
X86 vs. ARM64: An Investigation of Factors
Influencing Serverless Performance

Xinghan Chen
University of Washington
Tacoma, Washington, USA

kirito20@uw.edu

Ling-Hong Hung
University of Washington
Tacoma, Washington, USA

lhhung@uw.edu

Robert Cordingly
University of Washington
Tacoma, Washington, USA

rcording@uw.edu

Wes Lloyd
University of Washington
Tacoma, Washington, USA

wlloyd@uw.edu

ABSTRACT
Function-as-a-Service (FaaS) platforms enable easy deployment and
hosting of code known as serverless functions and have gained con-
siderable traction among software developers. Recently, Amazon
has offered ARM64 processors as an alternative to x86 for hosting
serverless functions on AWS Lambda. To encourage developers
to migrate code to ARM64, use of ARM64 processors has been in-
centivized with a 20% discount. In this paper, we investigate the
implications of adopting ARM64 processors for hosting serverless
functions. We deploy and benchmark 18 distinct serverless func-
tions that stress a variety of system resources. Additionally, we
scaled up the runtime for each of our functions by increasing the
work they performed using 40 incremental steps to increase runtime
from a few seconds to several minutes. We compared performance
differences of x86 vs. ARM64 processors for our serverless func-
tion workoads and present our findings summarizing differences in:
CPU utilization, function runtime, function runtime variation, and
hosting costs. While only 7 of 18 functions ran faster on ARM64,
15 of 18 were less expensive thanks to the cloud provider discount.
Performance variation on ARM64 processors was less than half com-
pared to x86 processors potentially from the lack of hyperthreading
and lower resource contention for ARM64 CPUs.

KEYWORDS
Function-as-a-Service, Serverless Computing, Performance, ARM

ACM Reference Format:
Xinghan Chen, Ling-Hong Hung, Robert Cordingly, and Wes Lloyd. 2023.
X86 vs. ARM64: An Investigation of Factors Influencing Serverless Per-
formance. In 24th ACM/IFIP International Middleware Conference, Decem-
ber 11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 6 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware 2023, December 11–15, 2023, Bologna, Italy
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Functions-as-a-Service (FaaS) is a cloud computing delivery model
that allows developers to deploy and run their code in a server-
less environment. FaaS offers several advantages over traditional
container and virtual machine (VM) solutions. One of the main
advantages of FaaS is its scalability. With FaaS, the infrastructure
automatically scales up or down based on incoming workloads,
allowing developers to focus on writing code without worrying
about infrastructure management. This enables FaaS to handle sud-
den traffic spikes without human intervention, where traditional
container or VM based cloud infrastructure cannot. Another advan-
tage of FaaS is its cost-effectiveness. FaaS providers only charge
for the actual amount of resources a function consumes, not for an
entire server or VM. This means developers can save a lot of money
by using FaaS, especially for applications with variable workloads.
By leveraging the benefits of FaaS, developers can build robust,
scalable, and cost-effective applications that can handle sudden
traffic spikes and provide a seamless user experience.

While x86 processors have long been dominant, ARM64 proces-
sors have recently become more popular for their energy efficiency
and suitability for low-power devices. ARM64 processors are de-
signed to lower power consumption while offering high perfor-
mance. Recently, ARM64 processors have been leveraged by cloud
providers in data centers to provide alternatives to x86 for compute
platforms. AWS Lambda now offers ARM64-based Graviton2 pro-
cessors as an alternative to x86 Intel Xeon processors [13] at a 20%
discount. While new ARM64 processors offer attractive energy and
cost savings, there are potential downsides of concern. One of the
major disadvantages of adopting ARM64 processors is the limited
availability of software and tools. Since ARM64 processors are less
common in the server market compared to x86, there may be fewer
software packages and development tools available to organiza-
tions. Adoption of ARM64 processors requires the additional effort
of x86 code migration and testing on the ARM64 platform. For some
use cases, the effort may be trivial, but more effort may be involved
for other use cases, particularly those that rely on x86-specific CPU
extensions. This can result in longer development times and higher
costs, as organizations may need to invest in custom development
or softwaremigration to ARM64 platforms [6]. Since ARM64 proces-
sors have a different architecture than x86, applications optimized
for x86 may not perform as well on the ARM64 platform without
major modifications.

https://orcid.org/0000-0002-5209-2248
https://orcid.org/0000-0002-9199-4973
https://orcid.org/0000-0003-2021-8501
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Middleware 2023, December 11–15, 2023, Bologna, Italy Chen et al.

In this paper, we investigate the performance differences of x86
vs. ARM64 processors by executing 18 distinct serverless func-
tion workloads on AWS Lambda which supports both Intel Xeon
and ARM64-based processors. Our goal is to evaluate differences
in CPU utilization, function runtime, function runtime variance,
and hosting costs. By conducting this study, we aim to offer a de-
tailed evaluation of the two architectures’ capabilities within a
serverless FaaS environment. The findings can guide developers
and organizations considering migration to ARM64-based compute
infrastructure to better understand cost vs. performance trade-offs
compared to x86-based infrastructure.

1.1 Research Questions
This paper investigates the following research questions:

RQ-1: (CPU Utilization): How do Linux CPU utilization mea-
surements compare for serverless functions run on x86 (Intel) vs.
ARM64 (Graviton2) processors? We investigate changes in CPU
user mode time, CPU kernel mode time, and CPU idle time.
RQ-2: (Performance): How does serverless function runtime com-
pare on x86 (Intel) vs. ARM64 (Graviton2) processors? Using run-
time on x86 processors as a baseline, we identify functions with
faster runtime on ARM, similar runtime on ARM, and slower run-
time on ARM. In addition, we investigate x86 vs. ARM64 runtime
implications when scaling up the work performed by function in-
stances.
RQ-3: (Performance Variance): What is the difference in per-
formance variance of serverless functions executed on x86 (Intel)
vs. ARM64 (Graviton2) processors? We calculate and analyze the
coefficient of variation of function runtime while scaling the work
of function instances using forty distinct steps to increase runtime.
RQ-4: (Cost): What is the cost difference in hosting serverless
functions on x86 (Intel) vs. ARM64 (Graviton2) processors? We
compare the overall hosting costs of 18 distinct functions while
scaling function runtime across forty steps.

1.2 Contributions
This paper provides the following research contributions:

(1) We provide a comparison of executing 18 distinct serverless
functions on the ARM64 and x86 architectures. Standard
and custom benchmarks were encapsulated into serverless
functions to compare CPU utilization, runtime, and cost
differences. Functions where ARM64 outperforms x86, x86
outperforms ARM64, and where performance is similar are
identified.

(2) We investigate runtime variance on ARM64 vs. x86 proces-
sors by leveraging our 18 distinct serverless functions while
scaling function runtime across forty steps. The coefficient of
variation of function runtime was determined for serverless
function workloads. X86 function instances were found to
exhibit more runtime variation, which is likely attributed to
CPU hyperthreading.

2 RELATEDWORK
Recently, ARM processors designed for Internet-of-Things and mo-
bile devices have gained popularity due to their increased power

efficiency and low cost. However, migration to the ARM platform
can pose considerable challenges for developers. ARM64 processors
have emerged as an alternative to x86 processors in data centers and
cloud computing. ARM64 servers present an enticing alternative for
improving system flexibility, performance isolation, and resource
utilization in serverless computing. In late 2021, AWS Lambda, a
predominant public FaaS platform, began offering ARM64 proces-
sors as an alternative to x86. To encourage developers to migrate
code to ARM64, these processors are offered at a 20% discount [13].

Xie et al. compared the use of x86 Intel Xeon processors to the
ARM-based Phytium 2000+ processor for hosting serverless FaaS
platforms by deploying the Kubernetes-based Knative and Open-
FaaS serverless frameworks [15]. Both frameworks were deployed
using one master node and eight worker nodes with 8 vCPUs and
16GB memory each. Xie investigated implications of cold-start ini-
tialization, auto-scaling, and performance isolation of co-located
function instance containers. Xie found for hosting the open-source
FaaS frameworks that ARM64 processors had greater startup la-
tency but similar scaling responsiveness while being more suscep-
tible to resource contention under intense pressure from many
concurrent function requests. In [7], Javed et al. compared perfor-
mance of OpenFaaS, Apache OpenWhisk, and AWS Greengrass
run on a cluster of four ARM-based Raspberry Pis and compared
performance to AWS Lambda and Azure Functions. The authors
created three functions where each stressed one resource (e.g., CPU,
memory, and disk) and found that OpenFaaS was most suitable to
deploy and run on edge devices, and that network latency to the
cloud made executing functions locally faster for their use cases.

Lambion et al. compared x86 vs. ARM64 performance for a
natural language processing pipeline consisting of preprocessing,
training, and query functions run on AWS Lambda [10]. The total
pipeline runtime averaged 1.7% slower on x86 processors than ARM,
but this performance loss was due to resource contention. Run-
ning the pipeline continuously over 24 hours on ARM64 and x86,
the best-case performance on x86 was 13.53% faster than ARM64,
whereas the worst-case performance was 17.10% slower. Resource
contention potentially from x86 platform popularity resulted in a
3-fold difference in runtime variation on x86 vs. ARM64. ARM64
was less expensive than x86 as 10,000 NLP pipeline executions
cost $245 vs. $311 on x86, a savings of 21.4%. Park et al. profiled
performance of a deep neural network inferencing suite on AWS
Lambda using ARM64 and x86 processors, extending the work of
Lambion [12]. Park tested various model optimization heuristics,
finding that ARM64 optimization libraries did not deliver equiva-
lent performance enhancements compared to x86. Park concluded
that ARM64 hardware is not yet as efficient due to immaturity of
the development eco-system.

3 METHODS
3.1 Systems and Tools
To compare the use of ARM64 vs. x86 processors for the execution
of serverless functions, we leveraged the Serverless Application
Analytics Framework (SAAF). SAAF is a tool designed to help de-
velopers better understand and optimize the performance of their
serverless applications [3, 5]. It is a reusable framework that sup-
ports multiple programming languages and can be integrated into

X86 vs. ARM64 Performance Middleware 2023, December 11–15, 2023, Bologna, Italy

a function’s package for deployment to multiple commercial or
open-source FaaS platforms. SAAF collects forty-eight distinct met-
rics that enable developers to profile CPU and memory utilization,
monitor infrastructure state, and observe platform scalability. By
providing improved observability of FaaS function deployments,
SAAF enables developers to more accurately predict runtime, per-
formance, and resource utilization, which can help reduce costs
and improve application performance. For our measurements with
SAAF, we captured userRuntime which provides runtime of the
function code without profiling overhead.

We investigated x86 and ARM64 performance on AWS Lambda,
a serverless FaaS platform offered by Amazon Web Services (AWS)
[14]. AWS Lambda allows developers to run code without provi-
sioning or managing servers by uploading their code in a variety
of programming languages, and the service will automatically run
code in response to events while automatically managing comput-
ing resources. AWS Lambda supports running functions written in a
wide range of programming languages, including Python, Java, Go,
C#, and Node.js, as well as custom runtimes and functions packaged
as container images. For this paper, AWS Lambda was leveraged to
support the comparison of x86 vs. ARM64 performance because it is
the only public serverless Function-as-a-Service platform currently
providing access to ARM64 and x86 processors. [10, 13]

3.2 Serverless Functions
To support our investigation, we leveraged 18 distinct serverless
functions as shown in table 1. We utilized functions from the Func-
tionBench benchmark suite which provides a diverse set of func-
tions tailored for benchmarking FaaS platforms [8]. Functions from
FunctionBench include: linpack, json_dumps, chameleon, and float.
In addition, we also leveraged the Serverless Benchmark Suite
(SeBS), which also provides functions for benchmarking FaaS plat-
forms [2]. Functions from SeBS include: graph-pagerank, graph-mst,
graph-bfs, compression, and video-processing.

We created four serverless functions by wrapping existing Linux
benchmarks. Three functions were created by wrapping bench-
marks from Linux sysbench: primenumber (sysbench-cpu), thread
(sysbench-threads), and readmemory (sysbench-memory) [9]. The
readdisk function was created by wrapping the fio - flexible I/O
tester benchmark [1]. Five serverless functions were created from
scratch to stress specific aspects of the system not covered by any
other benchmarks. Chacha20 used the openssl encryption libraries
to encode an 8MB file n times [11]. For chacha20, we disabled ac-
celeration, Neon on ARM and AVX on x86 in our testing. SQLite
executes random queries against an embedded SQLite file-based
database. Filehandle opens and closes a scalable number of file han-
dles.We scaled the number of file handles from 100,000 to 12,000,000
to scale the runtime. Readwritememory performed n iterations of
creating a 1 KB byte array, writing 1,024 bytes, and deleting the
array. Socket opened and closed a socket n times to scale runtime.

By utilizing these functions, we were able to conduct a com-
prehensive examination of performance for the x86 and ARM64
architectures in a serverless computing environment. Utilizing ex-
isting benchmarks and benchmark suites such as Linux sysbench,
FunctionBench, and SeBS provides the benefit of community vali-
dation, as these benchmarks are designed to be as comprehensive
and unbiased as possible and have already been extensively tested.

Short Name Function Name Description
linpack python_linpack Solve linear equations:

Ax = b
chacha20 openssl_encrypt_chacha20 Repeatedly perform openssl

encryption of 8MB file
n times

sqlite python_sqlite_dump Execute n random SELECT
queries on a 10*1000 SQLite
database

video-processing ffmpeg_sebs_220_gif Convert PNG to GIF n times
json_dumps python_json_dumps JSON deserialization using

a downloaded JSON-encoded
string dataset

graph-pagerank python_sebs_501_pagerank PageRank implementation
with igraph.

graph-mst python_sebs_502_mst Minimum spanning tree
(MST) implementation with
igraph.

float python_float_operation Perform sin, cos, sqrt ops
chameleon python_chameleon Create HTML table of n rows

and M columns
graph-bfs python_sebs_503_bfs Breadth-first search (BFS)

implementation with igraph.

cp
uU

se
r

primenumber sysbench_cpu_prime Prime number generator

thread sysbench_thread Create thread, put locks and
release thread

filehandle python_fopen Open and close file handles
socket python_socket Open and close socket n times

cp
uK

er
ne

l
readmemory sysbench_memory N sequential reads of 1GB

memory block
readwritememory python_malloc_write Allowcate 1MByte of memory,

M
em

or
y

write 0x42 into it and release

readdisk fio_disk_io_random_read Test random read speed on a
1GB blockI/

O

compression python_sebs_311_compression Create a .gz file for a file

Table 1: Function descriptions and short names grouped by
the predominantly stressed resource. Group 1: CPU user time
(blue), Group 2: CPU kernel time (yellow), Group 3: Memory
Intensive (orange) function, and Group 4: I/O (grey)

For this research, we assembled a diverse set of serverless functions
encompassing a variety of tasks ranging from compute-intensive
to I/O-bound workloads, enabling us to evaluate a broad range of
aspects of serverless system performance for both architectures.

3.3 Experiment Environment and Methodology
All tests were conducted on AWS Lambda using the us-west-2
(Oregon) region. We provisioned our AWS Lambda functions with
3 GB memory to ensure full access to two virtual CPUs (2 vCPUs)
[4]. This is the smallest memory size that allows full access to two
vCPUs. Any smaller memory size would result in a fractional share
of CPU time equivalent to having less than two vCPUs. This could
hinder performance and increase performance variance, skewing
the results of our comparisons. It was imperative to maintain a
level playing field to ensure our performance measurements were
indicative of the actual capabilities of the respective architectures
to remove influences from unequal resource allocations. Functions
were tested using identical configurations on x86 and ARM64 to
ensure consistency for accurate benchmarking and analysis.

For tests with I/O operations, a temporary, ephemeral disk of 5
GB was allocated [16]. This ensured that any variability in perfor-
mance was not due to disk space limitations but could be attributed
to the architectural differences and workload characteristics.

Middleware 2023, December 11–15, 2023, Bologna, Italy Chen et al.

To gain a comprehensive understanding and to mitigate potential
performance variance, we scaled up the runtime of each function
using 40 distinct steps and then executed each function ten times
per step. The steps were equidistantly spaced to enable profiling the
functions over a broad range of runtime spanning from a few sec-
onds to several minutes. This allowed a well-rounded view of how
each architecture responded to different workloads and conditions.

4 RESULTS
4.1 ARM64 vs. x86 CPU Utilization Comparison
To investigate (RQ-1), we profiled Linux CPU utilization of our
18 serverless functions on ARM64 and x86 as shown in figure 1.
Initially, we captured six distinct CPU metrics using SAAF: cpuUser,
cpuKernel, cpuIrq, cpuSoftIrq, cpuIOWait, and cpuIdle [5]. On close
examination, values for cpuIrq, cpuSoftIrq, and cpuIOWait were
found to be nearly zero. To improve the clarity of figure 1, we omit
these metrics and depict the remaining CPU metrics to show the
time the CPU executed user instructions (cpuUser), time the CPU
executed kernel instructions (cpuKernel), and time the CPU was
idle (cpuIdle). As our AWS Lambda functions had access to two
vCPUs, one thread running at 100% CPU utilization is shown as 50%
cpuUser time in the graph. We found that for most of our functions,

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

x
8

6

a
r
m

6
4

read

memory

linpack graph

pagerank

readwrite

memory

float prime

number

chacha20 chame-

leon

video

processing

0

50

100

CPU User CPU Kernel CPU Idle

P
e
r
c
e
n
t
a
g
e
(
%

)

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

x
8
6

a
r
m
6
4

json

dumps

compre-

ssion

sqlite graph

bfs

graph

mst

filehandle socket thread readdisk

0

50

100

P
e
r
c
e
n
t
a
g
e
(
%
)

Figure 1: CPU mode time percentage of each function

both architectures exhibited similar CPU utilization. However, two
functions (linpack and graph-pagerank) had noticeably higher CPU
utilization on ARM64. Both of these functions had higher CPU
kernel time on x86 than ARM64 and greater runtime on ARM64
than x86, suggesting that x86-specific kernel functions were used
to help optimize performance. Another observation from figure 1
was that most of our functions only used a single thread. Note the
large number of functions having approximately 50% CPU idle time
on the graph. This observation identifies potential for performance

optimization if such workloads can be refactored to leverage both
vCPUs to reduce runtime and cost [4].

4.2 ARM64 vs. x86 Performance Comparison
To support investigation of (RQ-2), we executed 18 distinct func-
tions on x86 and ARM64 to compare performance. Runtime perfor-
mance differences on ARM64 relative to x86 are shown in Figure 2.
Figure 3 provides box plots showing x86 and ARM64 function run-
time for our functions. We categorize performance of our functions
into three groups: ARM-slower (than x86), ARM-similar (to x86),
and ARM-faster (than x86). For ARM-slower, ARM64 function
runtime was >10% than x86. Functions with ARM-slower perfor-
mance include linpack, chacha20, thread, filehandle, sqlite, and
readwritememory. For ARM-similar, runtime was within ±10%
of x86. Functions with ARM-similar performance include video-
processing, json_dumps, socket, graph-pagerank, graph-mst, com-
pression, float, and graph-bfs. For ARM-faster, runtime was >10%
faster than x86. Functions with ARM-faster performance include
chameleon, readdisk, readmemory, and primenumber.

Figure 2: ARM64 Function Performance Difference vs. x86

linpack
chacha20

thread
filehandle

sqlite
readwritememory

video-processing

json_dumps

socket
graph-pagerank

graph-mst

compression

float
graph-bfs

chameleon

readdisk

readmemory

primenumber

0

50

100

150

200

250

300

350

arm64 x86

R
un

ti
m

e
(s

ec
on

ds
)

Figure 3: Min and max time for X86 vs. ARM

X86 vs. ARM64 Performance Middleware 2023, December 11–15, 2023, Bologna, Italy

Our observations revealed notable differences in workload per-
formance between ARM64 and x86 architectures when deployed on
AWS Lambda. Figure 2 shows how min-max runtime performance
deltas can swing by as much as ±50% depending on the specific
workload. An interesting observation was that ARM-slower work-
loads averaged 9.96% CPU Kernel time, ARM-similar workloads
averaged 3.94% CPU Kernel time, and ARM-faster workloads aver-
aged just 0.28% CPU Kernel time except for readdisk, which had
high CPU Kernel time (∼77%) on both ARM64 and x86. Workloads
that required more kernel mode operations appeared to execute
slower on ARM, and when kernel mode was avoided, they executed
faster.

When scaling runtime of individual workloads, the performance
differences between ARM64 and x86 remained relatively constant.
For instance, if a particular workload was 20% faster on ARM, this
advantage remained whether the function ran for a short or long
period. This is likely because our workloads did not perform dis-
tinctly different operations when runtime was scaled. Instead, they
did more or less of the same operations. ARM64 vs. x86 runtime
differences may not hold for non-deterministic functions whose
CPU utilization is subject to change based on variable outcomes.

Various factors may have contributed to runtime differences. For
example, the differences in micro-architectural designs between
ARM64 and x86 could lead to variations in how efficiently certain
operations were executed. Additionally, compiler optimizations and
hardware acceleration specific to each architecture likely impacted
how effectively code was run. For example, video-processing and
linpack is using SSE/AVX onX86 andNeon onARM64. Furthermore,
AWS Lambda’s resource allocation and management strategies may
interact differently with each architecture, contributing to runtime
differences.

4.3 ARM64 vs. x86 Performance Variation
To investigate performance variability on x86 vs. ARM64 for (RQ-
3), we calculated the average Coefficient of Variation (CV) of our
functions as shown in figure 4. We found that ARM64 processors
provided less runtime variance than their x86 counterparts on AWS
Lambda. Specifically, 12 out of 18 functions tested exhibited lower
CV on ARM. The average CV for x86 was more than 2x greater
than ARM64, with an average runtime CV of 1.802% for ARM64
and 3.876% for x86. Previously, it was suggested that higher CV
for serverless functions on x86 vs. ARM64 may be the result of
platform contention for the CPU (where x86 is more popular), and
x86 hyperthreading and the subsequent lack of hyperthreading on
the ARM-based Graviton2 processor [10]. Our results, where we
have observed lower runtime variance for 12 out of 18 functions,
add support to this claim. Further, we identify a potential cause
to explain higher CV on ARM64 is I/O operations (IOPS). The
filehandle and chacha20 workloads had high IOPS and subsequently
higher CV on ARM64 than x86.

Figure 5 compares changes in CV while increasing function run-
time successively using 40 steps. Functions are shown in separate
graphs for our performance groups: ARM-faster, ARM-similar, and
ARM-slower. Graphs on the left show CV for ARM, while graphs
on the right show CV for x86. The x86 processor exhibited notably
higher CV in the ARM-similar performance group. Overall, figure
5 shows the higher CV observed when executing functions on x86.

Name

C
V

 (%
)

0

2

4

6

8

rea
dd

isk

file
ha

nd
le
so

ck
et

thr
ea

d

ch
ac

ha
20

pri
men

um
be

r

rea
dw

rite
mem

o

rea
dm

em
ory

gra
ph

-pa
ge

ran
k

gra
ph

-m
st

gra
ph

-bf
s

co
mpre

ss
ion

vid
eo

-

ch
am

ele
on

sq
lite

lin
pa

ck flo
at

jso
n_

du
mps

x86 arm64

Figure 4: Average CV (%) of function runtime

0 10 20 30 40
0

5

10

15

10 20 30

chameleon readdisk readmemory primenumber

Step Step

C
V
 (

%
)

ARM Faster (ARM) ARM Faster (X86)

0 10 20 30 40
0

5

10

15 video-processing json_dumps socket graph-pagerank

graph-mst compression float graph-bfs

10 20 30

Step Step

C
V
 (

%
)

ARM Similar (ARM) ARM Similar (X86)

0 10 20 30 40
0

5

10

15

10 20 30

linpack chacha20 thread filehandle sqlite,readwritememory

Step Step

C
V
 (

%
)

ARM Slower (ARM) ARM Slower (X86)

Figure 5: Function runtime: change in CV(%) over 40 steps

4.4 ARM64 vs. x86 Cost Comparison
To investigate (RQ-4), we compared hosting costs of our 18 func-
tions on x86 vs. ARM. Figure 6 depicts cost estimates for 10,000 sets
of function calls where run time was scaled up using 40 steps for
a total of 400,000 calls per function. Figure 7 shows the % cost dif-
ference when comparing function hosting costs on ARM64 vs. x86
processors. Only three functions Linpack, Chacha20, and Thread
had higher costs on ARM64 on AWS Lambda. The remaining 15
functions had lower costs on ARM64 than x86. Cost savings was
helped by the 20% cost discount Amazon offers when using ARM64
processors on the platform. Without the discount, only 8 of 18
functions would experience a cost savings. The cost savings helps
to offset the higher runtime of workloads that execute slower on
ARM64 as shown in figure 2.

Middleware 2023, December 11–15, 2023, Bologna, Italy Chen et al.

1,263

1,104
1,151

1,007

651

477

331

595

449

1,171

498

933

608

1,020

417

2,783

394

1,014

1,184

1,451
1,528

1,055

869

639

437

728

524

898

1,362

1,557

1,344

1,165

501

3,045

389

1,168

linpack
chacha20

thread
filehandle

sqlite
readwritememory

video-processing

json_dumps

socket
graph-pagerank

graph-mst

compression

float
graph-bfs

chameleon

readdisk

readmemory

primenumber

$0

$500

$1,000

$1,500

$2,000

$2,500

$3,000

arm64 x86

C
os

t
(U

S
D

)

Figure 6: Estimated cost of 400k function calls- x86 vs. ARM

linpack

chacha20

thread

filehandle

sqlite

readw
ritem

em
ory

video-processing

json_dum
ps

socket

graph-pagerank

graph-m
st

com
pression

float

graph-bfs

cham
eleon

readdisk

readm
em

ory

prim
enum

ber

−60

−50

−40

−30

−20

−10

0

10

20

30

%
 A

R
M

 c
o
s
t
 d

iff
e
r
e
n
c
e
 v

s
.
x
8

6

Figure 7: ARM cost difference (+/- %) relative to x86

5 CONCLUSION
In this paper, we compared the performance characteristics of
ARM64 and x86 architectures in the context of serverless comput-
ing, specifically using AWS Lambda. By leveraging FunctionBench
and SeBS as established benchmark suites and custom functions,
we profiled performance of CPU, memory, and I/O bound work-
loads on the two architectures. We summarize our findings of CPU
architectural implications as follows:
(RQ-1): While most functions had similar CPU utilization profiles
across both architectures, some functions on ARM64 had higher
CPU kernel mode utilization. These differences may help detect
where x86 vs. ARM64 performance differences are likely occur.
(RQ-2): ARM64 can provide performance advantages for serverless
workloads. Of the 18 serverless functions tested, ARM64 provided
faster runtime than x86 for 7 out of 18 functions. Four functions
were more than 10% faster on ARM64. Runtime improvements ap-
peared highly dependent on the nature of the workload.
(RQ-3): Functions run on x86 on AWS Lambda, exhibit more than

twice the runtime variance vs. ARM64 making x86 less reliable for
consistent performance.
(RQ-4): ARM64 offers cost savings on AWS Lambda (15 of 18 tested
serverless functions). Some of the cost savings are attributed to
the 20% cost discount offered by the cloud provider for ARM64
processors.

Given the wide variety of available ARM64 processors, future
research can help generalize our results more broadly for ARM-
based serverless environments. Future work can also investigate
the creation of performance models to predict performance from
code migration to ARM64 environments. Performance models have
potential to aid developers and practitioners in planning code mi-
grations to prioritize migrations that will offer the best performance
and cost trade-offs on ARM64. By shedding light on these perfor-
mance aspects, our research contributes to the ongoing discourse
on optimizing serverless architectures, offering valuable guidance
for organizations aiming to make the most out of their serverless
computing investments.

REFERENCES
[1] Jens Axboe. [n. d.]. 1. fio - Flexible I/O tester rev. 3.35 8212; fio 3.35-6-g1b4b-

dirty documentation. https://fio.readthedocs.io/en/latest/fio_doc.html. Accessed:
2023-09-30.

[2] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. Sebs: A serverless benchmark suite for function-as-a-
service computing. In Proceedings of the 22nd International Middleware Conference.
64–78.

[3] Robert Cordingly, Navid Heydari, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, and
Wes Lloyd. 2021. Enhancing Observability of Serverless Computing with the
Serverless Application Analytics Framework. In Comp. of the 2021 ACM/SPEC Int.
Conf. on Performance Engineering, Tutorial.

[4] Robert Cordingly, Sonia Xu, andWes Lloyd. 2022. FunctionMemory Optimization
for Heterogeneous Serverless Platforms with CPU Time Accounting. In 2022
IEEE International Conference on Cloud Engineering (IC2E). IEEE, 104–115.

[5] Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David
Perez, Rashad Hatchett, and Wes Lloyd. 2020. The Serverless Application Ana-
lytics Framework: Enabling Design Trade-off Evaluation for Serverless Software.
In Proc. of the 2020 Sixth Int. Wksp on Serverless Computing. 67–72.

[6] Blake W Ford, Apan Qasem, Jelena Tešić, and Ziliang Zong. 2021. Migrating
software from´ x86 to arm architecture: An instruction prediction approach. In
2021 IEEE Int Conf on Networking, Architecture and Storage (NAS). IEEE, 1–6.

[7] Hamza Javed, Adel N. Toosi, and Mohammad S. Aslanpour. 2021. Serverless
Platforms on the Edge: A Performance Analysis. arXiv:2111.06563 [cs.DC]

[8] Jeongchul Kim and Kyungyong Lee. 2019. Functionbench: A suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). IEEE, 502–504.

[9] Alexey Kopytov. [n. d.]. man sysbench (1): A modular, cross-platform and multi-
threaded benchmark tool. https://manpages.org/sysbench. Accessed: 2023-09-30.

[10] Danielle Lambion, Robert Schmitz, Robert Cordingly, Navid Heydari, and Wes
Lloyd. 2022. Characterizing X86 and ARM Serverless Performance Variation: A
Natural Language Processing Case Study. In Companion of the 2022 ACM/SPEC
International Conference on Performance Engineering. 69–75.

[11] openssl.org. [n. d.]. Enc - OpenSSLWiki. https://wiki.openssl.org/index.php/Enc.
Accessed: 2023-09-30.

[12] Subin Park, Jaeghang Choi, and Kyungyong Lee. 2022. All-you-can-inference:
serverless DNN model inference suite. In Proceedings of the Eighth International
Workshop on Serverless Computing. 1–6.

[13] Danilo Poccia. [n. d.]. AWS Lambda Functions Powered by AWS Graviton2
Processor – Run Your Functions on Arm and Get Up to 34Performance.
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-
graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-
price-performance/. Accessed: 2023-09-30.

[14] Amazon Web Services. [n. d.]. AWS Lambda. https://aws.amazon.com/pm/
lambda/. Accessed: 2023-09-30.

[15] Dong Xie, Yang Hu, and Li Qin. 2021. An evaluation of serverless computing on
x86 and arm platforms: Performance and design implications. In 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD). IEEE, 313–321.

[16] Channy Yun. [n. d.]. AWS Lambda Now Supports Up to 10 GB Ephemeral Stor-
age. https://aws.amazon.com/blogs/aws/aws-lambda-now-supports-up-to-10-
gb-ephemeral-storage/. Accessed: 2023-09-30.

https://fio.readthedocs.io/en/latest/fio_doc.html
https://arxiv.org/abs/2111.06563
https://manpages.org/sysbench
https://wiki.openssl.org/index.php/Enc
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/pm/lambda/
https://aws.amazon.com/pm/lambda/
https://aws.amazon.com/blogs/aws/aws-lambda-now-supports-up-to-10-gb-ephemeral-storage/
https://aws.amazon.com/blogs/aws/aws-lambda-now-supports-up-to-10-gb-ephemeral-storage/

	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Contributions

	2 Related Work
	3 Methods
	3.1 Systems and Tools
	3.2 Serverless Functions
	3.3 Experiment Environment and Methodology

	4 Results
	4.1 ARM64 vs. x86 CPU Utilization Comparison
	4.2 ARM64 vs. x86 Performance Comparison
	4.3 ARM64 vs. x86 Performance Variation
	4.4 ARM64 vs. x86 Cost Comparison

	5 Conclusion
	References

