sky computing are more
economic than technical and propose reciprocal peering, where
cloud providers create agreements to exchange services with
each other, as a critical enabling step. Yunhao Mao discussed
creating SkyBridge, a data management system enabling
multi-cloud data storage [11]. Yang et al. created SkyPilot,
an intercloud broker for large language model training and
machine learning workloads where workloads are dynamically
moved across available cloud providers to reduce cost and
increase availability. Sky Computing compatibility layers can
be created for multiple cloud delivery models [12].

C. Serverless Aggregation

Smith et al. created FaDO (FaaS Functions and Data
Orchestrator), a tool designed to allow data-aware functions
scheduling across multiple serverless compute clusters present
at different locations, such as at the edge and in the cloud
[13]. FaDO further provides users with an abstraction of the
serverless compute cluster’s storage, allowing users to interact
with data across different storage services through a unified
interface.

Baarzi et al. define the idea of Virtual Serverless Providers
(VSPs) that aggregate serverless offerings from multiple cloud
providers [14]. The VSP system architecture adds an additional
controller that invocations are passed through. The system
demonstrated up to 4.2x improved throughput, reduced SLO
violations by 98.8%, and reduced costs by 54%. Sampé et
al. discuss a novel toolkit to enable transparent execution
of Python code against disaggregated cloud resources called
Lithops [15]. Lithops provides the same API as Python’s
standard multiprocessing library, enabling any program to
run on major serverless computing platforms. Jindal et al.
developed a scheduling system called Courier that utilizes
multiple round-robin distribution techniques to route function



requests between on-premises OpenWhisk, AWS Lambda,
and Google Cloud Functions [16]. They show that Courier
can improve the overall performance of the invocation of
functions within a heterogeneous FaaS deployment compared
to traditional load-balancing algorithms. As a limitation, we
note that their FaaS deployments were relatively small, with
functions only deployed to three regions.

While several tools have been developed to automate the
deployment and aggregation of serverless resources, there
needs to be more research on the potential to improve per-
formance, reduce network latency, and minimize the envi-
ronmental impact of serverless workloads through serverless
sky computing. Our study expands the scope of previous
work by investigating regional and large-scale aggregations
of up to 19 cloud regions, encompassing the majority of AWS
regions. Our investigation utilized twelve workload functions
resulting in 228 deployments. We investigated the use of five
load distribution techniques for our serverless load distribution
system and examined multi-configuration aggregation with
functions deployed with five memory setting options.

I[II. METHODOLOGY

This section details tools and methods used to investigate
our research questions defined in Section I-A. We discuss the
tools used to enable our research on serverless sky computing
in Section III-A, the architecture for our load distribution
system in Section III-C, and finally, how we designed our
experiments in Section III-D.

A. Supporting Tools and Workloads

The Function-as-a-Service Experiment Toolkit (FaaSET)
provides a unified workspace for developing, testing, pro-
filing, and deploying serverless functions to AWS Lambda,
Google Cloud Functions, IBM Cloud Functions, Azure Cloud
Functions, and OpenFaaS deployments [4]. FaaSET abstracts
platform-specific deployment APIs and packaging require-
ments enabling developers to write functions once and then de-
ploy them with multiple configurations to each platform. With
FaaSET, function configurations can be defined and grouped
into aggregations. When function code or configuration pa-
rameters are changed, FaaSET supports updating all functions
in the aggregation as a deployment tool. Within FaaSET, the
FaaS Runner tool supports the automation of experiments and
processing results [17]. The Serverless Application Analytics
Framework (SAAF) performs server-side profiling to collect
runtime metrics of function instances on FaaS platforms [18].

In addition to these tools, we used 12 functions as exper-
imental workloads, as shown in Table I. Each function was
deployed to every region on AWS Lambda with available
carbon data (19 regions). The Minimum Spanning Tree (MST),
Breadth First Search (BFS), Page Rank, Compress, Resize,
and DNA functions are from the Serverless Benchmarking
Suite (SeBS) [19]. Stress is a common Linux tool [20]. We
developed the remaining functions to support this research
[21]-[23].

B. Electricity Maps

To collect environmental data about the electricity grid
for each AWS region, we utilized the Electricity Maps API
[24]. Electricity Maps is a leading resource for up-to-date
electricity and C'O, emissions data and is utilized by major
corporations such as Google, Microsoft, and Cisco. We can not
know the specific energy sources for an AWS region because
a region may be supplemented with additional renewable
energy sources. Information about proprietary energy sources
is not disclosed by the cloud provider. For our carbon-aware
load distribution system, the Electricity Maps API provides
a publicly available estimate for specific energy sources and
consumption at any time.

The Electricity Maps API takes latitude and longitude
coordinates and returns information about the electricity grid
of that region, including the carbon intensity measurements
in grams carbon dioxide equivalent per kilowatt hour of
energy used (gCO,eq/kWh) [24]. This measure quantifies the
greenhouse gas emission intensity of electricity generation,
calculated as the ratio of CO, emissions from electricity
production. Alongside gCO,eq/kWh, the API also returns the
percentage of the energy in that region derived from fossil fuel
sources. We use this percentage to estimate the energy impact
of our serverless applications. Since serverless platforms ob-
fuscate information regarding underlying server infrastructure,
including power consumption, we cannot accurately determine
electricity consumption directly (e.g., watt-hours for function
invocations).

Additionally, cloud providers may supplement the grid
with renewable energy sources (e.g., local solar/wind farms),
which may need to be accounted for in Electricity Map’s
data. The proprietary nature of cloud provider infrastructure
and access to information regarding specific enhancements of
carbon reduction is unavailable and outside the scope of this
research. If cloud providers were more transparent about their
energy usage, the amount of carbon released in grams could
be estimated. Instead, we specify carbon intensity in fossil
fuel gigabyte seconds (FF-GBS). FF-GBS is calculated by
multiplying the runtime of a function invocation, the memory
setting in GB, and the fossil fuel percentage of the region
running it:

FFGBS = Runtimege. x Memoryagp x Fossil Fuely,

C. Serverless Load Distribution System

Serverless FaaS platforms provide developers near instanta-
neous elasticity to match the changing demand of a workload.
However, Serverless platforms limit individual function de-
ployment to a single cloud region. The platform handles load
balancing of requests across the compute resources provided
within a single region. Client applications are responsible for
load distribution to the appropriate function deployments to
expand serverless applications beyond resources in a single
region.

We created a prototype serverless load distribution system
to distribute requests to aggregations of serverless FaaS func-



TABLE I

FUNCTION NAMES AND DESCRIPTIONS - *SEBS

[ Function [ TLP | Description |
MST* 1 Generates a graph and calculates the min
spanning tree.
BFS* 1 Generates a graph and processes a breadth
first search.
Page 1.2 Generates a graph and processes page rank
Rank* of each node.
DNA* 0.9 Pulls DNA sequence from S3 and creates
visualization data.
Compress* 1 Generates files and compresses them into
a zip file.
Resize* 1 Pulls an image from S3, resizes it and
saves it back to S3.
[ Stress [ n [ Tool used to generate CPU stress. |
Writer Generates text and repeatedly writes it
to disk and deletes.
CSvV 1 Generates a large CSV file and performs
Processor calculates on columns.
Calcs n Executes random math operations.
Matrix n Generates random large matrices and performs
Calcs matrix operations.
HTTP 1 Makes a HTTP request with a defined
Request payload to a URL.

tions. This system is implemented using the same serverless
platforms (i.e., AWS Lambda regions) as the aggregated
resources, providing high scalability and elasticity to support
proxying user requests across our serverless resources. Our
system consists of two primary serverless functions: the Ana-
lyzer Function and the Proxy Function.

1) Analyzer Function: The Analyzer function collects and
feeds various metrics to each proxy function deployment.
In this study, the Analyzer collected carbon intensity data
for each AWS region worldwide where our proxy functions
were deployed. We obtained carbon data for this study using
Electricity Maps. After data is collected, it is stored for future
use in an Amazon S3 bucket and then distributed to the proxy
functions to make routing decisions. While initially focusing
on carbon intensity, we can expand the Analyzer Function
architecture to collect other data, such as infrastructure usage
obtained by services such as CloudWatch, databases, message
queues, and more.

To minimize the runtime of the serverless proxy functions,
the Analyzer pushes information to the proxy functions by
updating function environment variables. Editing environment
variables is very fast as it does not require redeploying the
entire function package and does not require the function
to make a request to an external service or storage, but it
does add a cold start. The Electricity Maps API updates
carbon information hourly, enabling the Analyzer function to
run periodically to check for new carbon data and update
function environments. We configured a CloudWatch Events
rule to trigger the Analyzer function to run every 15 minutes.
Environment variables provide the proxy function immediate
access to the carbon data of each region. To enable accounting,
the proxy functions report carbon data in the response by
calculating the FF-GBS of the workload.

1. Collect Data

3. Route Requests

Lowest

@ ﬁ ‘»
Lowest
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Analyze
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Fig. 1.

Load Distribution Architecture for Analyzer and Proxy Functions

2) Proxy Function: To minimize additional costs of the
proxy functions, we used the minimum memory setting of
the serverless platform (e.g., 128 MB for AWS Lambda).
The proxy function performs minimal computations and is
designed to forward the request as fast as possible. When
deploying computationally intense serverless functions, a best
practice is to choose a high memory setting for an ideal
price-to-performance ratio. This is not the case for our proxy
functions, as the lowest memory setting offers the lowest
cost and equal performance to higher memory settings. Using
serverless proxy functions to aggregate resources leverages
the pay-as-you-go model of serverless computing to mitigate
always-on VM hosting costs while offering high elasticity and
availability.

Our proxy functions used synchronous forwarding for the
initial version of our load distribution system. With syn-
chronous forwarding, the proxy provides load distribution but
features overhead known as “’double billing” because the proxy
function must wait for the called function to complete [25],
[26]. However, our approach, where proxy functions run using
the lowest memory setting (e.g., 128MB), is far less than
“double” billing. The cost overhead varies depending on the
function being called. For example, where the aggregated func-
tion has a high memory configuration (e.g., 10 GB), the proxy
function overhead, which waits for the called function to com-
plete, provides only a 1.25% cost increase. With synchronous
load distribution, additional costs are equivalent to the target
function having an additional 128 MB of allocated memory.
For computational workloads that require at minimum one
vCPU, the target function should always be deployed with
at minimum 2 GB of memory per vCPU (e.g., a function
that uses two vCPUs should have 4 GB) on AWS Lambda.
To aggregate most serverless functions, utilizing the minimum
memory setting for the proxy function results in a much lower
cost than implied by ’double billing.” Figure 1 shows how the
Analyzer function is used to inform the Proxy functions and
how the Proxy function is used to route requests around the
world.

In the future, we plan to investigate alternate proxy function



TABLE II
AWS REGIONS USED FOR SERVERLESS SKY COMPUTING
AWS LAMBDA PRICING, AVERAGE CPU STEAL PER MINUTE, AND CPU
CLOCK SPEED DISTRIBUTION.

Region Price CPU CPUs
Location (1E-5)  Steal/min % 2.5GHz % 2.9GHz % 3.0GHz
Hong Kong 2.29 6.0 100.0 0.0 0.0
Tokyo 1.67 24.0 98.33 0.0 1.67
Seoul 1.67 9.6 96.5 0.0 3.5
Osaka 1.67 6.6 98.9 0.0 1.1
Mumbai 1.67 15.0 99.38 0.0 0.62
Singapore 1.67 15.6 98.57 0.0 1.43
Sydney 1.67 9.6 94.2 0.0 5.8
Frankfurt 1.67 27.6 100.0 0.0 0.0
Stockholm 1.67 7.8 94.86 0.0 5.14
Milan 1.95 11.4 100.0 0.0 0.0
Ireland 1.67 354 93.51 0.0 6.49
London 1.67 16.8 98.62 0.0 1.38
Paris 1.67 7.8 99.67 0.0 0.33
Canada 1.67 7.2 96.19 0.0 3.81
Sao Paulo 1.67 15.6 98.48 0.0 1.52
N. Virginia 1.67 30.0 98.66 0.0 1.34
Ohio 1.67 20.4 80.69 2.16 17.15
N. California 1.67 18 99.95 0.0 0.05
Oregon 1.67 29.4 100.0 0.0 0.0

architectures. One such option is asynchronous forwarding,
where the proxy is called asynchronously by the client, and the
proxy calls the target function asynchronously. This approach
features very little cost overhead, where the proxy function
only adds, on average, 2 ms of runtime and one additional
function invocation. After the request is made, the client
retrieves the function’s response from a database.

D. Experiment Design

To test our workloads across a global serverless sky comput-
ing platform, we deployed each benchmark function defined
in Table I to 19 AWS regions, as shown in Table II. Proxy
functions were also deployed to each region, and the Analyzer
function was deployed in Ohio. Using these functions, we
conducted five experiments:

EX-1 (Carbon Data Collection): The first experiment used
an AWS CloudTrail trigger to invoke the Analyzer function
every 15 minutes. The Analyzer collects carbon intensity data
for the 19 regions and saves the results for future use. This
experiment ran from November 2022 to March 2023 and was
used to observe how the carbon intensity of each region varied.

EX-2 (Network Latency): The second experiment focused
on measuring network latency between cloud regions and
observing variation in latency over time for (RQ-1). We
utilized the HTTP Request function as a client, which called
the Hello World function deployed to the North and South
American regions (N. California, Oregon, Ohio, N. Virginia,
Canada, and Sao Paulo). For the experiment, we invoked the
HTTP Request functions in every region to provide FaaS
clients in six different locations. To measure round-trip latency,
these clients then called every Hello World function in every
region, including the source region. The experiment ran with
a 15-minute interval from November 2022 to March 2023.
The goal of this experiment was to quantify network latency
statistics between regions over a long time period and measure
how round trip network latency correlates with the distances
between regions. This experiment is vital for understanding the

latency impact of aggregating serverless computing resources
from multiple regions to form serverless aggregations.

EX-3 (Dual-region Load Distribution): The third experiment
evaluated the best and worst-case trade-offs for reducing
carbon intensity to determine the ensuing impact on function
latency resulting from using the proxy function for (RQ-2 and
RQ-3). For this experiment, we examined the outcomes of
proxying function requests to small two-region aggregations.
We selected the Calcs function as a compute-bound function
and then had the proxy function distribute requests dynami-
cally to one of the two target regions in the aggregation based
on different conditions. We used Ohio and Oregon for the
American continents, London and Frankfurt for Europe, and
Hong Kong and Sydney for Asia/Oceania. The choice of these
regions was based upon the results of EX-1, where all of these
regions have similar but constantly changing carbon intensity.

EX-4 (Global Load Distribution): The fourth experiment
expands on EX-3. Instead of focusing on small two-region
aggregations, we expanded the scope to a global scale. For
this experiment, we used all of the functions from Table I. We
deployed them to all 19 regions in Table II to create a global
serverless sky computing platform. The proxy function was
deployed to every region. For the experiment, we deployed a
client to every region and made requests to our serverless load
distribution proxy function in the next nearest region. Deploy-
ing a client to every region simulated users being distributed
throughout the world. For this experiment leveraging our proxy
function, we evaluated distributing requests to regions using
five different load distribution techniques:

1) Ohio: Simulates a FaaS application that is only deployed
to a single region, in this case, Ohio (us-east-2).

2) Minimize Carbon: Routes functions to the nearest region
with the lowest possible carbon intensity.

3) Minimize Distance: Routes requests to the nearest region
(other than its own region) to minimize network latency.

4) Balanced Weight: Weights the competing objectives of
low carbon and low network latency equally. To simplify
routing, distance is used as a proxy for network latency.
For (RQ-1) we verify that the physical distance between
client and server cloud regions correlates strongly with
network latency and can serve as a reasonable facsimile.
The percent increase in carbon intensity and the per-
cent increase in distance between the two regions are
weighted 50-50. If a region has slightly worse carbon
intensity than another but is significantly closer, this
method will choose the closer region.

5) Weighted on Distance: Same as Balanced Weight but
applies three times more weight for distance. This way
low network latency will be favored more than low
carbon intensity.

This experiment ran every function on every region with
each load distribution technique every 30 minutes for ten
days. This experiment aimed to evaluate the carbon, latency,
cost, and performance implications of each load distribution
technique.
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Fig. 2. Grid fossil fuel usage percent for North and South America.

EX-5 (Performance-based load distribution): The fifth ex-
periment does not optimize for carbon or network latency
but instead focuses on improving function performance (RQ-
4). We deployed six instances of the Stress function to the
Ohio region with different memory settings: 1.7 GB, 3.4
GB, 5.1 GB, 6.8 GB, 8.5 GB, and 10 GB. These memory
settings represent the points where AWS Lambda provisions
an additional vCPU core for the serverless function up to six
total vCPUs [23]. We then invoked the function by specifying
the number of threads in the request payload, and our proxy
function routed our requests to a function deployment with a
memory setting that provided the required number of vCPU
cores for the specified number of threads. The Stress function
sustains vVCPUs at 100% utilization for five seconds. We then
compared function invocations using the proxy versus function
invocations running at 10 GB to determine the reduction in
CPU idle time. Function calls reporting significant idle time
indicate over-provisioned memory resulting in higher hosting
costs but with equivalent performance to a lower memory
setting. Here our proxy function dynamically adapts memory
and CPU resources relative to the function call’s requirements
and investigates the potential to reduce function execution
costs. On a serverless sky computing platform, in addition
to deploying applications to many regions or cloud providers,
the sky-layer can utilize functions with different configurations
to route requests to meet various goals, for example, high
performance, lower cost, or low resource contention.

IV. EXPERIMENTAL RESULTS

The following sections present the results of experiments
defined in Section III-D.

A. Carbon Data Analysis

The Analyzer function collected carbon data for 19 cloud
regions around the world. We attempted to collect carbon data
for every AWS region. However, some regions did not have
available data, so we chose the 19 regions described in Table
II. Carbon data was collected from November 2022 to March
2023. Over this time, we make many valuable observations
and describe our analysis for three serverless aggregations:
Americas, Europe, and Asia/Oceania (RQ-2).
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Fig. 3. Grid fossil fuel usage percent for European regions.

1) American Carbon Intensity: From our observations of
the American regions, our serverless load distribution proxy
function can take advantage of several factors. Regions with
large fluctuations in fossil fuel percentage can be exploited to
run workloads with low carbon intensity. Oregon, Sao Paulo,
and North California had a high coefficient of variation (CV)
of 51%, 32%, and 25%, respectively. However, Sao Paulo’s
average fossil fuel percentage was only 6.5%, compared to
all other regions in the United States, which were over 40%.
In the United States, since all regions have similar average
fossil fuel usage (40% to 58%) with large CVs, the serverless
proxy function can distribute requests across all regions at
different times. However, Canada is a notable outlier: nearly
all times, Canada had 0% fossil fuel usage. The overall average
fossil fuel usage in Canada was only 0.02%, with a peak of
3%, making Canada better than all other regions in North and
South America at any time. These observations are illustrated
in Figure 2.

2) European Carbon Intensity: On average, European re-
gions’ carbon intensity had higher fossil fuel usage than the
American regions. Milan, Ireland, Frankfurt, London, and
Paris had average fossil fuel usage of 78.7%, 56.7%, 47.9%,
41%, and 12%, respectively. The CV ranged between 4% and
18.5%. However, many regions in Europe achieved 0% fossil
fuel usage at some point, including Frankfurt, Stockholm,
London, and Paris. Like Canada in the American regions,
Stockholm had 0% fossil fuel usage nearly all the time, with
an overall average of just 0.2% fossil fuel usage and only
occasional jumps to 1-5%. These observations are illustrated
in Figure 3.

3) Asia/Oceania Carbon Intensity: In contrast to Europe
or America, for all regions in Asia, the minimum usage of
fossil fuel was above 49%. There was at no point a region
with 0% fossil fuel usage. These regions also demonstrated
a consistent diurnal pattern in which the carbon intensity
plateaus for approximately 12 hours each day before decreas-
ing for the remaining 12 hours. Singapore, Tokyo, Mumbai,
Osaka, and Seoul averaged 96.1%, 84.7%, 80.2%, 69.8%, and
69.7%, respectively. These regions had comparatively low CV
compared to regions in Europe or America, ranging from 1%
to 9%. To illustrate this plateauing behavior, Figure 6 depicts
the fossil fuel percentage of each region in Asia/Oceania
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throughout January 2023. The only region that did not exhibit
this plateauing behavior was Sydney, which had a much higher
fossil fuel CV of 25%, an average of 65%, and a minimum
fossil fuel percentage of 8%. Sydney’s fossil fuel profile more
closely resembled those observed in Europe or the Americas.

B. Latency Impact of Serverless Sky Computing

We measured the network latency between each of the 19
regions over the same time period as the carbon intensity data
for (RQ-1). We found that distance was a strong predictor
of network latency. Figure 5 shows the relationship between
the distance between regions and the measured request la-
tency. Using linear regression, the variance explained when
using distance as the sole predictor for network latency was
(R%=0.992).

There are multiple types of latency in the context of
serverless platforms. One type is network latency, the time for
a request to travel from the client to the FaaS platform. This
latency increases with distance and can be easily predicted
(see Figure 5). Another type of latency is function cold-start
latency, the delay resulting from infrastructure initialization on
the FaaS platforms to create runtime environments to service
client requests for user applications. To mitigate cold-start
latency for this experiment, we utilized the same FaaS function
instance for both the client and host functions by deploying
multi-purpose functions to effectively warm the infrastructure,
make cold-start latency negligible, and allow any region to
be a workload or proxy function. Out of over 203,000 client
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Fig. 6. Fossil fuel usage percent for Asia/Oceania regions in January 2023.

requests, zero requests were serviced by cold infrastructure.
Alongside making requests across regions, we measured intra-
region latency, where client calls were made to functions in
the same region. This enabled us to measure the baseline
warm function latency with as little network “travel” latency as
possible. For all regions, the baseline latency was, on average,
between 45-48 ms, with on average 3.1 ms of latency added
for every 100 km of travel distance. Suppose requests are made
to a nearby data center, resulting in 100 ms of total latency,
and our application requires less than 200 ms of latency, based
on our observations. In that case, we can make a request to a
data center up to an additional 1,612 km away and still meet
the requirement.

For all regions, we observed network latency variation
between 2% and 29% throughout the day. For example, Figure
7 shows the latency between the Ohio and North Virginia
regions normalized over a 24-hour day. We aggregated five
months of data across each hour of the day using local time
(e.g., hour 0 to hour 23) to calculate average network latency
and the coefficient of variation to observe trends relative to the
human wake, sleep, and work cycles. CV for network latency
was between 12% and 20% and was driven by the number
of outliers per hour. Despite the outliers, the average network
latency only varied +/-10 ms with over 6,000 samples recorded
for each hour.
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Fig. 7. Hourly average network latency and coefficient of variation between
North Virginia and Ohio from November 2022 to March 2023
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Fig. 8. Server-side runtime variation of running a workload in Ohio compared
to a global aggregation of functions.

C. Runtime Impact of Serverless Sky Computing

Working on a global scale with functions that can run on
nearly any region presented new challenges not identified in
our previous work. First, all regions had varying degrees of
hardware heterogeneity. We found that across all regions, there
were three different reported vCPU clock speeds: 2.5 GHz, 2.9
GHz, and 3.0 GHz. Each region had varying quantities of each
CPU clock speed and average CPU Steal per minute, as shown
in Table II. CPU Steal has previously been shown to be useful
for estimating the number of tenants sharing host infrastructure
[21]. Ohio had the most diverse range of vCPUs with 80.69%,
2.16%, and 17.15% with function requests serviced by 2.5
GHz, 2.9 GHz, or 3.0 GHz clock speed vCPUs, respectively.
All other regions had over 90% of their function invocations
fulfilled by a 2.5 GHz vCPU, with all remaining requests
fulfilled with the 3.0 GHz option. All function invocations
used equivalent payloads and seeds, resulting in deterministic
work at 2 GB of memory (allowing function instances one full
vCPU). In Ohio, the most heterogeneous region, we saw on
average 3.2% CV for function runtime across all workloads
except Stress and HTTP Request. When expanded to a global
sky computing platform and using the Minimize Distance
distribution technique (to invoke requests on as many
regions as possible), we saw the CV of function server-
side runtime double to 6.5%.

For other distribution techniques, such as Minimizing Car-
bon, we observed a runtime CV of 3.1%. This test leveraged
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Fig. 9. Carbon intensity reduction using our Minimize Carbon load distribu-
tion approach to distribute requests between two regions in North America.

infrastructure from fewer regions compared to the Minimize
Distance load distribution technique. Overall, we did not
observe a significant increase in performance variation (in-
creasing only by 3%) when expanding our aggregations to 19
regions globally. For specific workloads, such as Calcs and
CSV Processor, we did observe a reduction in runtime CV by
expanding from a single region to a global sky platform. The
runtime of the Calcs function is shown in Figure 8, where
the CV was between 0.5 and 1% lower using the global
deployment (RQ-1).

D. Serverless Load Distribution on Regional Aggregations

To analyze the efficacy of our serverless load distribution
techniques, we first deployed the proxy function to a small set
of regions to compare distributing requests to small two-region
aggregations before expanding the experiment to a global scale
(RQ-2 and RQ-3).

Initially, we focused on the Minimize Carbon load distri-
bution technique using Oregon and Ohio, as these two re-
gions presented a challenging distribution scenario. The region
with the lowest carbon footprint among these two regions
frequently changed. Over the 19 days of the experiment,
the load distribution system switched between regions 36
times. When using these two regions as a North American
aggregation, with client requests coming from all other North
American regions, the proxy function reduced the overall
carbon footprint of every workload by an average of 16%
compared to running the workload in Ohio and 3% compared
to running in Oregon (RQ-2). Conversely, it reduced overall
latency by 18% compared to running all requests through
Oregon but increased latency by 9% compared to running all
requests in Ohio. Network latency CV was 61%, 69%, and
65% for Oregon, Ohio, and the proxy function, respectively
(RQ-3). Figure 9 shows the proxy making a choice to send
requests between the two regions and the total fossil fuel usage
of each distribution option.

Using the London and Frankfurt regions, we executed
a similar dual-region experiment in Europe. Compared to
North America, this experiment resulted in 33% fewer region
switches (24 total). At the start, London had lower fossil
fuel usage than Frankfurt for about the first week. After
that, Frankfurt improved and the proxy began distributing
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Fig. 10. Reduction in carbon intensity using our Minimize Carbon load
distribution approach to distribute requests between two regions in Europe.
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Fig. 11. Demonstration of using our proxy to distribute between two regions
in Asia/Oceania.

requests between the two regions. This difference in fossil
fuel usage resulted in the proxy reducing carbon intensity by
46% compared to running all requests in Frankfurt (RQ-2).
This aggregation resulted in requests to London having 35%
more latency than running all requests in Frankfurt. Since the
proxy function favored London in the beginning, we saw a
29% increase in latency using the proxy compared to running
all requests in Frankfurt. Latency CV was 61%, 69%, and 62%
for London, Frankfurt, and the proxy function respectively
(RQ-3). Figure 10 shows the proxy making a choice to send
requests between the two regions and the total fossil fuel usage
of each deployment.

The regions selected for the Asia/Oceania aggregation pro-
vide a unique scenario that serverless sky computing can take
advantage of. For this experiment, we selected the Sydney
and Hong Kong regions. Similar to all of the other tests,
our serverless proxy was able to reduce carbon intensity by
23% and 4%, respectively, compared to running all of the
requests on Hong Kong or Sydney (RQ-2). Figure 11 shows
the proxy making a choice to send requests between the two
regions. Where this experiment was different was in terms of
the hosting costs; in the American regions, the runtime of our
functions running on either Oregon or Ohio was within 1%
of each other. Since both these regions use the same pricing
model, the overall hosting costs of using either of these regions
were also within 1% of each other. Hong Kong is a unique
region that has a different AWS Lambda pricing model than
most other regions; in Hong Kong, the price per GB/sec of
runtime is 37.5% higher. This price difference makes it so that
our proxy function is not only reducing the carbon intensity
of a workload running in Hong Kong but also reducing the
cost. Running the same workload in Sydney resulted in a
36% decrease in cost, which is expected while running the
workload with the load distributor resulted in a 19% cost
decrease compared to running all requests in Hong Kong.
Of our 19 regions, only two featured different pricing models
compared to the rest, as shown in Table II. Figure 12 shows
the difference in pricing models and how the proxy distributed
requests.

In a larger sky computing platform where resources are
combined from multiple cloud providers, differences in pricing
models can be exploited to reduce the overall hosting costs
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Fig. 12. Reduction in carbon intensity and hosting costs using our Minimize
Carbon load distribution approach to distribute requests between two regions
in Asia/Oceania with different pricing models.

of an application. The heterogeneous infrastructure of differ-
ent cloud providers results in differing performance between
serverless platforms. One platform may be significantly faster
than another but may charge more for the same amount
of work compared to a different, slower platform. While
serverless pricing policies appear similar, hidden differences
in the speed or capability of the underlying infrastructure can
have a significant impact on cost. A serverless Sky computing
platform can optimize an application for performance or cost
across different cloud providers.

E. Serverless Load Distribution on Global Aggregations

After evaluating load distribution across regional serverless
aggregations to verify that carbon footprint reductions were
possible without massive increases in network latency, we
investigated using a global sky computing platform (RQ-
2). 19 AWS regions were combined as a single serverless
aggregation, and local proxy functions were deployed in every
region. We also used each of these regions as clients. We
then deployed our workloads in Table I. To evaluate each
of our load distribution techniques, we made over 360,000
proxy function invocations which made 360,000 more calls to
workload functions.

TABLE III
COMPARISON OF SERVERLESS LOAD DISTRIBUTION TECHNIQUES

Regions  Average Latency  Average Cost
Name Used Latency CvV FF-GBS Per 1m
Ohio 1 474 50 568,000 $65.25
Minimize Carbon 2 600 49 128 $64.64
Minimize Distance 12 166 72 560,000 $67.01
Weighted Evenly 2 516 70 134 $64.05
Weighted Distance 6 489 71 440 $64.64

At a global scale, the proxy function can potentially move
a serverless workload entirely off of using predominantly
fossil fuel-based electricity grids as some regions have 0%
fossil fuel usage. As expected, we saw a massive decrease in
FF-GBS when comparing the Minimize Carbon distribution
technique to our other distribution schemes. For example, a
single region deployment to Ohio resulted in 776 thousand
FF-GBS to fulfill 6,000 function requests for each of our
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Fig. 13. Stress function invocations with a random number of stressed vCPUs
at 10240 MBs. High idle time show runs with over provisioned memory
settings, resulting in equivalent runtime but significantly higher cost.

workloads (72,000 requests total). When using the Minimize
Carbon technique, we saw that the same 72,000 requests
became just 172 FF-GBS because functions were hosted in
either Canada or Stockholm, depending on which is closer
as both of these regions would often have 0% fossil fuel
usage (99.8% reduction). Compared to Ohio, the Minimize
Carbon distribution technique only increased average latency
by 20%, but neither of these techniques is very good compared
to our Minimize Distance distribution technique. Using Ohio
or Minimize Carbon increased the overall network latency
by 152% and 161%, respectively, compared to Minimize
Distance. For applications that require low latency, aggregating
resources across many regions and utilizing a load distribution
technique that minimizes request travel distance has immense
potential for performance improvements (RQ-3).

For applications that are not latency dependent, we can
obtain a similar fossil fuel reduction to the Minimize Car-
bon technique with lower latency by using a weighted ap-
proach that considers both parameters. We investigated two
schemes for weighting physical distance and carbon intensity:
equal weighting and weighting distance 3x more. The equal-
weighted distribution technique behaved very similarly to
Minimize Carbon as it tended to run functions in Canada or
Stockholm due to their incredibly low carbon footprint while
lowering average network latency by an average of 17%. By
weighting physical distance more heavily (for low network
latency), this increased the number of regions that workloads
ran on up to six, reducing network latency by 22% compared
to the Minimize Carbon technique. The evenly weighted load
distribution approach achieved nearly identical low total FF-
GBS compared to the Minimize Carbon Technique, with an
average of 134 and 128 FF-GBS for each approach, respec-
tively. The low distance weighting option increased FF-GBS
by up to 440 (RQ-2). Table III shows the average results of
each load distribution technique with our set of workloads.

F. Multi-configuration Sky Computing

To evaluate a multi-configuration serverless proxy func-
tion, we deployed the Stress function to the Ohio region
with six different memory configurations (RQ-4). The multi-
configuration proxy function directs client requests to the
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Fig. 14. Proxy routing requests to function deployments with optimal con-
figurations. CPU User time remains nearly identical. Idle time is significantly
reduced which results in lower costs and equivalent performance.

function deployment with an ideal configuration for the client
payload. Here our Stress function takes a parameter to specify
the number of vCPUs to stress. For our client testing, we
created a random set of request payloads that request from one
to six vCPUs. The proxy then read the input payload and used
the CPU Time Accounting Memory Selection (CPU-TAMS)
model to predict a function memory setting and distribute
client requests to the function deployments that offered the
appropriate number of vCPUs and memory to achieve the best
price-to-performance ratio [23].

Figure 13 and 14 show how the function performance
and costs can be optimized by eliminating over-provisioning
function memory. Dynamic distribution of client requests
enabled the function invocations to achieve nearly the same
runtime with a lower memory allocation. In Figure 14, we
utilize the proxy function to reduce the over-provisioning of
function memory with minimal impact on function runtime.
Across the 90 function invocations depicted, we retained equal
CPU user time while reducing the idle time by 58% (which
resulted in a ~50% reduction in cost) while increasing the
overall runtime by just 7.8% versus running all functions with
maximum memory (i.e., 10 GB). When extrapolating these
savings for one million function invocations, our approach can
reduce application hosting cost from $833 to $349, a savings
of ~58%, using multi-configuration load distribution (RQ-4).

V. CONCLUSIONS

This paper has introduced the concepts of “Serverless Sky
Computing” by harnessing our prototype aggregated load
distribution system. We first observed how carbon intensity
and network latency changed from November 2022 to March
2023 across 19 cloud regions to investigate the potential
benefits and implications for serverless resource aggregation.
(RQ-1 Performance Variation): We found that latency had
a coefficient of variation between 2-29% during the day,
varying on average +/-10 ms. Function runtime varied much
less, with 3 to 6% CV across all workloads. We found that
distance was a strong predictor for latency, with an R?
of 0.992. (RQ-2 Carbon Intensity): We evaluated 19 regions
across the world. Canada and Stockholm exhibited the lowest
fossil fuel percentage for electricity generation, which was 0%
for the majority of the time. (RQ-3 Sustainability Costs):
Using our twelve workload functions and using each region in



the world to simulate a globally distributed application with
users around the world, we evaluated our load distribution
system with multiple resource aggregation and distribution
techniques. Compared to workloads being deployed in a
single region, by utilizing our serverless proxy deployed
globally, we reduced latency by, on average, 65% while
reducing the carbon intensity by up to 99.8%. (RQ-4
Multi-configuration Aggregation): By deploying a function
with multiple different memory configurations, we were able
to leverage the CPU-TAMS model [23] in our proxy function.
Using this model, we were able to distribute function requests
to function deployments to avoid over-provisioning vCPUs or
memory to obtain the best price-to-performance ratio. Multi-
configuration aggregations were able to reduce function
hosting cost by 58% reducing the cost of one million
function invocations from $833 to $349.
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