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Abstract

Serverless Function-as-a-Service (FaaS) cloud computing platforms
enable developers to deploy applications that automatically scale
and manage computing infrastructure. The “serverless” nature of
these platforms leads to infrastructure obfuscation, unpredictable
performance, and inconsistent costs. This unpredictability stems
from a diverse, constantly shifting pool of Infrastructure-as-a-
Service (IaaS) hardware used to host functions, including varying
CPU generations, clock speeds, memory types, and server capaci-
ties. As a result, serverless function instances run on heterogeneous
hardware configurations, leading to variability in performance and
inconsistent costs.

To address this challenge and to leverage hardware heterogene-
ity as an advantage for serverless sky computing, this research
develops a novel methodology to infer the distribution of key hard-
ware characteristics (e.g., CPU model, CPU clock speed, number
of allocated hosts) in distinct serverless availability zones (AZ).
Using these observations, our serverless Sky Computing system
can aggregate resources from many AZs to route requests to the
highest-performance infrastructure that is available. Using our ap-
proach we demonstrate up to 18.2% in cost savings by capitalizing
on hidden hardware heterogeneity in the cloud.
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1 Introduction

Serverless Function-as-a-Service (FaaS) cloud platforms enable de-
velopers to deploy code without managing the underlying servers.
However, this ’serverless’ abstraction comes at the cost of infras-
tructure obfuscation and unpredictable performance. In practice,
FaaS providers utilize a constantly shifting pool of heterogeneous
hardware to host ephemeral function instances (FIs), leading to
inconsistent execution performance and unpredictable costs for
the same workload. For example, a function may run up to 50%
slower (and thus cost more with time-based billing) on one server
versus another because of hidden differences in CPU type or load
contention.

Sky computing has emerged as a vision to harness cloud diversity
as an advantage rather than a drawback. Sky computing refers to
federating resources from multiple clouds via a unified middleware
layer [8, 29]. Serverless sky computing aims to pool FaaS deploy-
ments from multiple availability zones (AZ), regions, and clouds to
then intelligently route function invocations to wherever the best
performance can be obtained at that moment.

To realize this vision, we introduce a novel system and method-
ology for serverless sky computing performance optimization. At a
high level, our approach first profiles the available infrastructure of
Faa$S deployments to each zone, region, or provider to infer hard-
ware characteristics such as the available CPU models and clock
speed distributions and their impact on function runtime. Using a
tree-based recursive sampling strategy, our infrastructure analysis
method efficiently uncovers a spectrum of back-end server types
present in a given AZ. We then characterize a zone’s CPU type
distribution based on thousands of polling samples. Finally, our sky
computing runtime uses CPU characterizations to make intelligent
routing decisions. For each incoming function request, it can decide
whether to retry execution for a faster server, route the request
to a different region or zone with superior hardware, or employ a
hybrid of these strategies.

1.1 Research Questions

In evaluating our approach, we address the following research
questions (RQs):

RQ-1 Infrastructure Variation: What CPU variation can be
observed in the server infrastructure used to host serverless FaaS
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platforms across different zones and regions? How does the infras-
tructure pool change over time?

Serverless Faa$S platforms are affected by CPU heterogeneity,
since public cloud providers use dynamic sets of provisioned servers
backed by various CPU types to run serverless functions [9, 11, 18].
For RQ-1, we characterize CPU variation across serverless AZs,
regions, and cloud providers and investigate how CPU allocations
change over time.

RQ-2 Infrastructure Characterization: Using progressive
sampling, how many samples are required to accurately infer the
server infrastructure used to host a distinct serverless FaaS plat-
form deployment? How can we balance the cost versus accuracy of
sampling to infer server characteristics?

We consider that each serverless FaaS platform has a distinct de-
ployment for each cloud AZ (e.g., us-east-2a, us-east-2b, etc.). Each
deployment consists of a temporarily provisioned set of machine
instances on which the platform is hosted. For AWS Lambda, bare
metal EC2 instances are likely used to host many microVMs that
host individual FIs [6].

RQ-3 Performance Optimization: By exploiting serverless
CPU variation and sky computing resource aggregation, to what
extent are runtime and cost improvements possible for diverse
workloads?

We can route requests to execute workloads across Faa$ platform
deployments in different AZs, regions, and even clouds. By char-
acterizing FaaS hardware deployments and directing workloads to
the best CPUs using intelligent routing, in this paper, we report on
the possible runtime and cost benefits for a variety of serverless
workloads.

1.2 Paper Contributions

This paper makes the following research contributions:

(1) We introduce and expand on tools to enable serverless sky
computing, such as dynamic functions and the sky mesh, as
discussed in Sections 3 and [13].

(2) We introduce a powerful infrastructure sampling technique
capable of observing available infrastructure in an AZ.

(3) We created CPU characterizations for 41 regions on AWS
Lambda, IBM Code Engine, and Digital Ocean Functions.

(4) We thoroughly investigated ways to minimize sampling costs
and monitored temporal variation in CPU characterizations
to determine a characterization’s usable lifespan.

(5) Using these CPU characterizations, we investigated three
methods of performance enhancement: (1) a regional ap-
proach that routes requests to zones with fast CPUs, (2) retry
approaches that rerun functions on poor performing infras-
tructure, and (3) a hybrid approach combining both.

2 Background and Related Work

The challenges of performance variation due to heterogeneous
hardware on serverless platforms have been addressed in previ-
ous literature. Our study builds on previous work and applies sky
computing concepts to FaaS platforms to aggregate resources and
achieve performance improvements.
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2.1 Hardware Heterogeneity

Hardware heterogeneity has been investigated on public clouds
for over a decade. Multiple publications observed that identical
instance types on Amazon EC2 and other cloud providers (e.g.
Rackspace Cloud) often had varying CPU configurations that
backed infrastructure-as-a-service (IaaS) instances, leading to no-
table performance variation [15, 20, 24, 30]. Leveraging this hard-
ware heterogeneity, Ou et al. offered a trial-and-better approach,
where the virtual machine (VM) CPU type was checked at boot
time, and the VM was relaunched if the best CPUs were not found,
providing a performance and cost savings of 15 to 30%. Our study
builds on these methods in the context of FaaS platforms.

Faa$ platforms provide unique challenges as they have a con-
stantly changing pool of available infrastructure that are used to
host execution environments for serverless functions known as
function instances (FIs). FIs are constantly being provisioned and
deprovisioned, and batches of requests will span many FIs. Unlike
TaaS VMs that can be initialized and held for days or months, FaaS
FIs are often only used for a few minutes before they are destroyed.

2.2 Sky Computing

Sky computing refers to an emerging paradigm in which resources
from multiple cloud providers are pooled and exposed through a
unifying interface [8, 29]. The goal is to aggregate resources from
multiple clouds through a common interface to then provide perfor-
mance enhancement, reduced costs, higher availability, etc. Chasins
et al. and Stoica et al. suggest that the barriers to achieving sky
computing are more economic than technical, such as data egress
fees and lack of cross-provider billing agreements. Sky computing
aims to give users the freedom to utilize the best combination of
cloud resources at any given time without being locked into a single
vendor. Yunhao Mao discussed creating SkyBridge, a proof of con-
cept data management system enabling multi-cloud data storage
[22]. Yang et al. created SkyPilot, an intercloud broker for large
language model training and machine learning workloads where
workloads are dynamically moved across available cloud providers
to reduce cost by up to 80% and increase availability [31].

2.3 Performance Variability in Serverless
Platforms

Research has been conducted to observe the infrastructure available
on FaaS$ platforms and to measure how their performance varies
over time [9, 14, 17]. Kelly et al. conducted an hour-by-hour analysis
of the major FaaS platforms over a month, finding that fluctuations
in background load can impact function latency and throughput
over the course of a day [18]. Schirmer et al. specifically exam-
ined Google Cloud Functions and observed a pronounced diurnal
pattern, dubbing it *The Night Shift’ [27]. During peak daytime
hours when cloud infrastructure is heavily utilized by many users,
serverless functions experienced slower execution and higher tail
latencies. Alongside that, Schirmer et al. developed a system called
Minos that can benchmark individual FIs to observe performance
variability and focus workloads to run on instances with better per-
formance and potentially lower resource contention [26]. Lambion
et al. analyzed the performance variability of running a compute-
bound Natural Language Processing pipeline on x86_64 and ARM64
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CPUs on AWS Lambda on multiple cloud regions over a 24-hour
day [19].

2.4 Serverless Aggregation

Aggregating serverless resources across multiple environments (re-
gions, clouds, or edge sites) has been explored as a way to improve
performance, reliability, and even sustainability of FaaS applications.
Several recent systems address aspects of this distributed server-
less orchestration. Smith et al. created FaDO (FaaS Functions and
Data Orchestrator), a tool designed to allow data-aware functions
scheduling across multiple serverless compute clusters present at
different locations (e.g. edge and cloud) [28]. FaDO further provides
users with an abstraction of the serverless compute cluster’s stor-
age, allowing users to interact with data across different storage
services through a unified interface.

Baarzi et al. discuss the merits of what they term Virtual Server-
less Providers (VSPs), which aggregate Faa$ offerings from multiple
clouds under one virtual provider [7]. Their architecture introduces
a broker layer between the user and the cloud functions: function
invocations are routed through this broker, which decides which
cloud’s FaaS$ service to use for each invocation. By doing so, they
achieved up to 4.2x higher throughput, 98.8% fewer SLO latency vi-
olations, and 54% cost reduction in their experiments, compared to
sticking with a single provider [7]. Sampé et al. presented Lithops,
a toolkit for transparent multicloud computing using serverless
backends [25]. Lithops wraps the Python multiprocessing API, al-
lowing an ordinary Python program to execute in parallel across
many cloud function invocations on different providers without
code changes. Jindal et al. took a step toward federated FaaS sched-
uling with a system called Courier [16]. Courier can route function
requests among a set of deployments, in their case, an on-premise
OpenWhisk installation and public cloud FaaS (AWS and Google).
They showed that even simple policies like round-robin distribution
across providers can improve overall throughput and latency in
a heterogeneous FaaS deployment compared to traditional single-
cluster load balancers.

These efforts demonstrate a growing interest in unifying and
optimizing serverless across distributed infrastructure. Our work
differs in its emphasis on hardware heterogeneity and improving
overall serverless hosting costs. We push the scale to a global level:
our experimental sky computing platform spans 41 cloud regions,
across multiple cloud providers, with a total of over 1,600 function
deployments.
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Figure 1: Performance enhancement approaches utilizing
CPU characterization data of regions and workloads.
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3 Methodology

This section presents the methodology we used to construct and
evaluate the compute infrastructure for a global serverless sky com-
puting platform.

3.1 FaaS Infrastructure Sampling

Heterogeneous hardware on serverless platforms is known to cause
considerable performance variation based on the available infras-
tructure. Previously, profiling a large sample of a FaaS AZ’s in-
frastructure was impossible due to low concurrency limits set by
cloud providers. For example, AWS Lambda had a limit of 1,000
concurrent function requests on the accounts used in this study.
We developed a FaaS$ infrastructure sampling technique that is able
to observe significantly more infrastructure without being limited
by concurrent request quota.

Whenever functions are invoked, an execution environment is
created known as a function instance (FI) where a user’s code is
executed. FIs then persist for about five minutes after a function
request has finished [21]. For thorough infrastructure sampling, we
do not actually need to have a high number of concurrent requests,
but instead we want to observe a high number of unique FIs.

To maximize the number of FIs sampled, we deployed 100 distinct
serverless functions each with the same code. Each deployment
had unique memory settings, ranging from 10,140 to 10,240 MB,
and unique source code packages with identical logic (for exam-
ple, each function printed a different hello’ message, but all other
logic remained the same). To observe infrastructure, we then made
1000 parallel requests to one of the functions (referred to as a poll).
Requests were made through a branching tree of recursive func-
tion invocations to maximize parallelism as shown in Figure 1. The
functions executed a sleep function to pause for a short duration
to ensure that all 1000 parallel requests generated by our clients
executed concurrently on unique FIs. All of these deployment deci-
sions (e.g., memory setting, code variation) were made to maximize
the number of unique FIs and the number of host servers used. By
executing a poll on one function endpoint, waiting for requests
to return, and then executing another poll on a different function
endpoint, we can observe 2000 unique function instances with-
out being limited by the maximum concurrent request quota. By
leveraging all 100 function endpoints, we can observe the hosting
infrastructure (e.g., underlying CPU, etc.) for 100,000 FIs. Using the
Serverless Application Analytics Framework (SAAF) [5] we can
build hardware characterizations of the ratio of each CPU type for
a given region as shown in Figure 2.

3.2 Dynamic Functions

To facilitate the development and prototyping of a serverless sky
platform, we developed adaptable serverless functions called "dy-
namic functions". Dynamic functions provide a generic execution
environment that is preemptively deployed to every serverless FaaS
AZ, region, and cloud, which can then be used to execute serverless
workloads on demand. With dynamic functions, the function source
code is provided as an input parameter in the function payload or
via an object storage service (e.g., Amazon S3 or Google Cloud
Storage) or AWS Lambda Layers [1-3].
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Figure 2: CPU distributions observed on AWS Lambda, IBM Code Engine, and Digital Ocean functions

By removing the workload source code from the deployment
package, dynamic functions can be deployed once and then repur-
posed to run any desired workload without redeployment. Dynamic
functions are implemented using Python, and since the source code
is interpreted in Python, running the code supplied through the
function payload results in very little additional overhead compared
to running a native Python function [4]. For all dynamic function
executions in this study, decoding and executing the source code
provided in the payload added less than 1 millisecond to each func-
tion invocation. We did not use external storage services for these
functions.

To help improve performance and functionality, dynamic func-
tions can also include dependencies, files, and other arbitrary data in
the request payload. The FaaS Experiment Toolkit (FaaSET) [5, 13]
includes tools that can take files, compress, encode, and automat-
ically generate the payload for a request to a dynamic function.
When the dynamic function receives the request, it will decode, de-
compress, and store the payload data on the ephemeral file system
of the serverless function. Dynamic functions then record hashes of
the payload data to determine if the decode and decompress process
should repeat for future requests. If a second request is made to
the same FI with the same payload data, then the dynamic function
takes advantage of the cached data. Even for a maximum payload
input size of 5 MB, the decode time remains minimal (at most 70
ms).

3.3 Sky Mesh

To prototype a serverless sky computing platform and accelerate
development and testing, we created a sky mesh. The sky mesh con-
sists of a large deployment of dynamic functions to every region on
AWS Lambda, IBM Code Engine, and Digital Ocean functions. On
these platforms, functions are deployed with a variety of memory
settings and configurations. On AWS Lambda, dynamic functions
are deployed with 128 MB, 256 MB, 512 MB, 1 GB, 2 GB, 4 GB, 6
GB, 8 GB and 10 GB memory settings to both x86_64 and ARM64

. (Section 4.2)

CPU architectures. The sky mesh consists of more than 1,600 de-
ployments on AWS Lambda alone. On platforms such as IBM Code
Engine, there are substantially fewer deployment options and re-
gions. IBM Code Engine offers only three memory settings, 1 GB, 2
GB, and 4 GB. Due to the much smaller scope of the platform, we
are able to deploy dynamic functions and cover the entire function
configuration space on IBM Code Engine with only 30 function
deployments. The goal of the sky mesh and dynamic functions is
to offer generic pre-deployed functions which can be readily har-
nessed to deploy any serverless workload anywhere on demand
without the need to deploy new functions or reconfigure anything.

3.4 Serverless Smart Routing System

Prior work has introduced a serverless smart request routing
system built on an early prototype sky mesh that dynamically
routed function invocations to cloud regions with the lowest
real-time carbon intensity, while bounding network latency with a
client-region distance heuristic [12]. That study showed that ag-
gressive, carbon-aware request placement across multiple providers
can cut both latency and CO;e without requiring any modifications
to user code. This adaptive routing layer is a prerequisite for any
practical serverless sky computing middleware and provides the
foundation on which to achieve higher-level performance goals.

This study builds on that routing system in two ways. First, we
extend its decision space from purely climate data and latency met-
rics to hardware performance objectives, exploiting the fact that
serverless AZs expose continuously evolving, heterogeneous CPU
pools: newly introduced data centers may offer faster infrastructure,
while user demand, and thus resource contention, fluctuates tempo-
rally and geographically. Second, we combine the routing system
with our infrastructure sampling method that profiles each zone’s
infrastructure pool and learns when rerouting to a more distant,
but faster, region can achieve performance gains and reduce overall
hosting cost. Our goal is to build a performance-aware system that
turns global heterogeneity from a liability into an optimization
opportunity.
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3.5 Experimental Design

We designed five experiments to address our research questions.
Experiments 1 (EX-1) and EX-2 characterize infrastructure across
individual zones and across the globe (RQ-1). EX-3 and EX-4 eval-
uate progressive sampling and temporal stability to balance cost
and accuracy in profiling (RQ-2). Finally, EX-5 applies these charac-
terizations to performance-aware routing strategies (RQ-3). These
experiments provide a comprehensive foundation for assessing
the benefits of infrastructure characterization for serverless sky
computing.

EX-1: Serverless Infrastructure Characterization

Our first goal was to sample as many FIs as possible using our in-
frastructure sampling method described in Section 3.1. We monitor
and record the CPUs assigned to each FI with the SAAF profiling
tool [5]. Our approach appears to be able to saturate the available
infrastructure within the targeted AZ. After approximately 20 to
30 polling cycles (20,000 and 30,000 allocated FIs), we observed
that the platform started to return errors for more than 90% of our
requests.

To validate that our method saturated the AZ, we performed a
parallel experiment using a separate AWS account. We replicated
the exact sampling method and after observing errors from the
initial AWS account (i.e. after 20-30 polling cycles), we initiated the
second account’s experiment and immediately encountered satura-
tion errors. More than 90% of the requests from the second account
failed after the first iteration of the sampling method. Both AWS ac-
counts were completely independent and isolated from each other.
We used different accounts, email addresses, and payment meth-
ods. The host machines initiating function requests were separate,
they were located on different networks, the deployed functions
were unique to each account, and we tested using different invoca-
tion methods such as function URLs and API Gateway. The only
commonality was the target function deployments were on the
same AZ on both accounts. These findings strongly indicate that
our sampling mechanism effectively observed the total provisioned
infrastructure pool for the FaaS platform within the AZ.

We used these results as the ground truth for the available in-
frastructure in an AZ. We can now incorporate this knowledge into
our smart routing system, to facilitate the routing of requests to
zones characterized as having higher performance CPUs with the
goal of enhancing performance and reducing costs.

EX-2: Global Infrastructure Characterization

Building on the findings of EX-1, we expanded our scope to en-
compass all regions on AWS Lambda, IBM Code Engine, and Digital
Ocean functions, totaling 41 regions. To provide a comprehensive
overview of the available infrastructure in each region, we utilized
our sampling technique described in Section 3.1 to build a global
hardware characterization.

EX-3: Progressive Sampling Evaluation

This experiment focuses on evaluating the minimum cost re-
quired to characterize the provisioned hardware for a serverless
Faa$S platform’s deployment to a distinct AZ using progressive
sampling. Building on the 100 function deployment methodology
employed in EX-1, we deployed the same set of functions to eleven
AZs on AWS Lambda: ca-central-1a, eu-north-1a, ap-northeast-1a,
sa-east-1a, eu-central-1a, ap-southeast-2a, us-west-1a, us-west-1b,
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us-east-2a, us-east-2b and us-east-2c. These AZs covered a diverse
range of CPU configurations.

We conducted polls in all of these regions until failure using
our sampling method. By incrementally increasing the number of
polls as a form of progressive sampling, we can compare our CPU
characterization using progressively more data compared to the
final characterization when requests began to fail. This experiment
enables us to examine the relationship between the number of
samples and the accuracy of our infrastructure characterizations.
This enables us to investigate the accuracy versus cost trade-off of
characterizing the provisioned infrastructure of FaaS platforms.

EX-4: Characterization of Temporal Variation

To investigate the varying nature of the provisioned serverless
FaaS infrastructure, we expanded on EX-3 by repeating our progres-
sive sampling test in five AZs (us-west-1a, us-west-1b, sa-east-1a,
eu-north-1a and ca-central-1a) daily for two weeks. This experi-
ment had multiple objectives: (1) assessing the applicability of a
CPU characterization from a single day to others and (2) determin-
ing the sufficient number of samples required for accurate zone
characterization.

In contrast to the previous experiment, observations were con-
ducted every 22 hours instead of precisely 24 hours apart, thereby
slightly shifting the poll time over the two-week period. This ap-
proach enabled the observation of the CPU distribution at varying
times throughout the day within each zone, minimizing extensive
sampling.

Beyond our observations of heterogeneous CPUs, the number
of samples necessary to reach failure also exhibited temporal vari-
ation. This variation likely reflects the allocation of IaaS machine
instances to host the serverless FaaS AZ at any given moment and
could potentially influence performance as the platform scales to
accommodate the current demand of FaaS users.

Finally, with the CPU characterization’s established, we evalu-
ated the performance implications of making smart routing deci-
sions based off our knowledge of the available hardware. To cre-
ate realistic workloads, we employed twelve serverless functions
defined in Table 1. The source code for these functions was pro-
grammed by us or adopted from the Serverless Benchmark Suite
(SeBS) [10]. All of the functions were modified to be packaged as
dynamic functions, redesigned to remove any dependencies on
external services, and updated to include additional CPU-based
decision-making logic, which will be discussed later.

EX-5: Performance Optimization

To provide a baseline and collect the necessary profiling data, we
ran each of our workloads 10,000 times on each of the AZs used in
EX-4. This initial profiling step not only provided a baseline average
runtime for how the workloads would perform without any smart
routing, but it also provided samples of how the workloads perform
on each CPU.

With the baseline established, we created three routing methods
that our smart routing system could utilize:

Regional Routing: This approach utilizes the smart routing
system to direct requests to AZs that have more high performance
CPUs to run workloads. Due to the difference in CPU distribu-
tions between zones in different regions, as shown in Figure 2, this
approach has the potential for substantial performance and cost
benefits.
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Table 1: Function Names and Descriptions

Function vCPUs  Description

Graph MST 1 Generates a graph and calculates its minimum spanning tree.
Graph BFS 1 Generates a graph and performs a breadth-first search.

Page Rank 1.2 Generates a graph and computes the PageRank of each node.
Disk Writer 1 Generates text, repeatedly writes it to disk, and deletes it.

Disk Write and 1 Writes a large text file and then runs several shell commands (wc,

Process base64, shalsum, cat) on it in a loop.

Zipper 2 Generates files and compresses them into ZIP archives.
Thumbnailer 1 Generates a random bitmap image and scales it to different sizes.
Shal Hash 1 Takes an input string and produces its SHA-1 hash.

JSON Flattener 1 Recursively generates a large JSON object and flattens it into

key-value pairs.

Math Service 2 Builds large arrays and repeatedly performs arithmetic operations
on them.

Matrix Multiply 2 Generates large matrices and executes multiply and dot operations
in loops.

Logistic 2 Runs logistic-regression SGD across two threads on a generated

Regression dataset for the requested epochs.

This regional approach has trade-offs. Routing requests to AZs
located further away will introduce additional network latency ver-
sus routing to nearby zones. However, network latency to FIs is not
included in the billable runtime of the FaaS platform. Although la-
tency and overall round trip time for a request are likely to increase,
faster runtime will reduce overall costs.

Retry Method: When a function is invoked using the retry ap-
proach, it first checks the CPU of the FI. The function then makes
the decision to run the workload or immediately return. This is ap-
plicable to regions that show notable performance variation due to
hardware heterogeneity and is inspired by the IaaS methodologies
in [15, 24].

For batch-based workloads, the retry approach can be particu-
larly advantageous. FIs with poorly performing CPUs can be held
for a brief moment (e.g. 150 ms), and then instead of returning
immediately a new request can be issued to guarantee requests do
not route to poor performing FIs.

The retry approach can also be tuned by specifying the CPUs that
are banned. If all but one CPU are banned, then all function requests
will be routed to the ideal CPU. This has a trade-off though, if the
AZ only has a small number of the ideal CPUs then the overhead
of additional retries grows rapidly. If the retry approach is too
selective and too many CPUs are banned, then the overhead of
these retries will consume any performance benefits. The overhead
can be mitigated by only banning very poorly performing CPUs,
and ultimately the effectiveness will depend on the specific CPU
distributions in the AZ.

Hybrid Approach: The hybrid approach combines the retry and
regional approaches to further optimize performance. By initially
selecting a region with favorable CPU distributions, the system can
substantially reduce the reliance on retries. Subsequently, the retry
logic within this region acts as an additional fine-tuning mecha-
nism, targeting specific optimal CPUs to handle workloads more
efficiently.

This combined approach allows for enhanced flexibility, lever-
aging regional differences in CPU availability to reduce overhead
from excessive retries while still benefiting from precise CPU tar-
geting within regions. By strategically limiting retries to regions
where hardware heterogeneity is observed, the hybrid approach
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Figure 3: Infrastructure sampling technique cost comparison
to number of observed unique FIs (FIs).

can substantially reduce overall execution costs and improve per-
formance, effectively balancing the trade-offs inherent in each indi-
vidual method.

4 Experimental Results

The following sections present the results of experiments defined
in Section 3.5.

4.1 EX-1: Infrastructure Observation
Verification

In experiment 1, we evaluated the effectiveness of our polling tech-
nique at observing a maximum amount of serverless infrastructure
per AZ, as described in Section 3.5. A key characteristic of AWS
Lambda’s design that we leverage for our approach is that each
new FI created is guaranteed to stay active for a minimum of five
minutes [21]. By saturating the available server infrastructure in
the AZ in less than five minutes, we are able to profile the highest
number of ephemeral FIs used to host the FaaS platform.

To achieve the desired parallelism to enable resource profiling,
we invoked a sleep function to sustain requests on specific FIs and
to force requests to spawn new FIs. Figure 3 illustrates the impact
of varying the sleep interval to achieve the creation of the desired
number of unique FIs and the associated cost. We observed that a
sleep interval of 0.25 seconds provided an optimal balance by
maximizing creation of unique FIs in 2GB and 4GB memory
allocations while incurring minimal total costs, less than two
cents per poll. Shorter sleep intervals reduced costs but increased
the likelihood that client requests are routed to existing FIs. Longer
sleep intervals kept more Fls active, forcing the creation of new FIs
to serve client requests at the expense of higher runtime costs. As
we decrease function memory, the sleep time needed to achieve full
coverage increased.

Figure 4 depicts the degradation of the FaaS platform’s ability
to scale and create new FIs resulting from our successive polls. A
clear threshold is visible at approximately 20,000 sequential polls,
beyond which scaling degradation occurred in this AZ (us-west-1a).
Initially, each poll was successful at creating nearly 900 new FIs,
which is the maximum client requests we sent per round. As we
saturated all available servers in the AZ with FIs, the failure rates
escalated dramatically. At the end of our experiment, leading to
80 to 98% failure of our client requests. This finding suggests that
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Figure 4: Observed FIs (FIs) and failed requests with an in-
creasing number of sequential polls across two accounts.

our polling technique saturates the available serverless infrastruc-
ture, while the platform reacts and scales slowly to meet demand.
This behavior reflects the dynamic nature of serverless provision-
ing, where infrastructure availability can degrade under sustained
high-intensity access, highlighting the importance of understand-
ing system scaling limits during these characterization efforts. To
verify that we were not simply being rate limited, we performed
the experiment across two AWS accounts, with different clients,
and observed many failed function calls on the secondary account
immediately after exhausting the AZ using the first account. To
avoid this, we defined the failure point to stop sampling as when
more than 50% of the requests in a sampling poll failed.

4.2 EX-2: Global Infrastructure Characterization

We utilized our infrastructure sampling technique to observe infras-
tructure heterogeneity on a global scale on every region on AWS
Lambda, IBM Code Engine, and Digital Ocean functions in EX-2.
On AWS Lambda, we identified four distinct CPU types: three Intel
Xeon processors with clock speeds of 2.5 GHz, 2.9 GHz, and 3.0 GHz,
respectively, and one AMD EPYC processor as shown in Figure 2.
The 2.5 GHz processor was the most prevalent, followed by the
3.0 GHz processor, while the AMD EPYC processor was relatively
uncommon. On IBM Code Engine, we observed two Intel Cascade
Lake processors with clock speeds of 2.4 and 2.5 GHz. In Digital
Ocean Functions, we identified Intel Xeon Processors with clock
speeds of 2.6 and 2.7 GHz.

Several key observations emerged from our analysis: (1) not all
AWS Lambda regions included all four CPU types; (2) the AMD
EPYC processor was particularly rare, and was most frequently
observed in the il-central-1 region; (3) every region had the 2.5 GHz
Xeon processor, and (4) all but af-south-1 hosted the 3.0 GHz proces-
sor. Although the 2.5 GHz processor was generally most common,
regions like us-west-2 demonstrated notable variation, where the
3.0 GHz processor was most prevalent. This considerable hetero-
geneity underscores the potential for performance improvements
by strategically leveraging regions based on their in situ CPU dis-
tributions. Given the lack of observed hardware heterogeneity on
IBM Cloud Functions and Digital Ocean functions, the remaining
experiments focused solely on AWS Lambda.
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Figure 5: Characterization error relative to the number of FIs
on 11 AZs on AWS Lambda.

4.3 EX-3: Progressive Sampling Evaluation

Experiment 3 focused on determining the minimal cost required
to achieve an accurate hardware characterization of AWS Lambda
AZs. In EX-1, we found that the cost to fully saturate an AZ is
approximately $0.20. If required to sample dozens of AZs, multiple
times per day, the profiling cost for sky computing quickly balloons.

To evaluate the minimal costs to characterize an AZ, we incre-
mentally increased the number of polling requests executed across
eleven AZs. Figure 5 shows the absolute percentage error (APE) of
progressive sampling to determine zone-wide CPU distributions
versus ground truth characterization obtained by complete polling
until saturation. The figure highlights the different failure points
between zones. For example, eu-north-1a fails after approximately
5,000 function calls, indicating that AWS Lambda had a smaller
number of provisioned ephemeral servers, whereas eu-central-1a
sustained ten times the calls before failing. This variability in fail-
ure point further indicates that our sampling method is saturating
regions and not hitting a fixed rate limit.

Remarkably, a single poll in most AZs resulted in a low APE of
10% or less with a maximum observed error of 25% in us-east-2b. To
achieve 95% characterization accuracy, on average six polls were re-
quired across all AZs. One in 11 AZs experienced anomalous spikes
in error following sequential polls that revealed previously un-
seen hardware, likely due to the platform allocating new instances
dynamically. Despite such outliers, the general trend indicated a
consistent reduction in error rates as the number of samples ap-
proached the respective zone’s failure threshold, demonstrating an
effective trade-off between accuracy and cost in hardware char-
acterization. In contrast, us-east-2a exhibited a unique scenario,
consistently returning 0% error as all requests utilized the 2.5 GHz
Intel Xeon processor exclusively.

4.4 EX-4: Temporal Infrastructure Variation

To evaluate temporal variability in serverless infrastructure for
EX-4, we sampled five AWS AZs daily for a two-week period. We
further investigated how temporal factors impact the accuracy and
cost of hardware characterization. For each zone, we compared
intermediate characterizations at various numbers of polls with
the ground truth obtained just before failures. As shown in Fig-
ure 6 demonstrates that the number of polls required to achieve a
characterization within 5% absolute percent error (APE) of the final
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Figure 6: Function instances needed to be sampled to achieve
95% characterization accuracy.

distribution varied by zone over time. Across all days, it took on
average 5.65 sampling polls to achieve 95% characterization
accuracy. 1.41, 2.62, and 10.5 polls were needed for 85%, 90%, and
99%, respectively.

We also investigated the temporal stability of hardware charac-
terizations to determine how long a characterization remains valid.
Using the CPU distribution obtained on day one as the ground
truth, we compared this against the characterizations made for the
subsequent thirteen days in each AZ. As shown in Figure 7, some
zones, such as ca-central-1a, us-west-1a, and us-west-1b, exhibited
considerable changes in infrastructure distribution, with CPU char-
acterization APE (i.e. changes from the day 1 profile) increasing to
20 to 50% as early as day two. In contrast, sa-east-1a and eu-north-1a
showed strong temporal consistency, maintaining characterization
errors at or below 10% for two-weeks. To understand short-term
variability, we performed high-frequency sampling of us-west-1b
every hour for 24 hours. Figure 8 presents both the hourly CPU dis-
tributions and the resulting characterization error when using the
first hour as the baseline. Although this zone showed considerable
infrastructure differences for certain hours, the CPU characteriza-
tion for 22 out of 24 hours had less than 10% variation from the
baseline. These findings highlight, while some AZs exhibit long-
term stability, others require more frequent observations offering
an opportunity to classify AZs behavior to determine sampling
requirements. For example, stable AZs require less sampling to
save on profiling costs such as sa-east-1a and eu-north-1a, while
others like ca-central-1a and us-west-1a may require more samples.
sa-east-1a —— us-west-la —— us-west-1b

ca-central-1a eu-north-1a
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Figure 7: Characterization accuracy degradation over time.
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4.5 EX-5:Performance Enhancement by Smart
Routing

To evaluate the potential of smart routing strategies, we profiled 12
functions including computational, I/O-bound, and mixed-use cases,
as listed in Table 1. Each function was executed 10,000 times across
multiple AWS Lambda AZs to capture performance across the four
major CPUs used by the platform. Figure 9 summarizes the relative
performance of each function by CPU, normalized to the Intel Xeon
2.5 GHz processor, the most common hardware variant observed.
A clear performance hierarchy emerged: the Intel Xeon 3.0 GHz
processor consistently delivered the fastest runtimes, showing 5%
to 15% improvements for most functions. The 2.9 GHz processor
was generally slower than the baseline by 15-30%, and the AMD
EPYC processor was the slowest overall, with up to 50% longer run-
times for functions such as logistic_regression and math_service.
Notably, a few exceptions were observed—disk_writer, disk_write
and_process, and shal_hash—where performance deviated from
this trend. In particular, the AMD EPYC processor slightly outper-
formed the baseline for disk_writer, suggesting that certain func-
tions may be less sensitive to raw CPU speed and more affected by
cache, I/0O handling, or other architectural features. Our profiling
results underscore the potential benefits of routing decisions that
are sensitive to hardware heterogeneity.

To evaluate the effectiveness of our retry-based optimization
strategies, we leveraged average function runtime observations on
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Figure 9: Workload performance normalized to the perfor-
mance of the 2.5 GHz Processor on AWS Lambda.



Sky Computing for Serverless: Infrastructure Assessment to Support Performance Enhancement

—— zipper + focus fastest
AMD EPYC
Intel @ 2.50GHz

zipper + retry slow —— zipper baseline
Intel @ 2.90GHz Intel @ 3.00GHz

©
@
o

100
~
&
” 80
5

800
& 60
E 18.5% cheaper|
5 750 40
o
po
%]
o
o

20

~
=}
S}

I I T A BN BN B BN BN B

0 2 4 6 8 10 12
Day (us-west-1b)

CPU Percent Distribution (%)

Figure 10: Zipper function performance across a constantly
changing CPU distribution with different retry methods.

all available CPUs combined with our two weeks of CPU distribu-
tion data gathered for EX-4. For each function, we calculated the
expected runtime over time based on the evolving CPU distribution
in each AZ. We then executed bursts of 1,000 function invocations
using two variants of the retry method: retry slow and focus fastest.
In the retry slow strategy, invocations were re-tried only when
placed on the two slowest CPUs, typically AMD EPYC and the
2.9 GHz Xeon. In contrast, the focus fastest method aggressively
retried any invocation not placed on the 3.0 GHz Xeon, the fastest-
performing processor. Aggressive retrying introduces overhead due
to client calls queuing up and having to wait from reattempting
failed invocations. In zones with diverse CPUs, we found that per-
formance gains often outweighed these queuing costs. As shown
in Figure 10, the zipper function benefited substantially from smart
retrying. Over the two-week period, the focus fastest method
achieved a cumulative 16.5% cost savings, with a maximum
18.5% single-day cost savings despite retrying more than 50%
of invocations. The more conservative retry slow method yielded a
consistent 10.1% reduction in execution cost throughout the 2-week
period. This example highlights a scenario where aggressive retries
can lead to substantial cost savings.

Beyond single-zone retries, we explored a multi-region optimiza-
tion strategy that dynamically selected execution AZs based on
daily CPU characterizations. This region hopping approach priori-
tized AZs with the highest prevalence of high-performance CPUs,
most notably the 3.0 GHz Xeon, on a given day. By continuously
adapting to the observed infrastructure composition, region hop-
ping avoids persistently degraded zones and instead routes function
calls to zones that offer favorable execution conditions. This tech-
nique can be used independently or in combination with our retry
method to compound performance gains. Figure 11 demonstrates
the effectiveness of region hopping using the logistic_regression
function. The baseline approach fixed all requests to us-west-1b and
is compared with a smart routing approach that switches between
us-west-1a, us-west-1b, and sa-east-1a, as shown by the shaded sec-
tions in the plot. The logistic regression function with region
hopping method achieved the highest overall cost reduction
of 13.3% over the 2-week period, with a maximum single day
savings of 17.1% even accounting for the additional runtime
due to retries. The graph breadth-first search function (graph-
bfs) with the hybrid approach of region hopping and retries had
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Figure 11: Logistic Regression cost using a hybrid retry and
region hopping method compared to running in us-west-1b.

the highest total savings throughout the 2-week period of 18.2%
compared to running in us-west-1b. Averaged for all functions,
our hybrid approach achieved an average cost savings of
10.03% with a standard deviation of 3.70%. Only $2.80 was spent
performing infrastructure characterizations.

4.6 Limitations and Future Work

The cost improvements we have demonstrated come with an inher-
ent trade-off in added latency. For the retry method, a minimum
delay of 150 milliseconds is introduced per round to attempt to
defer execution in favor of identifying a higher performing FI. This
added latency makes the approach particularly well suited for asyn-
chronous background tasks or high-concurrency batch workloads
where response time is not critical. For a 1,000 invocation work-
load on us-west-1b, an average of 5 retries are needed to have all
requests run on the 3.00 GHz processor, resulting in an added cost
of $0.03 which is easily made up by the performance improvement.
In cases where only a small number of parallel invocations are
issued, the opportunity to encounter optimal hardware is reduced,
potentially diminishing the benefits of retries. The retry method
remains a practical strategy for many applications that prioritize
cost efficiency over low latency—-such as RNA sequencing or batch
workloads [23].

Our infrastructure observation technique is highly cost-effective,
requiring only $0.04 to characterize a single AZ, but this overhead
can accumulate as more zones are profiled regularly. However,
since CPU characterizations are independent of specific workloads,
profiling can be performed once and used repeatedly to inform
scheduling decisions for a wide range of functions. Our findings
suggest that cloud providers could improve developer outcomes by
offering greater visibility into infrastructure characteristics, reduc-
ing the need for active probing altogether. However, this highlights
the potential value of incorporating infrastructure characterization
directly into a sky computing middleware layer. In future work, to
completely eliminate the overhead of polling, hardware characteri-
zations can be constructed passively as part of the normal function
execution.
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5 Conclusions

This study introduces important advances for serverless sky com-
puting, including dynamic functions, a novel infrastructure profil-
ing method, and a smart routing mechanism to optimize perfor-
mance and cost. By deploying functions across a broad ’sky’ of cloud
environments and observing underlying hardware characteristics,
we exposed the hidden heterogeneity in serverless infrastructure
(RQ-1). Our study, conducted at a global scale, profiled serverless
platforms in 41 cloud regions across AWS Lambda, IBM Code En-
gine, and Digital Ocean Functions. Our sampling technique was
able to accurately characterize the available infrastructure of an
AZ for only $0.04 (RQ-2) with 95% accuracy. Our analysis revealed
heterogeneous CPU configurations in different zones and helped in-
form our smart routing approach to aggregate resources from many
AZs to utilize the highest-performance infrastructure available.

Empirical results demonstrate that harnessing infrastructure het-
erogeneity can yield substantial improvements in hosting costs
(RQ-3). An aggressive retry strategy that reschedules functions on
faster CPUs achieved up to 18.5% daily cost savings compared to the
baseline execution. A hybrid approach that combines multi-region
routing with retries consistently delivered cost reductions, up to
18.2% cumulative savings, with only $2.80 spent on sampling over
two weeks. These gains underscore the broader implications of our
approach: By dynamically adapting to heterogeneous infrastruc-
ture on a global scale, serverless applications can turn hardware
varijability into an advantage. Sky computing for serverless offers a
promising path toward more cost-efficient, high-performance, and
scalable serverless computing, enabling cloud functions to capital-
ize on the best available resources worldwide. All source code and
data sets are available on GitHub [5].

Acknowledgments

This research has been supported by the University of Washington
Carwein-Andrews Distinguished Fellow Fund and AWS Educate
Cloud Credits.

References

1] 2025. Amazon S3. https://aws.amazon.com/s3

2] 2025. AWS Lambda. https://aws.amazon.com/lambda

3] 2025. Google Cloud Storage. https://cloud.google.com/storage

2025. Python. https://www.python.org

2025. SAAF: Serverless Application Analytics Framework. github.com/wlloyduw/

SAAF

[6] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX Symp. on networked
systems design and implementation (NSDI 20). 419-434.

[7] Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad
Shahrad. 2021. On merits and viability of multi-cloud serverless. In Proc. of
the ACM Symp. on Cloud Computing. 600-608.

[8] Sarah Chasins, Alvin Cheung, Natacha Crooks, Ali Ghodsi, Ken Goldberg,
Joseph E Gonzalez, Joseph M Hellerstein, Michael I Jordan, Anthony D Joseph,
Michael W Mahoney, et al. 2022. The sky above the clouds. arXiv preprint
arXiv:2205.07147 (2022).

[9] Xinghan Chen, Ling-Hong Hung, Robert Cordingly, and Wes Lloyd. 2023. X86 vs.

ARM64: An Investigation of Factors Influencing Serverless Performance. In Proc.

9th Intl. Workshop on Serverless Computing (WoSC "23) co-located with ACM/IFIP

Middleware 2023. ACM, 7-12. https://doi.org/10.1145/3631295.3631394

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and

Torsten Hoefler. 2021. Sebs: A serverless benchmark suite for function-as-a-

service computing. In Proc. of the 22nd Inter. Middleware Conf. 64-78.

4

[
[
[
[
[5

[T}

[10

Robert Cordingly, Xinghan Chen, Ling-Hong Hung, and Wes Lloyd

Robert Cordingly. 2021. Serverless Performance Modeling with CPU Time Ac-

counting and the SAAF Framework.
Robert Cordingly, Jasleen Kaur, Divyansh Dwivedi, and Wes Lloyd. 2023. Towards

serverless sky computing: An investigation on global workload distribution to
mitigate carbon intensity, network latency, and cost. In 2023 IEEE Inter. Conf. on
Cloud Eng. (IC2E). IEEE, 59-69.

Robert Cordingly and Wes Lloyd. 2022. FaaSET: A Jupyter notebook to streamline
every facet of serverless development. In Companion of the 2022 ACM/SPEC Inter.
Conf. on Performance Eng. 49-52.

Robert Cordingly, Wen Shu, and Wes J Lloyd. 2020. Predicting Performance and
Cost of Serverless Computing Functions with SAAF. In 6th IEEE Int. Conf. on
Cloud and Big Data Computing (CBDCOM 2020).

Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,
Kevin D Bowers, and Michael M Swift. 2012. More for your money: exploiting
performance heterogeneity in public clouds. In Proc. of the Third ACM Symp. on
Cloud Computing. 1-14.

Anshul Jindal, Julian Frielinghaus, Mohak Chadha, and Michael Gerndt. 2021.
Courier: Delivering Serverless Functions Within Heterogeneous FaaS Deploy-
ments. In Proc. of the 14th IEEE/ACM Inter. Conf. on Utility and Cloud Computing.
ACM.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, and Others. 2019. Cloud programming simplified: a berkeley view
on serverless computing. arXiv preprint arXiv:1902.03383 (2019).

Daniel Kelly, Frank Glavin, and Enda Barrett. 2020. Serverless computing: Behind
the scenes of major platforms. In 2020 IEEE 13th Inter. Conf. on Cloud Computing
(CLOUD). IEEE, 304-312.

Danielle Lambion, Robert Schmitz, Robert Cordingly, Navid Heydari, and Wesley
Lloyd. 2022. Characterizing X86 and ARM Serverless Performance Variation: A
Natural Language Processing Case Study. In Companion of the 2022 ACM/SPEC
Inter. Conf. on Performance Eng. (ICPE °22 Companion). ACM. https://doi.org/10.
1145/3491204.3527465

Wes Lloyd, Shrideep Pallickara, Olaf David, Mazdak Arabi, and Ken Rojas. 2017.
Mitigating resource contention and heterogeneity in public clouds for scientific
modeling services. In 2017 IEEE Inter. Conf. on Cloud Eng. (IC2E). IEEE, 159-166.
Wes Lloyd, Minh Vu, Baojia Zhang, Olaf David, and George Leavesley. 2018.
Improving application migration to serverless computing platforms: Latency
mitigation with keep-alive workloads. In 2018 IEEE/ACM Inter. Conf. on Utility
and Cloud Computing Companion (UCC Companion). IEEE, 195-200.

Yunhao Mao. 2022. SkyBridge: A Cross-cloud Storage System for Sky Computing.
In 23rd Inter. Middleware Conf. Ph.D. Symp. ACM, 15-17.

Xingzhi Niu, Dimitar Kumanov, Ling-Hong Hung, Wes Lloyd, and Ka Yee Yeung.
2019. Leveraging serverless computing to improve performance for sequence
comparison. In Proc. of the 10th ACM international conference on bioinformatics,
computational biology and health informatics. 683-687.

Zhonghong Ou, Hao Zhuang, Andrey Lukyanenko, Jukka K Nurminen, Pan Hui,
Vladimir Mazalov, and Antti Yla-Jaaski. 2013. Is the same instance type created
equal? exploiting heterogeneity of public clouds. IEEE transactions on cloud
computing 1, 2 (2013), 201-214.

Josep Sampé, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik, Pol Roca-
Llaberia, and Aitor Arjona. 2021. Toward Multicloud Access Transparency in
Serverless Comp. IEEE Software 38, 1 (2021), 68-74.

Trever Schirmer, Valentin Carl, Nils Holler, Tobias Pfandzelter, and David
Bermbach. 2025. Minos: Exploiting Cloud Performance Variation with Function-
as-a-Service Instance Selection. In 2025 IEEE Inter. Conf. on Cloud Engineering
(IC2E). 194-199. https://doi.org/10.1109/IC2E65552.2025.00036

Trever Schirmer, Nils Japke, Sofia Greten, Tobias Pfandzelter, and David
Bermbach. 2023. The Night Shift: Understanding Performance Variability of
Cloud Serverless Platforms. In Proc. of the 1st Workshop on Serverless Systems,
Applications and Methodologies (SESAME °23). ACM. https://doi.org/10.1145/
3592533.3592808

Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael Gerndt, and
Shajulin Benedict. 2022. Fado: Faas functions and data orchestrator for multiple
serverless edge-cloud clusters. In 2022 IEEE 6th Inter. Conf. on Fog and Edge
Computing (ICFEC). IEEE, 17-25.

Ion Stoica and Scott Shenker. 2021. From cloud computing to sky computing. In
Proc. of the Workshop on Hot Topics in Operating Systems. 26-32.

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. 2018 USENIX
Annual Technical Conf. (USENIX ATC 18) (2018).

Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,
Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,
et al. 2023. SkyPilot: An Intercloud Broker for Sky Computing. In 20th USENIX
Symp. on Networked Systems Design and Implementation (NSDI 23). 437-455.


https://aws.amazon.com/s3
https://aws.amazon.com/lambda
https://cloud.google.com/storage
https://www.python.org
github.com/wlloyduw/SAAF
github.com/wlloyduw/SAAF
https://doi.org/10.1145/3631295.3631394
https://doi.org/10.1145/3491204.3527465
https://doi.org/10.1145/3491204.3527465
https://doi.org/10.1109/IC2E65552.2025.00036
https://doi.org/10.1145/3592533.3592808
https://doi.org/10.1145/3592533.3592808

	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Paper Contributions

	2 Background and Related Work
	2.1 Hardware Heterogeneity
	2.2 Sky Computing
	2.3 Performance Variability in Serverless Platforms
	2.4 Serverless Aggregation

	3 Methodology
	3.1 FaaS Infrastructure Sampling
	3.2 Dynamic Functions
	3.3 Sky Mesh
	3.4 Serverless Smart Routing System
	3.5 Experimental Design

	4 Experimental Results
	4.1 EX-1: Infrastructure Observation Verification
	4.2 EX-2: Global Infrastructure Characterization
	4.3 EX-3: Progressive Sampling Evaluation
	4.4 EX-4: Temporal Infrastructure Variation
	4.5 EX-5: Performance Enhancement by Smart Routing
	4.6 Limitations and Future Work

	5 Conclusions
	Acknowledgments
	References

