
Leveraging Serverless Computing to Improve Performance for
Sequence Comparison

Xingzhi Niu
School of Engineering and

Technology
University of Washington

Tacoma, WA
nxz18@uw.edu

Dimitar Kumanov
School of Engineering and

Technology
University of Washington

Tacoma, WA
dimitark@uw.edu

Ling-Hong Hung
School of Engineering and

Technology
University of Washington

Tacoma, WA
lhhung@uw.edu

Wes Lloyd
School of Engineering and

Technology
University of Washington

Tacoma, WA
wlloyd@uw.edu

Ka Yee Yeung
School of Engineering and

Technology
University of Washington

Tacoma, WA
kayee@uw.edu

ABSTRACT
Cloud computing offers on-demand, scalable computing and stor-
age, and has become an essential resource for the analyses of big
biomedical data. The usual approach to cloud computing requires
users to reserve and provision virtual servers. An emerging alterna-
tive is to have the provider allocate machine resources dynamically.
This type of serverless computing has tremendous potential for
biomedical research in terms of ease-of-use, instantaneous scala-
bility, and cost effectiveness. In our proof of concept example, we
demonstrate how serverless computing provides low cost access to
hundreds of CPUs, on demand, with little or no setup. In particular,
we illustrate that the all-against-all pairwise comparison among
all unique human proteins can be accomplished in approximately
2 minutes, at a cost of less than $1, using Amazon Web Services
Lambda. We also demonstrate the feasibility of our approach using
Google Functions and show that the same task of pairwise protein
sequence comparison can be accomplished in approximately 11.5
minutes. In contrast, running the same task on a typical laptop
computer required 8.7 hours.

CCS CONCEPTS
• Applied computing → Molecular sequence analysis; • Com-
puter systems organization→ Cloud computing;
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1 INTRODUCTION
Cloud computing has become an essential resource in the analyses
of big biomedical data by offering massive scalable computing and
storage, data sharing, and on-demand access to resources and ap-
plications [14, 23]. Most major public cloud vendors offer tools for
biomedical research, including Google Cloud Genomics [1], Ama-
zon Web Services (AWS) [4] and Microsoft Genomics [9]. Currently,
bioinformatics use cases benefit from leveraging cloud comput-
ing resources by provisioning on-demand computing infrastruc-
ture [10, 22, 31], providing secure access to protected data and
scalable software platforms [13, 24].

A major barrier to widespread adoption of the cloud for large
scale parallel bioinformatics jobs is the need to provision and config-
ure virtual servers before computation can proceed. Setup requires
expertise and can consume more time than the actual compute.
Recently, serverless computing, through a cloud service delivery
model referred to as Function-as-a-Service (FaaS), has emerged as
an evolved simplified programmingmodel that can be used to create
scalable cloud applications with reduced configuration and manage-
ment overhead [27]. Instead of the user reserving and provisioning
a set of virtual servers, the cloud provider automatically allocates
machine resources as needed. Specifically, serverless computing
enables access to hundreds of CPUs on demand, with little or no
setup. Code snippets can be easily deployed to the cloud in the
form of microservices using serverless computing with resource
provisioning, monitoring, scalability and fault tolerance provided
automatically [12, 26].

In addition to the ease of use, thesemicroservices can be launched
quickly while requiring no provisioning or configuration of virtual
machines and are inexpensive. Serverless computing enables a
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true on-demand pricing model: there is no cost to the user when
the user’s function code is not being executed. This is in contrast
to cloud service delivery models where the user is charged for
cloud infrastructure even when virtual servers are idle. Most major
public cloud vendors provide serverless FaaS computing capabilities,
including AWS Lambda [3], Google Cloud Functions [6], Microsoft
Azure Functions [8] and IBM Cloud Functions [7].

1.1 Related Work
Cole et al. [15] discussed best practices and tips to develop cloud
computing solutions for biomedical informatics workflows. In par-
ticular, they proposed that serverless computing could ease the
possible inconvenience for biology researchers to setup and config-
ure the IaaS (infrastructure as a service) computing environment
and this on-demand billing model could lower the cost of typical bi-
ological tasks in comparison with IaaS. However, serverless models
may be a challenge to adopt for biomedical workflows, but there
are many potential merits such as scalability [15].

The on-demand availability and high-concurrency offered by
FaaS platforms makes them attractive for supporting biology re-
search. Kijak et al. [20] discussed possible challenges for scheduling
scientific workflows using FaaS platforms, including allocating re-
sources to each task, estimating the execution time, and handling
heterogeneity. They proposed a workflow scheduling algorithm
adapted to serverless platforms and demonstrated feasibility using
AWS Lambda.

In addition, many applications using serverless computing have
been proposed in the literature. For example, Almeida et al. pre-
sented a novel tool [28] that used a serverless API to traverse an
enormous number of medical records in a remote database. Lee et
al. presented a tool [25] to visualize DNA sequences, which allows
users to upload a DNA sequence in FASTA format to AWS S3 where
the sequence is subsequently processed by AWS Lambda. In another
example that combines serverless functions and cloud notifications,
Hafeez et al. [19] proposed a method to utilize AWS Lambda and
AWS Simple Queue Service (SQS) as a publisher/subscriber pattern
to schedule serverless workflows. As another example, Gupta et al.
provided a use case that performed approximate multiplication of
matrices using AWS Lambda [18]. Their study showed that server-
less computing offers an efficient on-demand solution to process
large scale tasks at a lower cost.

1.2 Contributions
In this paper, we present a proof-of-concept case study perform-
ing sequence alignment comparing 20,000 protein sequences using
serverless computing. Our case study demonstrates tremendous
potential for leveraging serverless computing resources for biomed-
ical research in terms of ease-of-use, instantaneous scalability, and
cost effectiveness. While there are major advantages of serverless
computing (i.e. users pay only for resources used when serverless
functions are running), cloud providers place limits on the available
computational resource for hosting serverless code including: the
maximum number of concurrent client requests and the maximum
memory and CPU resources available for each function invoca-
tion [12]. On AWS Lambda, functions execute with the following
constraints: 500MB of disk space, 15 minutes maximum runtime,

3GB RAM, and 2 vCPUs. By default, Lambda functions are limited
to 1,000 concurrent client requests per account, though this limit
can be increased on request. We show that these constraints can
be addressed using distributed approaches similar to those used in
algorithms that leverage graphics processing units (GPUs). Here,
we demonstrate the power and economy of scale of a serverless
computing approach to simultaneously allocate hundreds of CPUs
to perform pairwise protein sequence alignment, a computationally
intensive bioinformatics task, in significantly less execution time
using both AWS Lambda and Google Cloud Functions.

2 PAIRWISE PROTEIN SEQUENCE
COMPARISON

Smith-Waterman [29] is a dynamic programming algorithm for
comparing protein sequences. Performing similarity comparisons
of protein sequences is a common precursor to clustering sequences
into related families or functional groups. The Similarity Matrix
of Proteins (SIMAP) project applies Smith-Waterman to compare
all-against-all pairs of known protein sequences covering all major
protein public databases, a task that is expected to take years to
compute [11]. For our demonstration, we perform the all-against-
all pairwise comparison with human proteins using the Striped
Smith-Waterman (SSW) implementation [32].

Our input data consist of 20,336 unique human protein sequences
from a freely accessible database of protein sequence and func-
tional information called UniProt [16]. We partition these 20,336
sequences into 41 subsets, each consisting of approximately 500
sequences. The calculation of all the pairwise interactions between
sequences in a pair of subsets (i.e. 500 vs. 500 proteins) is small
enough to be run by individual functions on a serverless cloud
platform with 1.5 GB memory capacity. This results in a total of
861 unique tasks to compare each of these 41 subsets to another
subset including itself.

3 EXPERIMENTAL DESIGN
3.1 Method

3.1.1 AWS Lambda. To run a comparison task usingAWSLambda,
the user bundles a script with the required dependencies and up-
loads them. The function executes on Lambda usingAmazon Linux [2].
The 41 subsets of protein sequences are stored in Amazon’s Simple
Storage Service (S3).

To profile the performance of running Smith-Waterman on AWS
Lambda, we deployed a scheduler script written in Python on an
Elastic Compute Cloud (EC2) instance, and on a personal laptop to
coordinate the execution of all 861 tasks concurrently. Use of cloud-
based virtual machines is not required, since AWS Lambda functions
(and Google Cloud Functions) can be invoked by any client. This
script acts as the client to invoke AWS Lambda independently for
each respective task utilizing the Striped Smith-Waterman (SSW)
executable. Our Lambda function writes similarity scores to a file
on S3, and reports completion by sending a message to the AWS
Simple Queue Service (SQS). The client Python script monitors SQS
for messages to determine when the whole job has completed all
861 tasks. Our code and documentation are publicly available on
GitHub. (https://github.com/BioDepot/TaskPerform_AWSLambda).
An overview of our approach is summarized in Figure 1.

https://github.com/BioDepot/TaskPerform_AWSLambda


Figure 1: Overview of our approach using AWS Lambda.
The Python scheduler script running on an Elastic Com-
pute Cloud (EC2) instance or a personal laptop invokes hun-
dreds of concurrent tasks on AWS lambda in parallel. In
our case study, a Python scheduler script reads two subsets
of proteins (each subset consists of approximately 500 pro-
tein sequences), calls the Striped Smith-Waterman (SSW) ex-
ecutable, writes the similarity scores to a file on S3, and re-
ports completion by sending a message to the AWS Simple
Queue Service (SQS), a message queuing service. The EC2 in-
stance or the laptop monitors SQS to determine when the
whole job has completed.

3.1.2 Google Cloud Functions. A comparison implementation
having the same dependencies and script was produced to evaluate
the performance of performing sequence alignment using Google
Cloud Functions. The interface is modified slightly to leverage
Google Pub/Sub in place of Amazon SQS. We deployed a client to
invoke Google Cloud Functions using a Google Compute Engine
virtual machine [5]. The 41 subsets of protein sequences are stored
in Google Cloud Storage.

To benchmark the performance of Smith-Waterman on Google
Cloud Functions, we modified the scheduler script and deployed
it on a Google Compute Engine instance, and on a personal lap-
top, to orchestrate the execution of all 861 tasks concurrently.
This script acts as the client to invoke Google Cloud Functions
independently for each respective task utilizing the Striped Smith-
Waterman (SSW) executable. Google Cloud Functions writes sim-
ilarity scores to a file on Google Storage, and reports completion
by sending a message to the Google Pub/Sub. The client Python
script subscribes and pulls Pub/Sub messages to determine when
the whole job has completed all 861 tasks. An overview of our
approach is summarized in Figure 2. Our code and documenta-
tion for Google Cloud are publicly available on GitHub. (https:
//github.com/BioDepot/smith-waterman-serverless).

3.2 Experimental Setup
We compared the execution time of invoking the AWS Lambda
functions using an EC2 client versus a laptop computer. In addition,
we also benchmarked the runtime of performing sequence com-
parison directly on a laptop computer without leveraging cloud
resources. We also compared the execution time of invoking Google

Figure 2: Overview of our approach using Google Cloud
Functions. The Python scheduler script running on aGoogle
Compute Engine instance or a personal laptop invokes hun-
dreds of concurrent tasks on Google Cloud Functions in par-
allel. The similarity scores computed by the Google Cloud
Functions are sent to a file on Google Cloud Storage. We use
the Google Cloud Pub/Sub, a real-time messaging service, to
report completion of tasks executed on the Google Cloud
Functions.

Cloud Functions using a client deployed on Google Compute Engine
versus a laptop computer.

3.2.1 EC2 client and AWS Lambda. We repeated our empirical
experiments invoking AWS Lambda functions with 1.5GB memory
capacity from an EC2 VM client (m5.2xlarge that consists of 8
virtual central processing units and 32G of memory) ten times. The
observed execution time to complete all 861 Lambda function calls
ranged from 73 seconds to 87 seconds, with a mean of 77 seconds
(=1.28 minutes) and a median of 74 seconds (=1.25 minutes).

3.2.2 Laptop client and AWS Lambda. We repeated our empirical
experiments three times where we invoked AWS Lambda from our
laptop client (Intel i5-7200U CPU 2-core processor @ 2.50 GHz,
8 GB of RAM). The observed execution time to complete all 861
concurrent Lambda function calls ranged from 128 seconds to 140
seconds, with a mean of 132 seconds (=2.20 minutes), and a median
of 129 seconds (=2.15 minutes).

3.2.3 Laptop without AWS Lambda. Our empirical evaluation
of sequence alignment performance on a laptop leveraged the same
computer with an Intel i5-7200U 2-core CPU running Ubuntu 16.04
on Oracle VM Virtual Box with the following settings: 4096 MB
RAM, 1 processor core at 100% execution cap.

3.2.4 Google Compute Engine and Cloud Functions. We repeated
our empirical experiments ten times invoking Google Cloud Func-
tions with 1GB memory capacity from a Google Compute Engine
with similar specifications as the VM used in the AWS experiments.
Specifically, we used a n1-standard-8 instance consisting of 8 vC-
PUs and 30G of memory. The observed execution time completing
all 861 concurrent Lambda functions ranges from 579 seconds to
695 seconds, with a mean of 666 seconds (=11.10 minutes), and a
median of 674 seconds (=11.23 minutes).

3.2.5 Laptop client and Cloud Functions. We repeated our em-
pirical experiments invoking Google Cloud Functions with 1.5GB
memory capacity from our laptop client (AMD 6376 16-core proces-
sor @ 2.30 GHz, 32 GB of RAM) 10 times. The observed execution
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Figure 3: Number of AWS Lambda and Google Cloud Func-
tions invocations after specific time period. We observe that
800 AWS Lambda functions can be invoked in a couple of
seconds, while it takes more than 5 minutes to invoke 700
Google Cloud Functions.

time completing all 861 concurrent Lambda functions ranges from
647 seconds to 799 seconds, with a mean of 709 seconds (=11.82
minutes), and a median of 686 seconds (=11.43 minutes).

4 EXPERIMENTAL RESULTS
4.1 AWS Lambda
When the Lambda functions are invoked by the Python script run-
ning on a laptop computer, the average execution time is 2.20 min-
utes. This is in contrast to a run time of 8.7 hours when performing
sequence alignment on the laptop without using AWS Lambda.
Similarly, the average execution time is just 1.28 minutes when the
Lambda functions are invoked by the Python script running on an
AWS EC2 instance. The estimated hosting cost for sequence align-
ment using AWS Lambda for either client is under $1. Please refer
to the Methods section for details of our empirical experiments.
Table 2 shows details of our cost analyses.

4.2 Google Cloud Functions
When the Google Cloud Functions are invoked by the Python script
running on a laptop computer, the average execution time is 11.82
minutes. This is much faster than a run time of 8.7 hours when per-
forming all the tasks on the laptop without using cloud functions,
while it is 6 times slower than that running on AWS Lambda. The
main reason appears to be the scaling performance for invoking
many concurrent calls to Google Cloud Functions. Google Cloud
Functions requires a considerably longer time to scale up and com-
plete 861 function invocations. Figure 3 shows the relation between
launch time and number of invoked functions. Our results show
that 800 AWS Lambda functions can be invoked in a couple of sec-
onds. In contrast, it takes more than 5 minutes to invoke 700 Google
Cloud Functions and more than 7 minutes to invoke 800 Google
Cloud Functions. As a result of the invocation rate, the average
execution time is 11.1 minutes when the Google Cloud Functions
are invoked by the Python script running on an Google Compute
Engine VM.

4.3 Discussion
Table 1 and Table 2 summarize the observed execution time and
hosting costs. We observe significant improvement in execution
time using either AWS Lambda or Google Cloud Functions. Specif-
ically, the total execution time averaged over 10 repeated experi-
ments is 77 seconds using an AWS EC2 client and Lambda: a 407x
speedup compared to using a laptop computer. The total execution
time averaged over 10 repeated experiments is 666 seconds using a
Google Compute Engine client and Cloud Functions: a 47x speedup
compared to using a laptop computer. The longer execution time
for Google Cloud Functions is primarily due to the fact that the
invocation time of hundreds of Cloud Functions is longer than AWS
Lambda. In terms of cost, we can accomplish this task of pairwise
protein sequence comparison on both AWS Lambda and Google
Cloud Functions for under $1.

5 CONCLUSIONS
In this paper, we demonstrate how a computationally intensive
bioinformatics task can leverage serverless cloud computing to
dramatically speed up execution time at low cost. Our divide-and-
conquer strategy can be applied to other problems that can be
partitioned into small sub-problems. This approach is commonly
leveraged for example, in GPU implementations, where a large task
is divided into sub-tasks that are operated on by individual GPU
processor cores. Sequence alignment, protein-folding, and deep-
learning are computationally intensive bioinformatics tasks with
GPU implementations [17, 21, 30] where a serverless computing
approach may prove useful. With the ability of serverless cloud
computing to quickly leverage hundreds of CPUs, computational
power that was once the exclusive domain of supercomputers is
now easy to access, available on demand, and at low cost, to help
solve resource intensive bioinformatics problems.
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